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A theory of the nonstationary Josephson effect in SNS junctions with low impurity density is 
constructed on the basis of the microscopic equations of superconductivity theory. The general 
expressions obtained for the current are used to determine the linear response of the system to a 
small alternating voltage, the stimulation of the critical contact by microwave irradiation is 
investigated, and the nonstationary Josephson effect is analyzed at low and high voltages. The 
decisive role in the nonstationary behavior of SNS junctions is played by the disequilibrium of the 
quasiparticle distribution in the system; this disequilibrium leads, in particular, to an essentially 
nonsinusoidal I(q,  ) dependence at all T and d. 

PACS numbers: 74.50. + r 
1. INTRODUCTION 

Superconductor-normal metal-superconductor (SNS) 
junctions are among the most important (both theoretically 
and for practical applications) types of weak superconduct- 
ing links (see, e.g. Ref. 1). The microscopic theory of the 
stationary Josephson effect in SNS junctions has in fact al- 
ready been completely developed, but the features of their 
nonstationary and nonequilibrium behavior have so far been 
little investigated. Yet the deviation of the distribution func- 
tion of quasiparticles in SNS from equilibrium, which takes 
place when a potential difference is present in the system, 
influences strongly the nonstationary properties of such 
junctions. Correct allowance for the disequilibrium of the 
distribution function is in fact the main difficulty encoun- 
tered in the development of a theory for the nonstationary 
Josephson effect in weakly bound superconducting systems. 

It is known that this difficulty can be relatively easily 
avoided in the case of tunnel (SIS) junctions, whose nonsta- 
tionary properties are described by perturbation theory in 
term of the transparency of the dielectric barrier, wherein 
the superconductor is regarded as in equilibrium in the ze- 
roth approximation. The corresponding theory was devel- 
oped in the papers of Werthamer2 and Larkin and Ovchinni- 
kov.) In systems with direct (nontunnel) conduction this 
approach is no longer applicable, and the problem calls for 
an exact solution. 

Alamazov and Larkin4 and Likharev and Yakobson5 
investigated the Josephson effect in superconducting bridges 
near T,, using the nonstationary Ginzburg-Landau equa- 
tions, which are valid for zero-gap superconductors and do 
not take into account the nonequilibrium effects. In the case 
of superconductors with a gap, to take into account the dis- 
equilibrium of the distribution function it is necessary to 
introduce into these equations also additional terms, as was 
done indeed by Alamazov and Larkin.6 Even within the 
framework of such an approach it was shown that supercon- 
ducting bridges have a number of interesting properties (the 
excess ~ u r r e n t , ~  the critical-current stimulation due to oscil- 
lation of the gap in the junction6), which are absent in tunnel 
 junction^.^.^ 

The next step in the study of nonstationary phenomena 
in superconducting weak links was made by Artemenko, 

Volkov, and Zaitsev7 and by Zaitsev,' who constructed a 
theory of the nonstationary Josephson effect in short super- 
conducting bridges (SCS) on the basis of consistent micro- 
scopic equations for quasiclassical Green's functions inte- 
grated with respect to energy.9*'0 It was shown in particular 
that the nonstationary behavior of SCS junctions becomes 
much more complicated (compared with the simple resistive 
model4) principally because of the presence of nonequilibri- 
um electrons. 

The nonstationary Josephson effect in SNS systems 
containing a dielectric layer (SINS and SNISNS) was investi- 
gated" by Zharkov and my~elf.".'~ To construct the theory, 
use was made also of the microscopic  equation^,^.'^ while the 
presence of a dielectric barrier was taken into account with 
the aid of the boundary conditions obtained in Ref. 11, 
which are valid for arbitrary transparency of such a barrier. 
In Refs. 1 1 and 12 was considered the case of low transparen- 
cy (tunnel conduction) and it was shown that the nonstation- 
ary Josephson effect in SNINS junctions has a number of 
interesting features. Thus, the anomalous part of the Joseph- 
son component of the current has, even at high temprra- 
tures, no factor that depends exponentially on the N-la,er 
thickness. In pure SNINS junctions at definite voltages there 
exist logarithmic peaks in the expression for this current 
component, and are due to resonant tunneling of the electron 
between the systems of Andreev levels. These effects can 
lead to a "double" stimulation of the critical current of an 
SNINS system in a microwave field. 

The present paper deals with nonstationary and non- 
equilibrium properties of SNS systems that have direct con- 
ductivity (unity transparency coefficient). The deviation of 
the distribution function from equilibrium plays a decisive 
role in the behavior of such junctions. In Sec. 2, a general 
expression for the current is obtained and describes the non- 
stationary Josephson effect in the considered system. This 
expression is investigated for different limiting cases in Secs. 
3 and 4. The linear response to a low alternating voltage is 
considered, and the singularities of stimulation of the critical 
current in a microwave field as well as the nonstationary 
Josephson effect at low and high voltages are considered. 
The results are discussed in the concluding section. 
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2. FUNDAMENTAL EQUATIONS. GENERAL EXPRESSIONS 
FOR A CURRENT IN AN SNS JUNCTION 

The analysis is based on the microscopic equations, in- 
tegrated with respect to lP = v@ - p,), for the Green's func- 
tions9s lo 

a& ak a - - - .  
v ~ - + ? ~ - - + - Z ^ ~ + [ H + X , G ] = O ,  

d R a t  dt'  

where 

" 
H = {- ievFA (t) z, + iea (t) - i A (t)} (t - t'), 

v, = p , / m  is the Fermi velocity, A and @ are respectively 
the vector and scalar potentials, 1 is the mean free path, A is 
the order parameter, and .ii (i = 1, 2, 3) are Pauli matrices. 
The square brackets in (1) denote a commutator, and the 
angle brackets denote averaging over the directions of the 
vector v,. The product of matrices denotes everywhere con- 
volution with respect to the internal variable. The current in 
the system is given by 

j (t) = (epp/4n) (Sp ;8pp~(t, t )  ). (3) 

Thece is an additional normalization condition for the matri- 
ces G (Ref. 10) 

i?="l6 (t-t') . (4) 

The model for the SNS junction will be the known model of a 
variable-thickness bridge: two bulky superconducting banks 
are connected by a thin normal-metal filament of length d 
and of cross-section area S, with a - a < [ ,  lo(lo is the the 
coherence length of the superconductor). In this case the 
situation is in fact quasi-one-dimensional. The order param- 
eter of the system is of the form A(x )=A 
[O(x -d /2 )+  0 ( - x - d / 2 ) ] ,  whereO(x) is theHeavi- 
side function. 

We shall assume that the mean free path is large com- 
pared with all the characteristic parameters of the problem 
(the pure limit). In this case the Green's functions of the SNS 
junction can be obtained analytically for all energies. We 
note that in experiment it is quite difficult to realize the situ- 
ation of a pure SNS junction. However, many properties of 
dirty (I<{,) and pure SNS junctions are qualitatively similar, 
so that the investigation of the problem posed is not only of 
theoretical but also of definite experimental interest. We 
shall return to this question later. 

Assume that there is in the system a potential difference 
V ( t  ) such that 

@ (t) =&ll,v (t) , xs-td12, I x 1 -d/2>a. ( 5 )  

We neglect the vector potential. Equations ( I )  are solved in 

the superconducting and in the normal regions, and the ob- 
tained solutions are matched on the transit trajectories, it 
being assumed that reflection from the N-filament boundar- 
ies is specular. Since the problem is quasi-one-dimensional 
the Green's function depends only on the coordinate x and 
on the velocity component v, . Solution of (1) in the super- 
conducting regions on the transit trajectories is of the 
forms*' ' 

Gj (v,, x) =gj+exp {-$ (2- (-l)'d/2) )& (v,) 

Xexp {kj (z- (-1) jd/2) ) . (61 
Here and elsewhere the subscript 1 pertains to the left-hand 
superconductor (x < - d /2) cnd 2 to the right (x > d /2). The 
expressions for the matrices Aj are well known7: 

The expressions for the parameters fliA', which describe the 
electron-phonon relaxationvin the$uperconductors, are giv- 
en in Ref. 7. The matrices A and B satisfy the conditionss 

" " " "  
Bj (v,) Ai=-AjBj (v,) = (-l){~j(v,) sign v,. (8) 

The solution of Eqs. (1) in the N region are represented 
in the form 

x=-e dt,@ (x-v,(t-t,), ti), i 
where the matrix Z ' O '  is the solution of (1) under the condi- 
tion@ (x,t ) = 0, ( s (<d/2 .  Itshould~enotedfirstofallthatas 
t '-1 the matrix G is identical with G 'O'. Since the current in 
the system is expressed in terms of the Green's functions at 
equal times, for~alculation 3t any point of the N layer we 
need know only G 'O' (but not G ), i.e., the concrete form of the 
potential @ at 1x1 <d  /2 has no effect whatever on the expres- 
sion for the current in the N layer. We note also that by virtue 
of the symmetry of the problem we hate @ (O+t ) = 0, conse- 
quently at the point x = 0 the matrices G and G 'O' coincide at 
all t and t ' (and not only at t = t '). We shcill find it c~nvenient 
to find an expression for the function G (v,,O)-G,(v,). To 
this end we introduce the matrix 
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,. phase difference takes the form p(t ) = p0 + p,(t  ) ,p,g 1. The 
(9) presence of the alternate component p l ( t  ) means the appear- 

ance of an additional current Z,(t ) through the junction. We 
w e  then have (we leave out the energy variables for the sake obtain an expression for such a current in terms in an ap- 
of brevity) proximation linear in p l ,  using for this purpose Eqs. (12). It 

2 , + k ,  (u,) =c (v,)  80 (ux) ci (vr)  must be noted that the terms linzar in p, will be contained in 
(10) the expansions of the matrices P R'A and ii - . Using this, we 

;i2+ij2 (v,) =e+ (v,) go (VI) c (us ) .  have after simple calculations 
Using (8) and (10) we obtain after simple transformations 

6 0  (v,) = (I+o- (us) sign v,) O+-' (v , )  , - i 
(11) 

0 * ( v x )  = v 2 { c +  ( v s ) i , e  (ux) (Vx)AV2e+ (v,) ), 
A 

whence follows directly an expression for the matrix Go(u,): ' X''=~ign a { g i  (6,)  g ' ( ~ - )  f f ' ( & + )  f ( E - )  cos X +  cos X - )  (1 6) 
x{I - f i  ( e + ) f ( e - )  sin X +  sin X - )  - i { f ' ( e + )  sin X+ 

GO ( 4  =Gor (v,) +Goa(v.), (I2) S f i ( & - )  sin X - )  { ~ ' ( E + ) ? ( E - )  cos X - + f ' ( ~ + )  g j ( ~ - )  cos x + ) ,  
.. ,. 
G~T=PRG+-~^+&, ;R(A)= (i+Q"_R(A'Sign v,) (6+RcA' ) - 1  P ' ( o )  = { [ I +  ( f ' ( ~ + )  sin x+) ' ]  [ I +  ( Y ( E - )  sin x - ) ~ ] ) - ' ,  

eoa=- ( Q + R )  - l ( o - ~ ; - - n ^ - ~ - * )  (Q+A)  -l 
~ + = ( p ~ / 2 + & , d / v ~ a ,  E*=E* 012, i ,  j=R, A.  

+sign ( Q + ~ ) - ' ; -  ( Q + * ) - ' + ? - ~ ( Q + ~ )  -';-Q-* (b+*) - I -  ;-I, HereZIO andp,, are theFouriertransformsofI,(t ) andp,(t ). 
n, (v,) =,12 ( e ~ , e + * c t n 2 e ) .  Expression (1 6) becomes noticeably simpler under the condi- 

p e  current at the point x = 0 is connected with the function 
Go by the relation 

where R is the resistance of the junction in the normal 
state." Of course, the current can be calculated at any other 
point of the Nmetal, and by virtue of the continuity equation 
the result should not depend on the choice of this point.2 

Thus, relations (7), (9) and (1 1)-(13) yield the complete 
solution of determining I (t ) in pure SNS bridges at arbitrary 
V(t ). As d 4  our expressions for the system Green's func- 
tions go over, as expected, into the corresponding equationss 
obtained for pure SCS junctions. A 

We note also that the matrix G can be represented in 

tions T- T,, w 4  (T )  < vF/d and go over into 

(17) 
HereI, is the critical current ofthe bridge, 7, = ly, a T2' (at 
T- T,) is the time of the electron-phonon relaxation on the 
banks. As d 4  Eq. (17) goes over into the Za'itsev result.' In 
thecased>c0 we havelo a exp ( - d /go) so that the last term 
in (17) can be neglected. At low frequencies o(l/.r, we then 
obtain 

the form Thus in SNS bridges (just as in other types of weak links with 
direct conduction) the conductivity is increased because of eoa (v,) =$Rp.-p.p~. (I4' the deviation of the distribution function from equilibrium. 

The matrix 3" describes in fact the deviation of the distribu- We call attention also to the fact that at o < vF/d the expres- 

tion $nction from the equilibrium function. It can be shown sion for the current (17) is in fact independent of d. 

that Fa satisfies the equations At low temperatures the behavior of the bridge is also 
quite interesting. At T<A(u,/d we have I,, 

,. 
Q*RP.-PDQ+A=QTAn--nnQTA, (15) = 0, o < Acos(p0R); 

which are a direct generalization of the corresponding equa- 4 e R o  
tions in Refs. 7 and 8 ( d 4 ) .  

cpo We proceed to investigate the obtained general expres- c0s((p0i2)-0 , A cos - c @<A.  (19) 
sions. 2A cos (cp0/2) + w  2 

3. CASE OF LOW ALTERNATING VOLTAGE 

a) Linear response 

The absence of a linear response at o < Acos(pd2) is actually 
due to the fact that the Green's function pole corresponding 
to the presence of a discrete level in the system makes no 

Let a constant currentz, flow through the junction. The contribution to the current. Obviously this result is valid 
current is parametrized by a time-independent phase po. only if one neglects electron-scattering processes that lead to 
When a low alternating voltage appears on the junction, the broadening of the discrete level, i.e., at w>y,, where y, is 
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the characteristic width of the level. At large d>go and 
T4uF/d, Eq. (16) yields 

The logarithmic singularities in the expression for the linear 
response (20) at w = 2a  uFn/d are similar to the analogous 
singularities on the CVC of SNINS junctions. They are due 
to electron hopping between Andreev levels under the influ- 
ence of the external alternating field. Thus, even at low vol- 
tages the behavior of SNS junctions is quite nontrivial and, 
as can be seen, it differs substantially at high and low tem- 
peratures. 

b) Stimulation of critical current in a microwave field 

One of the important properties of SNS junctions is the 
appreciable increase of the critical current by external radi- 
ation. This effect was observed in experiment.I4 It was 
shown in Refs. 15 and 12 that stimulation of the critical 
current in SNS junctions (as well as in other superconduct- 
ing structures) is due to the disequilibrium of the distribution 
function, and a distinguishing feature of these junctions is 
the magnitude of the effect: the critical current in a micro- 
wave field can increase by several orders of magnitude com- 
pared with the equilibrium situation. To investigate the 
stimulation of the superconducting current of pure SNS 
junctions we use the general formulas (12). Assume that an 
alternating voltage V(t ) = Vlcosw,t is applied to the junc- 
tion. Then 

We calculate the critical current of the SNS junction under 
the assumptions e V, (wl and d>go. To this end, just as in the 
case of an SNINS junction,12 it is necessary to expand the 
general expression for the current up to terms quadratic in 
pl, . Carrying out the corresponding calculations and aver- 
aging over the time, we arrive at the final expression for the 
current which, however, is quite complicated and is there- 
fore given in the Appendix [Eqs. (A 1 ) and (A2)]. We note also 
that Eqs. (Al) and (A2) give a general expression for the 
''nonequilibrium" part of the current through the junction. 
Here, however, we are interested in the equation for I ', inas- 
much as at t>vF/d (i.e., at temperatures at which the stimu- 
lation effect manifests itself) I' a exp( - d /g, 1 ,  where 
f ,  = vF/2aT. We shall not investigate the obtained general 
expression in various limiting cases. We note only that this 
expression becomes much simpler at T- T, and 
w,(A (T )  < vF/d. Under these conditions it goes over into 

i.e., the expression for the critical current of SNS bridges in a 
microwave field does not depend at all, under definite condi- 
tions (w14vF/d ) on the N-layer thickness. It can be seen that 
at w,< l / ~ ,  we have I ,  cc r, 2, and at wl> 1 / ~ ,  the critical 
current can become of order I, for short bridges under equi- 
librium condition. In other words, the disequilibrium of the 

distribution function leads, as it were, to a shortening of the 
bridge. Of course, at o1 2 vF/d the characteristic energies at 
which the distribution function is essentially not in equilibri- 
um is of the order of (or larger then) the reciprocal transit 
time of the electrons through the junction, so that in this case 
I, no longer depends on d. Such a dependence (under certain 
conditions) follows a power law,12.15 rather than an exponen- 
tial law as in the equilibrium case. Then the "nonequilibri- 
um" critical current of the bridge can exceed by several or- 
ders its equilibrium value, as is indeed observed in 
experiment. 

We note also that the results are valid if the electron- 
phonon relaxation in theN layer is neglected. The relaxation 
of the distribution function to equilibrium takes place in our 
case in the superconducting banks. The same condition was 
used in Ref. 12. A different physical situation was consid- 
ered in Ref. 15, whose authors proposed that the energy re- 
laxation of the nonequilibrium quasiparticles trapped in the 
N layer is due to electron-phonon interaction in this layer. 
The nonequilibrium correction to the distribution function 
was calculated by perturbation theory directly from the ki- 
netic equation for the N metal with the usual "equilibrium" 
boundary conditions for the Green's function on the NS 
boundary. It can be seen here, too, that even a small devi- 
ation from equilibrium can lead to a considerable increase of 
the critical current of the junction. 

4. NONSTATIONARY JOSEPHSON EFFECT. LOW AND HIGH 
VOLTAGES 

As already noted, the general expressions obtained for 
the Green's functions make it possible in principle to deter- 
mine the current through the contact at an arbitrary voltage. 
In a number of cases (e.g., at eV-A ), however, to reach nu- 
merical results and by the same token determine the CVC of 
a junction is quite difficult. We confine ourselves therefore to 
an investigation of the nonstationary Josephson effect at low 
(e V<A ) and high (e V>A ) voltages. 

A. Low voltages 

We consider first the temperature region T- T,. In this 
case A (T )  is small, so that in a really attainable experimental 
situation the condition d < vF/A ( T )  will be satisfied. The 
analysis is based then on the use of relations (14) and (15) and 
does not differ in fact from that in Refs. 7 and 8 for short 
bridges. We have ultimately 

1 dcp nA2 I=--- + - P { p )  +I, sin cp. 
2eR d t  4eRT 

Thus, the current-phase relation for SNS bridges in the resis- 
tive regime near T, is the same as in the case of short SCS 
 junction^'^^ (the form of the functional P ( p j was obtained in 
Ref. 8). However, whereas in short junctions the coefficients 
of P {q, 1 and sinp are equal and coincide with the critical 
current of the junction, in SNS junctions they differ substan- 
tially. Thus, at d>go the current I, is exponentially small 
and the first two terms in (23) can be seen to be entirely 
independent of d, i.e., the relative contribution of the "non- 
equilibrium" terms in the case of sufficiently long junctions 
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is larger than for short ones. The functional P (q ,  ) was inves- 
tigated in Ref. 8, so that there is no need here to write down 
the expressions for the current in different limiting cases. We 
note only that at low voltages eV( 1/r the CVC of the junc- 
tion takes the form 

i.e., just as in the case of a low alternating voltage, the devi- 
ation from equilibrium leads to an effective increase of the 
conductivity of the junction. With decreasing temperature, 
the situation changes substantially. Let us consider the case 
T<A and e V<min (A, vF/d ) . In addition, we assume V to be 
constant or skwly varygg in time. Under these conditions 
the matrices Q !f and (Q R+ ) - I  are obtained for the energy 
region of interest to us, in the adiabatic approximation, by 
replacing p, with p(t ) in the corresponding equilibrium ex- 
pressions. As a result we get 

where I '(p ) is actually a generalization of the result of Refs. 
16 and 17 to include the nonstationary case (T-4): 

(v~l6eRd) cp, -n<cp<n, d>Eo. 
eR) sin (cp/2), d<go (26) 

The expressions for Ia(p ) differ noticeably, depending on 
the region of the variation of the problem parameters. Thus, 
under the condition 

eV eVd T Td 
2 

I "(p ) does not depend on d: 

At arbitrary p(t ), but under the condition T(eV(aF/d <A, 
we have 

In the case cos(p /2)>eVd /v, the expression (28) coincides 
with (27). The resonant singularities in (28), just as in other 
cases, are due to the presence of a discrete structure of the 
Andreev levels in the junction. As p(t  )-+ + T + 2 ~ n  we ob- 
tain I "  = V/2R. 

Thus, at low temperatures I (p ) deviates from the equi- 
librium relation (26) (and all the more from sinusoidal) even 
at low voltages. This difference is directly connected with 
the appearance in (25) of the term I "(p), which describes the 
deviation of the distribution function from equilibrium. 

Averaging (28) over the period q,(t ) and assuming at the 
same time that Vchanges little during this period, we obtain 

i.e., the CVC of an SNS junction, under the considered con- 
ditions, deviates greatly from Ohm's law. This deviation is 
due to the fact that as T - 4  there are no quasiparticle excita- 
tions in the system, and the current is due to condensate 
flow. 

6. High voltages 

In the case e V>A the normal current exceeds consider- 
ably the Josephson and the interfereye components. In this 
case p = p0 + 2 Vt, and we have for (Q y)-' in analogy with 
Ref. 8 

[Q:"'" (E, E l )  I-' 

The current through the junction has in the first-order ap- 
proximation the form 

I=Ia+Z, sin cp+I, cos cp. (31) 

Calculating I,, with the aid of (30) we obtain 

The quantity I,, in (32) defines the excess current in the junc- 
tion, the expression for which can be seen to be independent 
of the N-layer thickness and to be exactly equal to Zaitsev's 
results for short SCS junctions. We emphasize also that I,, 
depends on d only in pure SNS junctions. 

For sufficiently large d the ratio I,,/I, is much larger 
than unity even at T = 0 (and all the more at QvF/d ). Thus, 
at d>go and T = 0 we have 

We present expressions for I, and I, or the case of short SNS 
junctions with d<v,/eV. These expressions are quite cum- 
bersome even in the first-order approximation in A /e V, and 
are therefore relegated to the Appendix. At T(A Eqs. (A3)- 
(A5) become much simpler. In this case we have3' 

For comparison we present the expressions for I, and I, in 
SIS  junction^^.^ at T<A (e V: 

It can be seen that I, and [I2[ turn out to be less in the 
case considered by us than the corresponding expressions 
(35). The quantity y(V) = I,/I, takes the form 

1 ( V )  =A/2eV, eV>A>T 

The analogous quantity for SIS junctions in the consid- 
ered temperature and voltage range is equal to 
y,,, = 24 /eV. The decrease of y(V) in point junctions with 
direct conductivity, compared with the case of tunnel junc- 
tions, was observed in experiment.19 It is quite difficult, 
however, to compare quantitatively our results with those of 
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the cited experiments, inasmuch as in Ref. 19 were used su- 
perconductors with large amounts of impurities, as well as 
not too high voltages eV5 44. 

In the case of broad SNS junctions, the currents I, and 
I, contain an additional smallness [compared with (34)] in 
terms of the parameter v,/eVd (see Ref. 11). 

5. DISCUSSION OF RESULTS 

Our analysis shows thus that many nonstationary prop- 
erties of SNS junctions differ noticeably from the previously 
investigated properties of tunnel junctions2s3 and of short 
superconducting  junction^.^.' At high temperatures T- T, 
the decisive role is played by the disequilibrium of the distri- 
bution function, since the Josephson current is exponentially 
small at these T and at d&co, while the "nonequilibrium" 
terms do not contain such a small quantity (at sufficiently 
low voltages and frequencies, they do not depend on d at all). 
This is in fact the cause of the stimulation of the critical 
current of SNS junctions in a microwave field. We recall that 
in short junctions the superconductivity is suppressed by 
low-intensity microwave rad ia t i~n ,~  since the increase of the 
pair current I' prevails under these conditions over the 
anomalous component I "  (which is absent in the equilibrium 
case). In sufficiently long SNS junctions, I "  can exceed I' by 
many orders of magnitude, and this leads, so to speak, to 
shortening of the junction under the influence of the irradia- 
tion. 

At low temperatures T<min(A,uF/d ) the quasiparti- 
cle excitations in the system are in fact absent. In the case of 
low voltages the current through the junction differs from 
zero only because of the condensate flow. We note we have 
here a manifestation of one of the essential differences 
between systems with tunnel and direct conduction. It is 
known that in tunnel junctions the quasiparticle and inter- 
ference components of the current are zero at T = 0 (in first 
order in the transparency) at eV< 24 (for SIS, See Refs. 2 
and 3) or eV<A (for SINS and SNISNS, see Ref. 11). In 
junctions with direct conduction the current I "  differs from 
zero even at T = 0 and at arbitrarily low voltages, and the 
current flow is due in this case to the Andreev reflection of 
the excitations with E < A from the NS boundaries (for SNS 
junctions) or the direct transition of the electrons from con- 
densate to condensate (for superconducting junctions). In 
tunnel junctions these phenomena contribute to the current 
only in second order in the transparency, and therefore play 
no significant role in the current transport. In systems with 
direct conduction the current I "  due to the passage of the 
electrons between superconducting condensates of two met- 
als should obviously depend strongly on p(t ) [see (27) and 
(28)], and the CVC of the junction deviates in this case from 
Ohm's law. 

One more significant difference from junctions with di- 
rect conduction is the presence, on the CVC at eV>A, of an 
excess current that is actually absent in tunnel junctions. 
The reason is that in tunnel systems the quasiparticles with 
E < A make no contribution to the current in first order in 
the transparency, whereas in SCS and SNS junctions all the 
states contribute to the current. Thus, the peculiarity of the 

nonstationary behavior of SNS junctions is connected in 
many respects with the conductivity of the quasiparticles 
having E <A and trapped in the N layer. The presence of 
characteristic logarithmic singularities on the CVC in a 
number of cases is due to the discrete character of the spec- 
trum of such quasi particle^.^^ Of course, these logarithmic 
peaks on the CVC become smeared out when account is tak- 
en of the Andreev-level width, which is made finite by the 
scattering (elastic and inelastic) of the quasiparticles. 

The presence of a discrete quasiparticle spectrum at 
E < A is a feature of pure SNS systems, so that the singulari- 
ties indicatedcan be realized only in such systems and do not 
occur in SNS junctions with large amounts of impurities. In 
all other respects the physical situation in pure and dirty 
SNS junctions is qualitatively similar. The role of the transit 
time T, -d /vF of a quasiparticle in the N layer of a contami- 
nated junction is played by the characteristic diffusion time 
T, -d '/D (where D = vFl /3). The reason why it is difficult 
to calculate nonstationary phenomena in dirty SNS junc- 
tions is that it is impossible to find an analytic expression for 
the Green's functions of the junctions at energies E-D /d 
(in contrast to the case of pure SNS systems, whose Green's 
functions are known for all energies). Nonetheless, in a num- 
ber of limiting cases the current in dirty SNS junctions can 
likewise be calculated accurately. We illustrate this using by 
way of example the calculation of the critical current of a 
dirty SNS junction in a microwave field. 

We consider the case T s D  /d and assume an applied 
alternating voltage V{t ) = Vlcoso,t, with e ~ ~ ( o , ( D  /d '. 
To calculate the current we need to know the Green's func- 
tion only at low energies E(D /d ', and the expressions for 
these functions are known.' Consequently, we can use right 
away the result of Ref. 7 [Eq. (54)l. Neglecting the exponen- 
tially small Josephson current and averaging over the time, 
we obtain 

i.e., the critical current is stimulated in the microwave field: 
the current does not contain the e~ponential small factor 
-expi - d /{,) with c, = (D / 2 n ~ ) " ~  (the junction is so 
to speak shortened). 

We note also that at low voltages V4A (T)  < D /d and 
T- Tc the expression for the current takes the form (23), 
with the functional P (g, ) calculated in Ref. 7, and the 
expression for I, of dirty SNS calculated in a number of 
papers (see, e.g., Ref. 2 1). 

As already noted, relations (9) and (1 I)-( 13) make it pos- 
sible to determine the current at the pains x = 0, i.e., at the 
midpoint of the junction. Yet the matrix G 'O' atvother points 
of the N layer differs generally speaking from G 'O', namely 

(vx, x) =C (vx, x) Go (vl) c (v,, 2) , I x 1 < d / 2 ,  (37) 

h 

where the matrix C (v, J) is defined by Eq. (9) in which d /2 
must be repLaced by x. In the case of low voltages eVd /vF( 1 
the matrix G, in the principal approximation in terms of this 
parameter, is independent of x .  At high voltages, however, 
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this dependence becomes significant. For example, in the 
case e V s A  ) v,/d we have 

I=Io+I++I-, I,='/, [I, sin cp, (s, t) +I, cos cp, (x, t) 1. 
cp-_ (x, t) ==cp0+2eV (t* X / Z ? ~ ) .  (38) 

The electric field in the N layer, not too close to the NS 
boundaries, is of the form 

E=E++E-, E, (x) = (TIIVS) [Ii cos ( P ~  (x, t )  -I2 cos cp* (x, t )  1. 

(39) 
Thus, in the situation considered there are present in the N 
layer unusual waves of the current and of the electric field. 
We emphasize that we have in mind the field inside the N 
filament. Near NS boundaries in a superconductor, how- 
ever, the electric field changes quite abruptly, so that the 
potential difference between the superconducting banks 
turns out to be equal to V. The penetration depth of the 
electric field into the superconductor depends on a number 
of factors (temperature, system geometry, and others) and, 
as is well known, is greatest at T-- T, . In the case considered, 
since a is small, the electric field in the semiconductor can be 
appreciable only at distances of the order a(c0 from the NS 
boundaries. 

One more final remark. We have dealt throughout with 
an SNS structure of bridge type, and the weakness of the 
binding was due in fact to the smallness of the cross section 
of the N filament. All the results, however, turn out to be 
valid (just as in the stationary case22) also for an SNS struc- 
ture of the sandwich type provided that v, (v, . In this case 
the weakness of the bond is due already to the small Fermi 
velocity of the N layer, and the formula takes the same form: 
R = ?/PFN2Se2. 

The author thanks L. G. Aslamazov, A. F. Volkov, G. 
F. Zharkov, and K. K. Likharev for helpful discussions of 
the results. 

APPENDIX 

We present for reference several complicated expres- 
sions. The general expression for the current I" in the pres- 
ence of a small alternating phase difference (21) is 

p- - -- eV,' ~ d &  fads o w  - 2 TRYRA (sign a[  iLiRN+'* 
3204'R 

-1 2Vpa *I 

where 

~ , j = [ f ( e )   sin^(^) +f'(&+ok) sin x(&+or)l 

X[l+ (p(e+o,) sin x(e+ or) )'I 

L ij- - i f(&) sin X(E)  [ I - f j ( ~ )  fj(e+oR) sin X(E)  sin x ( & + ~ k ) ]  
X [I+ ( / i ( ~ + o k )  sinx(&+ok) )'I -', 

L 3 ij-L - I i [?(E) S I ~ X ( E ) + ~ ( E + O R )  s i n x ( ~ +  u k ) l ,  

YRA= [I+ (fR(&) sin x ( ~ ) ) ~ ] - ' [ l +  ( fA(&)  sin^(&))^]-', 

The expression for N f is obtained from the expression 
for N'!+ by interchanging the quantities &(E) and fJ(&) 
cosx (E). The Josephson and interference components of the 
current take at e V s A  the form 

zi= LJ 4eR d e  {$ [T, (F) +T+ ($)I 
x[,(&+$)r(&-5) z R ( & ) - . ( & + q )  

x~A(&-$)zA(&)]+T-  ( f )  
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"I take the opportunity to point out an error in Ref. 1. The currentsj,, A, 
and j2 actually do not depend on T under the conditions u,/d<eV<A 
and T<A. Accordingly Eqs. (4.29) and (4.3 1) of Ref. 11 take the form 

and the coefficient q in Ref. 12 [Eqs. (5) and (7)] is 7 = 2 and is indepen- 
dent of temperature. 

*'Strictly speaking, this statement pertains only to the time-independent 
current component. We shall deal further with this question below. 

3'The currents I ,  and I, for bridge structures at eV>A were investigated 
independently in a very recent paper. The expression given there for I ,  
differs little from (34). 
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