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The transformation coefficients of low-amplitude magnetohydrodynamic and entropy waves in a 
rapid shock wave moving in a longitudinal magnetic field are investigated. Cases of appreciable 
wave amplification are considered. It is shown that in a weak homogeneous magnetic field it is 
possible to enhance the field's perturbations considerably. 

PACS numbers: 47.65. + a, 47.40.Nm 

Perturbations can change their spatial and temporal 
scales considerably and also be significantly amplified in in- 
teractions with shock waves. Transformations of a perturba- 
tion by a shock wave were first considered by Blokhintsev,' 
and also by Kontorovich in ordinary hydrodynamics and 
magnet~h~drodynarnics.~~ A numerical study of the trans- 
formation coefficients in magnetohydrodynamics was car- 
ried out by J. F. McKenzie and K. 0. We~tphal.~-' 

Compact expressions are derived in the present paper 
for the transformation coefficients of magnetohydrodyna- 
mic waves in the case of oblique incidence on a fast shock 
wave in a longitudinal magnetic field. The dependence of the 
transformation coefficients on the angle of incidence is in- 
vestigated analytically. The possibility of significant amplifi- 
cation of the perturbations of the magnetic field in super- 
nova fragments via excitation of vortex motions in a shock 
wave is discussed. 

1. STATEMENT OF THE PROBLEM 

We shall consider a shock wave in a system of coordi- 
nates in which the unperturbated discontinuity is at rest and 
coincides with the yz plane. We shall assume the plasma on 
both sides of the discontinuity to be an ideal conducting liq- 
uid, which we shall describe by the equations of ideal magne- 
to hydrodynamic^.^ In the case of small perturbations that is 
of interest to us, we shall limit ourselves to a linear approxi- 
mation; we set d/dz = 0, and take the dependence of the 
perturbations on the time t and the coordinate y in the form 
exp( - i(wt - qy) 1. On each side of the discontinuity, the 
perturbations can be represented in the form of the superpo- 
sition of families of waves: entropy, two slow magnetosonic, 
two fast magnetosonic, and two Alfv6n waves, which, in cor- 
respondence with the direction of the group ~e loc i ty ,~  divide 
into waves incident on the discontinuity and into waves go- 
ing out from it. According to the evolutionarity condition9 
there are only incident waves in front of the fast shock wave 
( x < 0) and only a single fast magnetosonic wave behind the 
shock wave. This latter is an incident wave, the others are 
outgoing waves. 

Perturbation of the velocity and the magnetic field in 
thexy plane, and also perturbations of the entropy and pres- 
sure, are due only to the entropy and magnetosonic waves. 
We express these perturbations in terms of the amplitude of 
the waves SA,/ and the polarization vector y,, : 

The index i here is equal to unity in the region in front of the 
shock wave, and is absent in back of the shock; I denotes the 
type of wave;pi, vi and Ti are the unperturbed density, flow 
velocity, and temperature, respectively; Spu,  Sv,, 
SB,,, Sail are the perturbations, created by the I-th wave, 

of the pressure, velocity, magnetic field and entropy. 
The polarization vector y, is determined from the lin- 

earized equations of magnetohydrodynamics: 

Aiyil=kxizBiyj,, (2) 
where k,, is the derivative o: the component of the wave 
vector, and the matrices i i ,  Bi have the form 

Equation (2) determines the polarization vectors y ,  to with- 
in a multiplicative factor. We represent its solutions for the 
entropy waves in the form 

( ~tf: 1 0 0 r i ~ i i p i ~ i \  

and for the magnetosonic waves, 

pi = 

where V,E(W - kXi,vi)/~ is the normalized frequency of the 
waves in the system of coordinates of the plasma at rest. 

Perturbations of the projections of the velocity and the 
magnetic field intensity on the x axis are due exclusively to 
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I u: u; 0 0 4 I 
Here Mi = vi/si is the Mach number, MOi = vi/vaXi is the 
magnetic Mach number, vaXi = B /(4?rp, ) ' I 2  is the AlfvCn ve- 
locity, 

0 o v ,  ( I  - M - T )  01 vi lQiMai o 
v, (nf: -t I) 20, o - vilMat r ivf /pt  T* 

0 0 0 U;/ 1 0 
. (4) 



the AlfvCn waves, which we shall describe with the help of 
the amplitudes SB, + and SB,, - in correspondence with 
the dispersion law w = k,, vi [ 1 + l/Mai 1. 

Waves departing from the discontinuity appear obvi- 
ously as the result of the interaction of the incident waves 
with the discontinuity. This interaction takes place with 
conservation of the projections of the mass and energy fluxes 
and momentum-flux tensor normal to the discontinuity f. 
The normal component of the magnetic field intensity and 
the tangential component of the electric field intensity are 
also cont inuo~s. '~  This means that the surface of the discon- 
tinuity itself undergoes oscillations near the zy plane under 
the action of the perturbations. These oscillations have the 
form 

where R ( y,t ) is the deviation of the surface element of the 
discontinuity from the zy plane along the x axis, and q is the 
amplitude of the oscillations. From the conservation condi- 
tions at the d i sc~nt inu i ty ,~  we arrive at the following set of 
equations which connect the amplitudes of the incident and 
departing (entropy and the magnetosonic) waves: 

~ e r e h  and B,  are defined in (4), the sum over 1 contains only 
the departing waves, SA,, and y,, are the amplitude and 
polarization vector of the incident wave in the region x > 0, 
and the vector a is equal to 

1 Q 
a-io{u) (-, -y , 0, 0, - I ) ,  {Y)=v-v~.  

U V l  (9)  
2. TRANSFORMATION COEFFICIENTS. GENERAL 
PROPERTIES 

The equations for the amplitudes of the Alfvtn waves 
are separable; the perturbations of the magnetic fields in the 
transmitted and incident AlfvCn waves are connected in the 
following way: 

where K is the compressibility in the shock wave. 
From Eq. (8) we obtain for the amplitudes SA, of the 

waves departing from the discontinuity 

(II 

In the solution of (8) by Cramer's rule, the transformation 
coefficients HI,  and O1 turn out to be functions6 of the wave 
vectors k,, - k, , + , k,, - of all three magnetosonic waves 
departing from the discontinuity (the angular dependence.) 
This complicates the analysis of the transformation coeffi- 
cients, since the longitudinal wave vectors of the magneto- 
sonic waves are the roots of the dispersion equation 

which is of the fourth degree, and has the following form in 
the variables Q,v: 

Q"= 
(MZv2- (I-v)') (M,"vZ- (1-v)') 

(M2+M,Z)v2- (I-v) (12) 
The function Q '(v) is shown in Fig. 1, where we have used the 
notation 

v,,= (M,+I):', - vg5= (l+M)-', vgs= (I-M)-', 
and vkl,  vk2, vL,,v1, v" are multiple roots. However, Il,, 
and 0, can be represented as functions of only two roots of 
the dispersion equation (12), v, and v,,,. Actually, let the 
basis vectors z,, z,,, be mutually orthogonal to the basis 

11 vector; y,, ylnc . Multiplying (8) by the vector 
tlnc =B - '*zinc, we find the amplitude of the oscillations of 
the surface of discontinuity q: 

= i n c i n  B C Bt6Atmytm-~SAinCyinc. 
m 

(13) 
Multiplying (8) by t,=B - "z,, we find the amplitude of the 
outgoing wave SA, : 

6A1= 
( L a )  - (tla) (tincP) 
(tinca) (tl'yl) (14) 

The biorthogonal-basis vectors z,, zinc are determined with 
the help of the usual procedures;12 then the equation for the 
vectors tl , tin, takes the form 

B*t-k *-• 
1- =I B tr. (15) 

Thus, the equations (2), (14), and (15) determine the transfor- 
mation coefficients Il, and 0, as functions of 
kx~(kx inc ),kx inc Or "~("inc ),"inc : 

01 = 
(tla) (tinc 1 BY inc ) 

($",a) (6, BY[) ' 

.. 
The multiplier (t,, By,) = (z, y, ) in the denominators of (16) 
and (17) does not vanish in the general case. The dispersion 
equation (12) can have multiple roots (Fig. 1) v, = vj, and 
then (t,,hyl)- - ( t j , h y j ) 4 .  If both the I and j waves are 
outgoing (the points v' and v", Im k,, = Imkxj > 0 in the 
caseImo>O), theno,+- O,+W and17,--+-&-w; 
however, the infinite terms cancel one another in the sum- 
mation over the modes; for example, 

0, exp (ikXlx) +Oj exp (ikxjx) #-, 

i.e., the perturbations of the physical quantities are bounded. 
In the case in which one of the waves 1 is outgoing, and the 
other is an incident wave (Y, = vine) the coefficients 0, and 
IT,, are themselves bounded by virtue of the vanishing of the 
numerators of (1 6) and (1 7). 

The transformation coefficents become infinite at 
(ti,,, a) = 0, which then gives the following condition: 
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FIG. 1 .  Dispersion curve (12). 

Here J i s  the mass flow across the discontinuity, (aV/dp), is 
the derivative of the specific volume V = l/p with respect to 
the pressurep along the shock adiabat. Satisfaction of (18) at 
Im w = 0 corresponds to spontaneous radiation of waves by 
the dis~ontinuity'~,'~; at Imw > 0 it corresponds to absolute 
instability." In an ideal gas with constant heat capacity, the 
spontaneous radiation of waves does not take place in ordi- 
nary hydrodynamics; however, a sufficiently strong magnet- 
ic field leads to such a possibility.16 

We note here another region of spontaneous radiation 
of the waves by the discontinuity (not noted in Ref. 16). It 
arises in the case that the roots of Eq. (18) fall in the interval 
vkl < vine < vk2 (Fig. 1). Then Im w = Im (qv/Q (vine )) = 0 
while the projection of the group velocity v,, , = do/dk, 
is negative, which corresponds to the spontaneous radiation 
of waves by the discontinuity. l6 From (1 8) we obtain 

The left limit of (19) is negative but greater than - 1, 
while the right does not exceed - M '. In the general case, 
the region (19) borders on regions of absolute instability of 
the shock wave. In extremely intense magnetic fields 
(Ma +I), the left limit coincides with the boundary of abso- 
lute instability and is equal to - 1. In an ideal gas with con- 
stant heat capacity, the inequality (19) is not satisifed. 

In a stable shock wave, the quantity (tin,a) does not 
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vanish in the region Im w > 0, Im k, inc (0 (Fig. 2), but can 
be sufficiently small if one of the roots of Eq. (18) v, is 
located near the boundary of this region, in particular, in the 
case Y + +Yk3 (Yk2, vk In the latter case, the reflection co- 
efficients Ol are as before bounded by virtue of the multiplier 
(tin,, By,, ) which vanishes in the case vine = vk (vkl ,  vk ). 

The transformation coefficients Ill, can be large at 
vinc -fvk (vk vk ) while at sufficiently large distance from 
tin, (17) simplifies to 

111." = - @,a) (tint, Biyirn) const 
w-. 

(tinca) (4, &I) vine-v* (20) 
Moreover, the reflection and refraction coefficients become 
proportional to one another: 

In an ideal gas with constant heat capacity Ill, is large 
in two cases. First, in a strong shock wave (as MI-+ CZJ ) and in 
a bounded magnetic field B when the larger root of (18), v+ 
and the boundary of the real Y,, tend to the same limit 
Y = (1 - Mkin)- '  from different sides (a similar situation 
occurs in ordinary hydrodynamics). Second, in a sufficiently 
strong magnetic field in the case of bounded Mach numbers 
MI-MI ,, (B,, ). Here M I  ,, - B fr/4n-n, TI is the smallest of 
the Mach numbers at which the shock wave is absolutely 
stable (that is, spontaneous radiation of waves does not oc- 
curl6). 

3. REFLECTION OF A FAST MAGNETOSONIC WAVE 

For the medium we take the equation of state of an ideal 
gas with constant heat capacity and give the expression for 
the transformation coefficients 0 , .  

The departing waves in the region x > 0 can be traveling 
and surface waves, depending on the angles of incidence of 
the waves at the discontinuity. The traveling waves 
(Im w = 0, Im, , = 0) correspond to portions of the real axis 
(Fig. 1). In the general case there exist two regions of real 
values of vine. The region vk3 < vine < vg6 arises in the case of 

I /  
FIG. 2. Regions of values of the roots of the dispersion equation in the 
complex plane: I-incident waves (Im k,  < 0, Im o > 0);  11-IV--outgoing 
waves; I and 11-fast magnetosonic waves ( v / ,  v,,,); I11 and IV-slow 
magnetosonic waves (v,, ). In a weak magnetlc field, I is bounded by the 
curve C, 111 does not change qualitatively, I1 and IV are separated by a 
cut. 
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FIG. 3. Dependence of the transformation coefficient 0, on v,,, . 

arbitrary values of the magnetic field (Ma > 1). The roots of 
(12), corresponding to the departing waves, lie in the inter- 
vals vr5 < v / < vk (fast), v, < v, + < v,., and v,, < v, - < v, 
(slow). The region v, , < v,,, < v,, is possible only in suffi- 
ciently strong magnetic fields; the roots corresponding to the 
departing waves lie in the intervals 
v,, < vf < v3, v2 < v, - < vk , , v4 < v, + < v5. The boundar- 
ies of the regions I-IV in the complex v plane correspond to 
surface waves (Imo = 0, Im k,, = 0) correspond to the 
boundaries of the regions I-IV in the complex plane v (Fig. 
2). 

A fast magnetosonic wave incident on the discontinuity 
from the region x > 0 excites upon reflection an entropy, a 
fast, and two slow magnetosonic waves. The entropy wave is 
characterized by the transformation coefficient 0, : 

Here K, = ( y + I)/( y - 1) is the maximum compressibili- 
ty in the shock wave, y is the adiabatic coefficient. For trav- 
eling waves, the modulus of 0 increases monotonically with 
the magnetic field but remains bounded in the region of sta- 
bility. Qualitatively, the properties of 0 are shown in Fig. 3 
for the region v,, < vin, < v@. At normal incidence 
(v,,, = vg6) the coefficient 0, does not depend on the mag- 
netic field. At arbitrary v,,, the modulus of 0, does not 
exceed 

(vp-v+) -' [ (v-v+) O,(v) I v=v+. 

The fields in the drawing haves values B, < B, < B,, < B,, 
where B,, corresponds to the boundary of the instability. 

The magnetosonic waves are described by the transfor- 
mation coefficients 0, which can be expressed in terms of the 
0, in the following way: 

OI=O.(vinc) /Oo(vO. (23) 

We note that at vin,+vkj( j = l,2,3) only a single outgo- 
ing wave is formed, I, for which v,-tv,, (Fig. 1). Here 0, 

x (v,,, -- - Oo(vI)-+O, since the expression in the first curly 
brackets in (22) is proportional to the derivative dQ */dv. 
Then Q, = - 1 while 0, = Oatp#l.  

In a weak magnetic field (Ma -+ oo ) the ratio of the trans- 
formation coefficient 0, to the corresponding coefficient in 
ordinary hydrodynamics On is given in the case of equal vinc 
hv 

which is less than unity because vine > vj . 
For slow magnetosonic waves in the case Ma +a, we 

i.e., the perturbation of the pressure in the reflected slow 
magnetosonic waves is much less than in the incident wave. 
As is seen from (6), the perturbations of the magnetic fields 
are the following: 

6Bxs* (xm-I) (M'Y i n c + l - v i n c ) ~  kc - =- 
6B, ,, v,, [ (xm-1+M2) (vine-1)'-M2] (Q2-l-I) ' (26) 
However, near the shock wave ( x  = 0) the perturbations 
6B ,, + and SB,, - cancel one another, since they are op- 
posed in phase: SB,,+ + SB,,- = - SB,,,,. Since the 
waves s + have identical frequency o and differ little in the 
wave vectors k,, z(o/v,(l  f M ;  '), a significant phase 
lag takes place at the distance L - (m, /2w)Ma. The compo- 
nents 6 B,, + (L ) will have identical sign and the perturbation 
of the field becomes large. Behind the shock wave a picture 
of spatial beats of the perturbations of the magnetic field 
develops (a component of the perturbation of the velocity Sv 
beats in antiphase). In this sense we can speak of a significant 
amplification of the perturbations of the magnetic field of 
the shock in a weak uniform magnetic field. 

4. PASSAGE OF THE WAVES ACROSS THE DISCONTINUITY 

The transformation coefficients 17,, (17) are in the gen- 
eral case more complicated functions of the wave vectors 
than 0 , .  Here we give the relation between the perturbation 
(ST,/T,), of the temperature in an incident entropy wave 
and the perturbation SB,, , of a magnetic field by the mag- 
netosonic waves excited by it: 

x { 1 +  1-x+ (vin,-1)x (%,-I) 
x ~ , " ( ~ ~ ~ , - I ) ~ - l  

This transformation coefficient is a monotonically de- 
creased function (in amplitude) of v,, in the interval 
v, , < vinc < vg6. The physical picture behind the shock in 
this case is the same as in the case of reflection. i.e., (SB /B )/ 
(ST,/T,) - Ma. Significant amplification of the magnetic 
field develops upon incidence of fast magnetosonic waves on 
the discontinuity from the region x < 0. We note also that 
similar phenomena should be observed at any orientation of 
the magnetic field. 
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We now consider the possibility of this mechanism of 
excitation and amplification of the perturbations of the mag- 
netic field under astrophysical conditions. According to Ref. 
17, the galactic magnetic field and the mean concentration of 
particles in interstellar space amount to B-(2-3)10-6 Oe 
and n, - 1 ~ m - ~ .  From the condition M,,1 we obtain 
v ,  )B / ( T ~ , ) " ~ = .  1.1 x lo6 cm/s, which is generally achieva- 
ble in supernova fragments. The direct application to them 
of the results set forth above is connected with two condi- 
tions: 1) The emission of energy from the shock wave should 
be negligible, a condition satisfied in the adiabatic phase of 
expansion; 2) the width of the shock front Sf should be sig- 
nificantly less that the radius of the relic R, . 

We shall use a model of a supernova with ejection of 
mass ,--4Ma and initial velocity 5 X lo8 cm/s with typical 
density and temperature of interstellar space n, - 1 ~ m - ~ ,  
TI - lo2-lo4 K.I8 The adiabatic phase in this case begins at a 
velocity v,, z 5 X 10' cm/s and ends at v,, -- 1.7 X lo7 cm/s 
(when the temperature behind the shock front drops to lo6 
K). Condition 2) begins to be fully satisfied at expansion ve- 
locities v,(7 x lo7 cm/s. At this stage, the radius of the relic 
Rs z 12 pc, the temperature behind the front T, = (3/ 
2)mv:/k, =. 1.3 x 10-9u: =.6.4X lo6 K; consequently, the 
free path length is Ai = 2~ 104T i /n  -,2 x 10" 
c m z 7  x pc, Sg -Ai ( R s .  The relic slows its motion 
from a speed of v, z 7 x  10' cm/s to v,, ~ 2 . 7  x 10' cm/s in a 
time of 2.4X lo4 yrs, which is about 80% of the adiabatic 
stage. 

The magnetic Mach number at a speed of expansion 
v ,  -5X lo7 cm/s in a magntic field B = 3 X loF6 Oe 
amounts to Ma = v , ( ~ ~ , ) " ~ / B z 3 8  which assures a signifi- 
cant gain in amplification (excitation) of the perturbations 
ofthe magnetic field. At a temperature of interstellar space 
TI - lo4-lo2 K, we get from (27) 

i.e., relative perturbations of the temperature of the order of 
can lead to a significant (6B /B- 1) perturbation of the 

magnetic field. 

An observational test of the given mechanism of forma- 
tion of inhomogeneities of the magnetic field can be provided 
by a dual structure of radio details. Actually, when a shock 
front passes through a hot (or cold) region, vertical perturba- 
tions of the velocity are formed behind it, compressed by a 
factor of 4 along the x axis. This perturbation in a weak 
magnetic field is the superposition of two wave packets of the 
slow magnetosonic waves, moving with different group ve- 
locities v,, = v, + v,,. Consequently, the packets move 
apart within a certain time (by 1 pc within 5 X lo4 yr) and 
form two details with amplified perturbation of the magnetic 
field f SB. 

The author expresses his deep gratitude to V. M. Kon- 
torovich for useful discussions. 
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