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The spatial dependence of the density-of-states correlator for energetically close states in a linear 
chain containing defects is found. The curve obtained can be interpreted as indicating the exis- 
tence of attraction between close states over distances of the order of the mean free path 1. Next, 
there is a dip-an interlevel repulsion region extending to distances of the order ofz, = 21 ln(8/v) 
(where Y is a dimensionless energy difference). The pattern of independent levels is restored at 
large distances. It is shown that in the case of a finite chain of great length (greater than z,) the 
levels of the system as a whole are statistically independent. 

PACS numbers: 7 1.20. + c 

1. INTRODUCTION 

Back in 1961 Mott and Twose1 adduced convincing ar- 
guments to show that, in a one-dimensional system, the elec- 
tron wave functions for all energies are localized in the pres- 
ence of impurities or defects. A mathematically rigorous 
proof of this fact was given by Berezinskii,' who, in particu- 
lar, found a frequency dependence of the conductivity, that 
basically agrees with the predictions made in Ref. 1. 

The concept of centers on which the electron is local- 
ized in the first approximation is used in the argumentation 
in Ref. 1. The tunneling overlap of wave functions on differ- 
ent centers splits the levels of the centers, and guarantees 
transitions between them. In applications (to quasi-one-di- 
mensional organic metals, for example), the first approxima- 
tion corresponds rather to a one-dimensional metallic band, 
and the localization is a result of the quantum interference 
effects due to the multiple scattering on the impurities.' The 
electron wave functions (at least in the quasiclassical region, 
which will be discussed below) oscillate rapidly over atomic 
distances, i.e., over distances --fi/p,, and only their enve- 
lopes decay over distances of the order of the localization 
length, which is of the order of the mean free path.'v3 

Thus, contrary to the relatively simple picture painted 
in Ref. 1, the exact electron wave functions are a rather com- 
plicated object, and in Refs. 2 and 3 quite a complicated 
diagrammatic technique is used to compute the correspond- 
ing averages from them. That simplifications connected with 
the specific nature of the one-dimensional problem are possi- 
ble had been pointed out earlier by Schmidt4 (see also Hal- 
perin's paper5). Subsequently, Schmidt's method4 was suc- 
cessfully applied in Ref. 6 to the problem of computing 
density of states. Finally, in Ref. 7 a method is developed 
which allows us, at least in principle, to compute mean val- 
ues of entirely general form, from an arbitrary combination 
of the exact wave functions of an electron localized in the 
field of defects. 

The purpose of the present paper is to determine more 
accurately the scope of the ideas about electron localization, 
or, more strictly speaking, to determine the correlations 
between levels corresponding to close energy values. The 
greater part of the paper is devoted to the computation of the 
correlator for densities of states at different points: 

F = , E + ~  ( x - x l )  = (z6 ( E - g o )  6 ( ~ + m - E , )  $: ( x )  $: ( X I ) )  , 
P'i 

(1) 
where E ~ , E ,  and IC,P,IC,v are respectively the exact energy lev- 
els and exact wave functions of states localized in the field of 
the defects and the brackets denote averaging over the dispo- 
sition of the defects. 

The correlator in (1) is defined for an arbitrary segment 
of an infinitely long chain. For a finite segment we can for- 
mulate a different problem concerning the correlation and 
repulsion of the exact energy levels of the whole system of 
fixed dimension L. The solution to the last problem is 

and the answer is that there are no correlations. 
We shall briefly discuss this question in the last section. 

2. THE DENSITY-OF-STATES CORRELATOR 

The method developed in Ref. 7 is used below to com- 
pute (1). Let us, following (7), write the wave function of, say, 
the state E,, in the form 

The main variation of the phase in (2) (the rapid oscillations) 
is connected with the free motion: Vp-p,. At distances 
large compared to the atomic distances, the square of the 
wave function should be averaged in order to obtain a 
smoothed out density of states at the point x', i.e., we should 
make the substitution 

$11" (x') +llzR; (x ' )  (3) 

and similarly for qbP (x). Therefore, for (x - x' 1 > l / p F ,  we 
shall everywhere replace ( I )  by 

F ,  ( x - x ' )  z ~ ~ , ~ + ~  ( z - X I )  

1 =-( z6 ( E - E , )  6 ( ~ + o - e . ) a :  ( x )  R : ( z l ) ) .  
4 

0'1 (1') 

In the case of identically coincident x and x' the phases of the 
wave functions cannot be averaged independently: 
I.', (TET') 
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Here 

0:+o=v.I-w0 ( 5 )  
is the phase difference for the two states, which, generally 
speaking, changes over distances greater than, or of the or- 
der of, the mean free path, and carries the main information 
about the correlation of the states. 

According to (7), if the potential of the defects has a 
sufficiently short range, then the problem of averaging ex- 
pressions of the type (I), (1') reduces to Markov processes. 
For x <xf, it is convenient to take the point x' to be a match- 
ing point, and perform two independent averagings: one 
over the defects located to the right, the other over the de- 
fects located to the left, ofx'. With (1) expressed in terms of 
the notation used in (7), let us, by transforming the energy S 
function, rewrite it in the form 

where a(x1x') = R (x)/R (x'). 
For pFl) 1, only the dependence on the relative phase 

difference (5) is important in the last expression, since the 
energy E, itself is not distinguished by anything in the quasi- 
classical limit. The steady-state probability distribution 
w(q,8 ) for the phases p=p+, and 8 = p, - cg, depends only 
on the phase difference 8: 

w(9, 0) =w(0), (6 )  
where the function w(8) is found in Ref. 7. Finally, let us 
rewrite (1') in the form 

where the equation for the function 

g(x-st, 0)=(6(0.'(x1)-0)aZ(x1x')) (8) 

can easily be derived in accordance with Ref. 7: 

Everywhere below we use the dimensionless notation 

v=02, z= (3-xf)/l, x+xll, 

where the quantities I = u F r  and 7 are the corresponding 
kinetic quantities-the mean free path and mean free time. 

The boundary condition for (9) at x = x' follows from 
the definition 

ge (x=xl, 0) = w (0). (9') 

For coincident pints x=r' the expression (4) has the form 

and can be determined directly. 
Before proceeding to carry out the computations, let us 

say something about Fig. 1, which schematically shows the 

FIG. 1. Diagrammatic representation of the spatial dependence of the 
density-of-states correlator ( 1 )  for energetically close states. The region 
z-Icorresponds to the overlap of the corresponding wave functions. The 
hatched region corresponds to atomic distances (zp, - 1) .  The right-hand 
side of the curve is a plateau corresponding to independent, spatially- 
separated states. The characteristic scale z, = 21 1n(8/v). 

spatial behavior of the correlator (I), whose general form 
follows from the foregoing and obvious physical consider- 
ations. In the figure, the point z = x' - x = 0 corresponds to 
the expression (4'); the hatched region, to atomic distances, 
i.e., to distances for which pFz- 1, where the answer de- 
pends on the specific model. Further, the behavior of the 
correlator (7) smoothed out over atomic distances is depict- 
ed. At small distances (as compared to I, i.e., for z(1) the 
behavior of the curve is determined by its value at zero value 
of its argument, 

and the slope (first derivative) 

dF,  
I 

n d - (0) =- - 1 (n-0) - ( w  (0) sin 20) d0. (10') 
dz upZ $6 

The equality (10) follows from (9') and (7), while (10') is a 
consequence of Eq. (9) above and Eq. (39) in Ref. 7 for the 
steady-state phase distribution function w(8 ). (Notice that 
the symbol v used in Ref. 7 differs by a factor of 2 from the 
one used in the present paper.) 

As z increases, the function F, (z) falls off (for sufficient- 
ly small v). This decrease reflects the repulsion of levels with 
sufficiently close energies. At large distances the correlator 
(1) must go over into a product of densities of states: 

which corresponds to independent spatially-distant states of 
the one-dimensional chain. 

Of primary physical interest is the correlation of two 
energetically close levels, i.e., levels for which v(1, which 
we shall assume below to be fulfilled. In this case we have 

To find the general dependence on z, let us go over in (9) 
to the Laplace transforms in the coordinate z: 

1 6 + i -  
g,(i,0)=-- exz&(x,6)dx. 

2ni 
(13) 

6- rm 

With allowance for (9') we obtain in place of (9) an equation 
for the transform: 
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a ;3 a 
- (sin' 0 -&) -v -&-x~=-w (0) 
80 d 0 d 0 

This equation cannot be solved in closed form. It is well 
known,' however, that, for small Y, the function w(8 ) is large 
in the domain of variation of the phase close to zero, i.e., for 
8-v: 

and in the region close to IT: 

w (8) z w ,  ((n-8) /v) , n-8-v 

(see the formulas (41)-(43) in Ref. 7). Therefore, it follows 
from the representation of F, in the form (7) that we shall 
also need for what follows the expression for g, in the same 
regions. Let us recall that the function g, is a periodic func- 
tion with period IT: 

& (x, 0) =& (x, n)  . (15) 
Thus, for small v, the mathematical aspect of the prob- 

lem consists in the solution of Eq. (14) in the regions of 8 
values close to zero and IT and the matching of the solutions 
with the aid of the periodicity condition (15). In the region of 
small 8 we have in place of (14) the equation 

(and similarly for IT-84~). The solution to Eq. (16) in this 
region can be expressed in terms of the modified Bessel func- 
tions: 

E'he-E{Kr(E), ZP(E)}, (16') 
where 

p= (,/,+x) ", E=v/20. 

In the main region 8 - 1 we can neglect the term v k  /dB in 
(16), which yields 

The solution to Eq. (17) can be expressed in terms of the 
Legendre polynomials10: 

(sin 0) -'h~al,' ((cos 8) ; (sin 8) -'"PiE (-cos 8). (18) 
The solutions should be matched in the region 

v < W 1  ( v ~ n - 8 ~ 1 ) .  

In this region the asymptotic forms of the functions (16') and 
(1 8) coincide, and have the form 

0-%+r B-'A-r 
7 (19) 

For correct matching to be possible, i.e., in order that the 
coefficients can be determined, the quantity R e p  should, as 
we shall see, satisfy the condition 

Re p<l. (20) 

Only in this case can both terms in (19) be separated against 
the background of the neglected term of the order 8 in (16) 
and the neglected terms with v in (17). It is clear that the two 
terms in (19) are of the same order of magnitude for negative 
x < - a, i.e., for imaginary p = ($ + x)'I2. 

We shall first investigate the solution to Eq. (14) in the 
general form, and then reduce the computation of the re- 

quired quantities in the asymptotic regions to their deter- 
mination under the condition (20). 

It is in certain aspects convenient to rewrite Eq. (14), 
which is naturally solved as a standard second-order inho- 
mogeneous equation if both solutions of the homogeneous 
equation are known, in terms of new variables in the infinite 
range ( - C O ,  CO) ,  introducing for this purpose the variable 
u = cot 8 and a new function $(u) defined by the relation 

go (x, 0) =e-vu12g (u) . (21) 
For the function $(u) we now have 

The left-hand side of (22) has the form of the Schro- 
dinger equation (this transformation is noted also in Ref. 9) 
with potential 

and negative energy - v2/4, which is small when Y< I. A 
characteristic of the potential (23) is its decrease at infinity 
according to the law u - ~ ,  from which it follows, according to 
Ref. 11, that a system with such a potential will have an 
infinite number of levels when x < - a. Other boundary con- 
ditions for our problem (periodicity, Eq. (1 5)) do not allow us 
to express the solutions (22) in terms of the eigenfunctions of 
the quantum-mechanical problem, but the indicated circum- 
stance manifests itself in rapid oscillations of the solutions 
for x < - 4, which, by the way, is already evident from (19). 

It is convenient to define the solutions to the homogen- 
eous equation (14) in such a way that the first of themgl(x,8 ) 
is finite at the point r. It is easy to verify that the second 
linearly independent solution is 

gz (x, 8) =e-" "g eg, (x, x-a). (24) 
The pair of independent functions $,(x,u) and $,(x,u) figur- 
ing in (22), and corresponding to this definition are uniquely 
determined by the requirement that $, decrease exponential- 
lyasu+- CO:  

%, (x, u )  =eV"" (a+--o"),  

while the relation (24) corresponds to $,(u) = $,( - u), 
which is a consequence of (21) and the evenness of the homo- 
geneous part of Eq. (22) with respect to the substitution 
u-+ - u. The Wronskian is equal to 

That solution $(u) to the inhomogeneous equation (22) 
which satisfies the condition that gw(x,8 )be finite at 8 = 0, n. 
and also guarantees the fulfillment of the periodicity condi- 
tion (1 5) has the form 
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To the points where el(%) = 0 correspond, according to 
(24), solutions of the Schrodinger equation (22) that decrease 
on both sides at u = + a. To such solutions would corre- 
spond a function g(x,8 ) that does not satisfy the periodicity 
condition. It is easy to verify that, since $,(x,u) = $,(x,u) for 
such x values, the expression (26) as a function of x actually 
does not have poles wherever el(%) = 0. The singularities in 
the expression (26) as a function of x are connected with the 
last term in it, or, more precisely, with the zeros of the de- 
nominator 

C,(x)=l ,  (27) 

which determine the eigenvalues and eigenfunctions of the 
non-self-adjoint boundary-value problem (14). The fact that 
the boundary points of the interval (0,a) are both singular 
points imposes, on the face of it, mathematical limitations on 
the applicability of the results of the general theory (see, for 
example, Ref. 12). An analysis performed by us with a quasi- 
classical representation of the function $,(x,u) for large 1x1 
shows, however, that it is admissible to deform the contour 
for the x integration in (23) into the left half-plane Re x < 0. 

The next step consists in the use of the condition v( 1 to 
find in the region (20) an approximate expression for the 
functiongl(x,8 ) (or $,(u)) in the entire interval by matching 
the solutions to the homogeneous equation (14) or (22) near 
8 = 0 and 8 = a (in the region v<B& 1). Such an operation 
can easily be performed, since the asymptotic forms of the 
solutions (16') and (18) are well known.'' Here we give only 
the final results. In the region u s  1 the function qhl(x,u) has 
the form (u' = vu/2) 

from the expansion of sin2 0 in powers of 8 in (16) will give 
rise to corrections of relative magnitude v2 in (3 1) and (3 l'), 
whence we obtain the condition, (20), limiting the applicabi- 
lity of the matching procedure used. 

We have already indicated above that the 8-integration 
domains near zero and a play the major role in (7). In fact, 
the expression for the relative order of magnitude of the 
quantity w(0 ) in the region 8- 1 contains an additional fac- 
tor that is of the order of v in smallness. Retaining in (7), (21), 
and (26) only the contribution from the principal regions, 
where the function $,(x,u) should, in its turn, be replaced by 
the expressions (28a) and (28b), rearranging the terms in (26) 
so as to get rid of spurious poles determined by the condition 
C1(x) = 0, and, finally, discarding all the terms that are ana- 
lytic in the left half-plane Re x < 0, we obtain the following 
representation: 

The integral in (32) is a sum of two terms J ( O )  and J("), which 
contain contributions from the 8 integration near zero (u) 1) 
and near a (u is negative and large), respectively. 

Let us transform the denominator in (32) in accordance 
with (30) to the form 
C, ( x . )  --l=cos yn sin-' yn [cos yn-ch y (p)]  , eY("'= 'YP. 

(33) 
So long as p is small, we can, according to (29), use the 
expression 

y (p) =2pu=2y In (8/v). (34) 

$I (u) =GI(%) ( ~ 1 2 )  % (u') [I, (u') +I-,(uf) ] The poles determined by the zeros of (33) correspond to a 
+ (2/n) '" ctg pn (y,,--y-,,) (u') "'K,, (u') , (2ga) simple pole at x = 0 ( p = 1) and two sets of complex-conju- 

gate poles, which, for small p (i.e., for x close to - b), have 
intheregionu<O,lu1)1 (u' = -vu/2) the form 

9% ( u )  = (212~) ' Iz (u') '/lK,, (u') , (28b) pn(') =inn/ (LW+in/2), p:' =-inn/ (L'-inI2). (35) 

and in the intermediate region v I u I( 1 

Ip, (u) = (v/n) (sin 0) - I h  I A$: (COS 0) +A,'P," ( -cos 8) 1. 
' 

( 2 8 ~ )  
Above we have used the notation: 

Ci (x )  = [l-i/2 (yB+y-B) cos pn] sinp2 yn. (30) 

The constants A, and A ; are determined from the system 

The poles (35) consequently lie on both sides of the negative 
axis x < - A. The use of the set of eigenfunctions determined 
in accordance with (35) does not, however, offer any special 
advantage, and is useful only in the computation of certain 
asymptotic forms of little interest. The numerical computa- 
tion of the behavior of the correlator (1) for, say, arbitrary 
z = x - x'- 1 requires the ability to evaluate the integral in 
(32) with rapidly oscillating eigenfunctions, the oscillations 
of these functions being connected with the specific nature of 
the potential V (u), (23). 

Having noted these mathematical characteristics, we 
proceed to directly compute (1) in the region z-zo (see Fig. 
l), where strong repulsion occurs between two energetically 
close states in the case of small v. We shall presently see that 
zo - ln( l/v)> 1 and, consequently, small x values play a role 
in the representation (13). In (32) the dominant term is con- 
nected with [J'')] 2: 

1'" =(I /&--~ ' ) / cos  yn=i/n, p='/2+~. (36) 

The expressions for A, and A ; will not be needed below, and The expression (36) is the result of the integration of the 
their definitions (3 1) and (3 1') are given in the form in which function w(8 ) -- v-'wo(8 /v), taken from (7), with (28b). We 
they figure in the matching conditions for the asymptotic used the relation 6.621(3) from Ref. 13. 
forms for v<e<l. Allowance for the higher-order terms We should expand cospa in the denominator of (32) 
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and take in (33) the dominant terms for small x: 

The last expression should be substituted into the integral 

1 a+iw 
F ( z )  - exzF. ( x )  du, 

2ni 
8-ica 

in order to obtain the coordinate dependence of F,(z). Let us 
draw attention to the fact that the exponential function con- 
tains the combination z - zo, where zo = 21n(8/v), in view of 
which we have retained the terms quadratic in x in the expo- 
nent in the preceding expression. The integration over x is 
easy to perform. We see that, after a deep dip, the function 
F,(z), (I), begins to increase again in the vicinity of zo: 

going over at z <zo into a product of two independent densi- 
ties of states. The width of the transition region is 

Az- [ln (8 /v ) ]  Ih. (37') 

It is of interest to compute the asymptotic law of de- 
crease of the correlator (1) for smallz in the left part of Fig. 1, 
i.e., for 1 4z4zo. The term with W 'O)J'ff) in (32) is responsible 
for the corresponding variation, since the contribution from 
[J'"I2 is everywhere small. In evaluating the integrals in 
J'"), which contain the expression 

from Ref. (7) and Bessel functions, we found the formulas 
6.622(3) and 7.512(10) in Ref. 13 useful. Let us, without go- 
ing into the details of the computations performed, note that 
the answer can be obtained either by taking the residues (in 
the integration over x) at the poles (35) and then going over 
from summation to integration over b, I zn.rr/L *, or by 
directly continuing the terms dominant with respect to v in 
the region (20) with R e p  cl0 to the x < - 4 axis. Let us give 
the answer obtained in the indicated region: 

This result differs by a numerical factor from the decay law 
found in Ref. 3 for the correlation of the moduli of the wave 
function of a single localized state at distances 121 > 1. Thus, 
the wave functions of energetically close states almost coin- 
cide with each other at small distances. This does not contra- 
dict the ideas expressed in Ref. 1, according to which the 
wave functions of energetially close states are a result of the 
tunneling splitting of a pair of wave functions localized at 
two separate centers, with the important proviso, however, 
that the radius of localization in the problem in question is 
determined by the kinetic mean free path. Finally, let us, for 

completeness, give the correlator value, determined in ac- 
cordance with (47, at coincident points: 

This value is exact, and does not depend on v. 
Let us say a few more words about the shape of the 

curve in the case when v is not small. As Y increases, the dip 
gradually decreases, disappearing at v- 1. At large Y the 
major part of the curve would correspond to a plateau (inde- 
pendent states). It is not difficult to obtain the corresponding 
small corrections in the correlator (1) at v = or) 1: 

These corrections, however, have over small distances an 
oscillating character, which reflects the beating of two ener- 
getically close wave functions. 

3. ENERGY-LEVEL CORRELATION IN A FINITE CHAIN 

The problem of the relative disposition of the energy 
levels in a fairly complex finite system was first formulated 
by Wigner14 for nuclear levels. Its solution was subsequently 
offered by Dysonl' in some general mathematical formula- 
tion. One of the formulations of the problem consists in the 
following. Let it be known that the mean level spacing is A. 
What is the probability of finding two levels a distance 
E, -El = A  apart if the interactions or the other param- 
eters of the system can be considered to be random? It is 
suggested in Ref. 16 that it is precisely such a situation that, 
possibly, is realized for the electron levels in a small metallic 
particle containing scattering defects. Recently, Efetov" 
successfully demonstrated that the Dyson formulas are in- 
deed reproduced in such objects. 

In the one-dimensional case the density of states of a 
finite section (of length L ) of a chain containing defects is 

A characteristic feature of the results obtained in Refs. 
15 and 17 is the prediction of a significant correlation 
between levels over the energy range A. In the one-dimen- 
sional case we should rather expect the opposite assertion, 
since the energy levels are now connected with states local- 
ized at different points of the chain over a distance of the 
order of the mean free path 14L. Indeed, according to Refs. 8 
and 9, the level distribution in this case is a Poisson distribu- 
tion. We shall presently prove this assertion, using the for- 
mulas of the preceding section. Certain results obtained be- 
low supplement the results presented in Refs. 8 and 9. 

Thus, we shall denote the correlator defined above by 

S. ( x )  = ( S(E-e.)S (~+o-e.) ). (40) 

where o = E, - E l .  Rewriting the energy S functions in 
terms of the phase S functions and dq5 /dE, as is done in, say, 
Ref. 7, we introduce the function 

The phases q5 = 4 ,  and 8 = 4, - 4, pertain to the corre- 
sponding wave functions and for the present we regard the 
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chain length x as a variable. The phases are equal to zero at 
x = 0, and equal to integral multiples of T at x = L if the 
states with energies E~ and E ,  are eigenstates. The notation 
5 = 6'4 /dk was taken from Ref. 7. Similarly, 4 and 4 ; are 
that solution for the phases of the wave functions with ener- 
gies E ,  and E, which satisfies the condition 4 = 0 at x = 0. 
The functions 4 : and 4; increase monotonically with x 
and E (( ' > 0 (Ref. 7)). In contrast to the preceding section 
where we considered an infinite chain, here it is expedient to 
refer the phase 8 to the interval ( 0 , ~ ) .  Therefore, the integral 
part of [ 8  ' (x)/n-1, i.e., the number of zeros of the wave func- 
tion, directly indicates the number of levels lying in the inter- 
val between E, and E l  along a section of the chain with 
lengthx. As to the phase 4, in the quasiclassical problem the 
phase with energy El rapidly settles by itself into a steady- 
state distribution (over distances of the order of I ) .  The 
brackets in (40) or (41) denote averaging over the various 
defect realizations in a finite segment and, hence, over the 
quasiclassical part of the energies El .  

Besides the function S, (x,#,B ), we must determine two 
other quantities: 

9, (x, cp, 0) =(5,>6(cp-cp1>) 6 (0-0)) ), (42) 
W, (x, cp, 0) =(6 (cp-cp,) 6 (0-0'j >. (43) 

Using the method of Ref. 7, we can easily derive the corre- 
sponding equation for each of these functions. Thus, we have 

where, regarding the dependence on 4, we assume that the 
function w, (#,8 ) = w, (x,8 ) has already settled into a 
steady-state distribution with respect to #, and that it does 
not depend on this variable. Similar equations follow for 3, : 

and S, (x,8 ) itself: 

The boundary conditions for these equations are obvious: 
OD 

w (r=0,0) =6 (0), w (0, x) dB=(, w (r, 0-o.) =0. (MI) 
0 

According to Ref. 7, < '(x = 0) = 0. It follows from the defi- 
nitions (41) and (42) that 

S,(x=O, 8) =S, (x=O, 0) =0, S, (0+-, x) =O. (45') 
With the aid of Eqs. (44)-(46) and these boundary conditions, 
we can easily verify the identities 

Thus, the problem has been reduced to the problem of deter- 
mining the function 

0 

O (x, 0) = j w. (x, 0.) dof, 
0 

which, in its turn, satisfies the equation 

On account of (447, the boundary condition for this equation 
is 

@ (x=O, 0) =I.  (44") 
Thus, the last equation differs from (9) only in that it has 

a different boundary condition, and that the domain of vari- 
ation of 8 is not limited to the interval (0,n-), but extends over 
the infinite interval (0, co ), reflecting the fact that, for a suffi- 
ciently long chain of length L = x, the number of levels in 
the energy range (E,,E,) is arbitrary. The physical meaning 
of the function Qs (x,8 ) consists, according to (49), in precisely 
the fact that the values of the function at the points 8 = nn- 
determine the probability of the system's having n levels in 
the chosen energy range. The function Qs (x,8 )is a fundamen- 
tal quantity for what follows. In the Laplace representation, 
the equation for its transform @, (8 ) has the form 

The solution of (50) is 

Ox(0) =x-'+Bx(0), 

where in (51) 3,(8) denotes that solution to the homogen- 
eous equation in (50) which decreases as 8- co . In each inter- 
val 8, = (nn-,(n + 1 ) ~ )  the function 8, is, as can easily be 
verified, directly expressible in terms of the function gl(x,8 ) 
(or $,(u)) introduced in the preceding section by the formulas 
(24). In this case we have 

@.( (n+I) n) =C,-' (x)  Bx(nn), (52) 
and from the definition of Qs (x,B) for xS;O it follows that 
Q X  (84)+0, i.e., 

@.(0=0) =-x-'. (52') 

The formulas (52) and (52') constitute, in principle, the exact 
solution to the problem. But since we posed at the beginning 
of this section the question of level correlation under condi- 
tions when the characteristic energy scale w = E, - E, is 
comparable to the mean level spacing A,  (39), of a large sys- 
tem, it is sufficient for this purpose to know all the quantities 
in the region 1x1 -v( 1. Carrying out the corresponding ex- 
pansion in powers of x in (29) and (30), we obtain 

v c,-a (x) = - ~, , (x)=@%(nn) =- (e) 
v+nx7 

(53) 
Returning to the formulas (47)-(49), we find that the prob- 
ability for a finite system of length x = L to have n levels in 
the energy range o is 

w,= (vxln) ne-v='n/n!. (54) 

In its turn, the condition for the absence of levels in this 
range is 
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U)o=e-wln. (55) 

Summation over all n gives the statistical number of levels in 
the range o: 

N,= (LlnvF) o. (56) 

The results (54)-(56) naturally coincide with the results ob- 
tained in Refs. 8 and 9, thus indicating the independence of 
the individual localized levels in the one-dimensional sys- 
tem. The expression for the correlator S, (x  = L ) has the 
form 

We should have more complete expressions if we left 
under the x-integration sign (in the inversion of the Laplace 
transformation) terms of the form 

Going over from x to L (i.e., inverting the Laplace transfor- 
mation), we find 

These formulas are not given in Refs. 8 and 9. Notice that we 
already know from the results of the preceding section the 
estimate for the magnitude of the energy interval w,(L ) in 
which there is, for a fixed chain length, appreciable level 
respulsion: 

oO= (812) e-L/Z' 

(here we have gone over to dimensional units, using the gas- 
kinetic definitions of the time interval between collisions and 
the mean free path). This estimate differs somewhat from the 
one given in Ref. 9 by numerical factors. 

4. CONCLUSION 

We have obtained the density-of-states correlation 
function for energetically close states in a one-dimensional 
chain which defects at different points. The result is repre- 
sented in Fig. 1 by the curve, whose asymptotic behaviors are 
given by the formulas (37) and (38). This result is somewhat 
unusual in respect of that part of it (in the region z- 1 ) which 
shows that two wave functions with close energies always 
overlap appreciably at distances 2-1. (Attraction of levels!) 
And what is more, the expression (38) essentially shows that 
the two wave functions are virtually identical in the region 
z-I prior to the onset of an irregularity or a dip, which re- 

flects the fact that two electrons with nearly equal energies 
will, with high probability, occupy independent levels locat- 
ed far from each other. This circumstance is due to the fact 
that localization on defects is a complicated quantum-me- 
chanical interference phenomenon, and that the localized 
state is centered on many defects at the same time. Neverthe- 
less, the main results do not contradict the intuitive ideas. 
Moreover, the characteristic scale z, = 21n(8/v) of the dis- 
tances over which the interlevel interaction occurs is in ac- 
cord with the tunneling estimates given in Ref. 1. 

Our results also confirm the results obtained in Refs. 8 
and 9 in respect of the statistical independence of the levels in 
a long segment of a linear chain containing defects. The gen- 
eral expression (57) allows us to find the level statistics for 
either small energy differences or shorter segments (but 
1 4  ). 
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