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The temperature and magnetic-field dependences of the magnetic susceptibility and the positions 
of the spin-flip Raman scattering (SFRS) lines are studied theoretically for a large-radius electron 
center in magnetically mixed semiconductors. The possibility of autolocalization of a free elec- 
tron and of a change in the radius of the state of the localized electron as a result of its spin 
correlation with the system of localized spin momenta (LSM) is also considered. The analysis is 
based on an approximation in which the exchange interaction of the electron and of the LSM is 
homogeneous over the localization region, with account taken of all the spin components of the 
Hamiltonian. The analysis leads to approximate analytic equations for the SFRS line shape and to 
formulas, exact within the framework of the model, for the partition function and the free energy. 
The differences between the obtained solutions and those resulting from the use of the self- 
consistent-field approximation are discussed. The results describe qualitatively and quantitative- 
ly the published experimental data on SFRS. 

PACS numbers: 75.30.Cr, 75.10.Dg, 75.30.Et, 78.30. - j 

1. INTRODUCTION 

One of the accomplishment of magnetic-semiconductor 
physics was the prediction and observation in them of spe- 
cial types of autolocalized carrier states, due to the spin cor- 
relation of a free carrier or a carrier bound to a defect with 
the localized spin moments (LSM) of the ions making up the 
crystal (see, e.g., Refs. 1 and 2). In most papers dealing with 
the theory of such states, only one component was taken into 
account in the spin wave function of the carrier, and the 
interaction of the electron with the LSM system was de- 
scribed in the approximation of a self-consistent effective 
exchange field.The problem was as a rule made complicated 
by the need for taking into account the strong interaction in 
the LSM system. In Refs. 3 and 4, where the exchange inter- 
action of the carrier with the LSM was considered with ac- 
count taken of all the spin components, they solved the prob- 
lem of an electron rigidly localized by the Coulomb 
interaction in such a way that the exchange interaction with 
the LSM was unable to change the radius of the state of the 
center. 

Investigations were recently initiated of magnetically 
mixed (semimagnetic) semiconductors,5-8 in which the inter- 
action within the LSM system does not play a decisive role, 
so that the exchange interactions of free carriers or carriers 
in a large-radius state with the LSM manifests itself in purest 
form. The investigation of spin-correlated states in such ob- 
jects becomes simpler both experimentally and theoretical- 
ly. In particular, in Res. 9 and 10 was investigated Raman 
scattering with spin flip (SFRS) of shallow donors in the 
magnetically mixed hexagonal semiconductors 
Cd, -, Mn, Se and CdS:Mn. It was observed that a finite 
energy shift of the SFRS exists in the absence of an external 

magnetic field; this is a direct indication of the presence of a 
spin-correlated bound state of the carriers in the LSM. A 
manifestation of this correlation was observed also in the 
change, with temperature, of the binding energy of an exci- 
tonlocalized on a neutral acceptor. " 

Finite shifts AE,,,, of the SFRS (or of the energy of a 
localized exciton) were observed in experimentsw1 at tem- 
peratures higher than follow from the model of the self-con- 
sistent effective field, in which a local phase transition re- 
sults in a bound spin state and in exchange fields, which are 
not equal to zero in the absence of an external magnetic field 
and are applied both by the carrier to the LSM (He,) and by 
the LSM on the carrier spin (H,, ). To eliminate this contra- 
diction, the authors introduced the model of non-self-consis- 
tent effective field, described in greatest detail in Ref. 11. It 
was assumed that the electron spin "follows" adiabatically 
the direction of HMe , and that its projection on the direction 
of HMe is independent of temperature but equals the maxi- 
mum possible value. In this approach, the possibility of 
whose application is determined by the relaxation param- 
eters of the problem, the modulus of He, does not depend on 
the temperature, there is no local phase transition, and the 
electron spin-state splitting, which determines AEsms, is 
preserved at all temperatures. At not too low temperatures 
this splitting should be proportional to T -'. 

The model considered does not eliminate all the contra- 
dictions since, first, the extrapolation of the measured 
dBsFRs to T -'+O yields a finite value,'' and second, its 
application calls for long LSM spin-lattice relaxation times, 
something difficult to expect at the LSM densities discussed 
in the cited papers. 

We develop in this paper a model of a spin-correlated 
state of a large-radius electron center without using the ef- 
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fective-field approximation and without taking into account 
all the spin components of either the electron or the LSM. 
The model takes into account the fact that the carrier-im- 
purity exchange interaction forms an energy spectrum char- 
acterized by the total spin of the system and by its projection. 
The thermodynamic, magnetic, and spectral properties of 
the system are determined by the statistical distribution of 
the spin states in the given spectrum. The approach is close 
to that used in Refs. 3 and 4, except that here we consider the 
state of an electron center with a large but arbitrary radius, 
and take into account of its change as a result of spin correla- 
tions. It will be shown that this approach explains all the 
basic results on SFRS9.10 and makes it possible to analyze 
consistently the problem of spin autolocalization of a carrier 
in a magnetically mixed semiccmductor. 

2. HAMlLTONlAN AND BASIC APPROXIMATION 

We consider an electron localized a crystal with No unit 
cells, in N M  of which the lattice ions are replaced by ions 
with spin S ,  . The interaction of these LSM with each other 
will be neglected for the time being. 

The spin part of the energy of the band (nonlocalized) 
electron in such a crystal is determined by the Zeeman Ha- 
miltonian and by the interaction of the electron spin S, = $ 
with the effective exchange field5 

where J is the exchange constant and gp, N ,  ( S ,  ) is the 
magnetization of the LSM system in an external magnetic 
field H. For a large-radius electron center in a state with 
wave-function orbital part $(r), the spin part of the Hamil- 
tonian is 

where the exchange and Zeemaxl parts of the interaction are 
defined as 

Here o, (,, = g, (,, pB H are the corresponding Zeeman fre- 
quencies (fi = 1) and the Z axis is directed along H. The con- 
stants A, are connected with the carrier-impurity exchange 
interaction constant contained in (1) by the relation 

where 0, is the volume of the unit cell and R, is the radius 
vector of the jth LSM. 

The basic approximation used in this paper to find the 
spectrum of the states of the Hamiltonian (2) is the homogen- 
eous-exchange-interaction model, i.e., replacement of the 
exact Hamiltonian SFex, by the approximate one 

3 

The parameters 2 and 3 must be determined here from the 
requirement that the contribution of A Z e X ,  to the system 
spectrum be a minimum. To solve this problem we use one 

TABLE I 

- 
'$ ( r )  / D. 1 v=vha 

(3/4na3) '4 (a-r) 
(2/na2)"/ exp {- (r/a) '1 
(nay --z exp ( -r /a)  

1 1 3 8  
25.93 

more approximation based on partial diagonalization with 
respect to the electron spin S,,  as proposed in Ref. 12. Ac- 
cording to Ref. 12, the term A R e , ,  can be represented in the 
form of an expansion in even powers of the operators Sj,, . We 
determinexand from the condition that the mean value of 
the first term of the expansion vanish and the mean value of 
the second be a minimum. As a result we obtain for 2 and 8 
in the case of a spherically symmetrical $(r) the equations 

A=JN,/NN,=-A/2m,  W=N,G/NoQ,, 
- (5) 

4n [ lq ( r )  1'-I 9 ( R )  I ' ] r z  dr-1/2=0, (6) 
0 

wherez and Fare the radius and volume of the sphere inside 
of which the true exchange interaction of the carrier with the 
LSM is effectively replaced by homogeneous exchange inter- 
action. Condition (5) is equivalent in essence to introducing 
in (3) a normalized plane spherical function of the form - 
$(r) = F - '''0 (x - r), where 8 ( x )  is the Heaviside step func- 
tion, whereas to describe all the remaining characteristics of 
the electron center we retain the function $(r). 

For the simplest wave functions frequently used in 
models of large-radius electron centers, Eq. (6) can be easily 
solved. The obtained and Fare  given in Table I. When the 
approximation (4) is used, the Hamiltonian (2) is replaced by 

- 
A 

- R 

,S.S,Yo.S.,+o.S... S ,  = C S.', 
N 

(7) 
I - 1  

? -  .. . .  
where S, is the total spin of the system of N LSM. This 
Hamiltonian corresponds to the one used in Ref. 13 to calcu- 
late the EPR of F centers, is similar to the Hamiltonians in 
Refs. 3 and 4, and permits an exact solution of the problem of 
the energy spectrum using the Breit-Rabi formulas. 

It will be shown below that HO' (7) likewise permits 
exact solutions of the problems of thermodynamic and mag- 
netic properties of a large-radius electron center and of the 
problem of autolocalization of an electron as a result of car- 
rier-impurity exchange interaction, and makes it possible to 
describe the experiments on SFRS. 

3. SPECTRUM OF SYSTEM STATES, PARTITION FUNCTION 

As a simpler but inessential simplification we assume in 
(7) that we = o,=oo. In this case the exact quantum 
numbers of the problem are the total spin F = S, + S, and 
its projection p on the quantization axis. We introduce a 
quantum number equal to + or - 4 for states with parallel 
and antiparallel S, and S, , respectively. The energies of the 
states with given S, , p, and f are equal to (f = F - S, ) 
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and the corresponding wave functions are defined as linear 
combinations of the LSM states IS, ,M ) with given S, and 
its projection Mand of the eigenvectors of the operator of the 
electron spin I + ),I - ): 

In what follows it is necessary to find the statistical 
weights of the states with energies (8) and the SFRS transi- 
tions between them. We determine first the partition func- 
tion Z of the system in question. 

For N identical noninteracting spins S,, whose Zee- 
man energy is a$,,, the partition function is defined as 

( p  = l/Tis the reciprocal temperature; k,  = 1 ) .  It is deter- 
mined by the sum of the populations of the states over the 
specified projection M of the total spin of the system: 

NSul 

Zo= P X ~ ( M \ e x p ( - $ m o M )  
U 

M=-NS, 

NS, 

where X, ( M )  is the statistical weight of the states with given 
M; 0 = 0 or 1 depending on the parity of 2NSM.  

The partition function of a system described by the Ha- 
miltonian (7) is, by definition, 

where the statistical weight x ~ ( M )  of the states of the sys- 
tem of 8 spins with fixed S, and M is independent of M and 
is expressed in terms of the X, ( M )  introduced above: 

Comparison of (12) with (10) and ( 1  1 )  yields after summing 
over p and taking (1 3) into account 

This expression is the exact partition function for the 
investigated problem. 

4. SPIN AUTOLOCALIZATION OF FREE ELECTRON AND 
POSSIBILITY OF LOCAL SPIN ORDERING IN A LARGE- 
RADIUS ELECTRON CENTER 

We consider first the properties of a large-radius elec- 
tron center, disregarding the possible change of the radius of 

its state on account of spin correlation with the LSM. The 
longitudinal magnetic susceptibility x ,, of such a center and 
the spin part of its free energy F ,  can be obtained on the 
basis of (14) from the known relations 

It is convenient to transform (14) by introducing the 
notation 

A 

- 
sh x (SM-ki / , )  (17) 

Y ( x )  = (I-e-") [ sh(x/2) 

In the new notation, Eq. (14) takes the form 

Using ( 1  8), the expression for the susceptibility becomes 

where Y ' (x)  and Y " (x )  are the corresponding derivatives of 
Y ( x )  with respect to x. Interest attaches to the expression for 
the susceptibility in a zero external magnetic field 

( ~ P B ) ~  y'" xo = lim xII = T 
(20)  - y' ( 2 0 )  /4 

NT 3Y' ( X O )  
9 

ao-0 
(20) 

or, introducing the Planck factor n(x) = [exp(x) - I ] - '  and 
the renormalized Brillouin function 

b, ( x )  ESB, ( S x )  = (Sf1/,) cth 

where b &(x) and b ;(x) are the first and second derivatives of 
b, (x )  with respect to x. 

Analysis of this expression shows that ,yo has no singu- 
larities at any temperature and saturates at x, > 1. Thus, in 
the system there is no phase transition into a locally magneti- 
cally ordered state with (S,,) #O,  a state obtained in the 
model of the self-consistent effective field for the analogous 
problem. The complete expression for the crystal suscepti- 
bility contains, besides (21), also a contribution from N ,  -x 
LSM which do not enter in the effective localization region 
of the electron. 

We obtain now the free energy of the system. At fixed W, 
only the spin part of the system can change because of spin 
correlation. For the sake of completeness we add to the 
expression ( 1  8) for Z also the contribution of the LSM locat- 
ed outside the electron localization region. Then the com- 
plete partition function for H = 0 (w, = 0 )  is 
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Z,=2YJ (x,) (2~,+1) 

Calculations of (16) and (22) yield 

- T l n { e - ~ + R ( l - e - * ) b R M ( ~ O ) ) .  (23) 

The additive constant is chosen here such that F M 4  as 
R- oo , in accord with the physical gist of the problem. 

It can be seen that F M  = F ,  (R) is always negative, cor- 
responding to spin correlation, regardless of (S,, ) = 0 at 
any temperature. An analysis d the spin part of the free 
energy (16) with allowance for (18) as H 4  confirms the 
absence of a local phase transition into a state with 
(S,, ) #O. Nonetheless, autolocalization or a change of the 
radius of the electron center turns out to be possible if it is 
assumed that changes as a result of spin correlation. 

We consider first an electron in the absence of attrac- 
tion centers (free electron). We assume that as a result of 
autolocalization, owing to the interaction with the LSM, a 
state sets in with an electron wave function $(r) character- 
ized by a radius a connected with R by the expression 

a=y-"R= (iVNoQolyN,)", (24) 

where y is a factor that depends on the concrete form of $(r) 
(typical values of y are given in Table I). The kinetic part of 
the free energy is then 

where m* is the effective mass, and a = 2 and 4 for the Gaus- 
sian and hydrogenlike approximation of $(r), respectively. 
The total free energy (23) and (25), FMk = F ,  + F ,  , is posi- 
tive at high temperatures and decreases monotonically with 
increasing N, having a minimum FMk = 0 at N = w , i.e., the 
ele~tron remains delocalized. With decreasing temperature, 
starting with a certain T,, a local minimum appears on the 
plot of F,, = FMk (z ) (at finite = vrn and FMk (N, ) > 0); 
this minimum becomes absolute starting with a temperature 
T, < T,  and drops below zero. At this temperature there 
should occur in the system a first-order phase transition into 
an autolocalized state with % = :Qm. With further decrease 
of the temperature, sMMincreases to Srn + w as T 4 .  The 
dependence of FMk on N, numerically calculated for the pa- 
rameters of the CdS:Mn crystal investigated in Ref. 10, is 
shown in Fig. 1. Also investigated was the dependence of Tc 
on the LSM concentration and on the value of the exchange 
integral (Fig. 2). It  follows from the presented plots that 

The last relations agree with the result obtained in Ref. 
1 for autolocalization of a fluctuon in an ideal paramagnet. It 
follows from the numerical analysis illustrated in Figs. 1 and 
2 that the values of T, and a,,, corresponds to a situation 
wherein an electron interacts with one LSM and A /zrn be- 
comes of the order of Tc . In this case only the lowest states of 
the spectrum of the eigenvalues (8) are populated, and the 
differences between the approach of the present paper and 

FIG. 1. Free energy F,, vs the effective radiusK of the localization region 
at various temperatures T =  20X lo-*; 15X lo-'; 8X 10W5 a n d 4 ~  lo-' 
respectively for curves 1-4. The remaining parameters correspond to the 
CdS:Mn crystal investigated in Ref. 10: N,/N&, = loZ0 ~ m - ~ ;  
A = - 12 cm-'; m*/m, = 0.43. The values a = 2 and y = 4.75 were 
used. The inset shows the dependence of N,  on the reciprocal tempera- 
ture. 

the effetive-field model used in Ref. 1 vanish. Therefore the 
values of T, themselves, obtained with the aid of (23) and (25) 
become close to those estimated from the equations of Ref. 1. 
The obtained autolocalized state is nevertheless not accom- 
panied by the onset of local magnetization, and this distin- 
guishes it from those considered in Refs. 1 and 2 using the 
effective-field model. We note that the foregoing analysis is 
based on the exact expression (23) for the free energy of the 
model system with the Hamiltonian (7), and requires no 
further allowance for fluctuations. 

The numerical analysis reflected in Figs. 1 and 2 shows 
that autolocalization of a free electron as a result of carrier- 
impurity exchange interaction can take place in real magne- 
tically mixed (semimagnetic) semiconductors6~7 only at mili- 
kelvin temperatures. 

The situation changes qualitatively for an electron lo- 
calized in the Coulomb field of a defect. Here the state radius 
is finite also without allowance for the spin interactions. It is 
now necessary to take into account in the free energy the 
contribution from the attraction potential energy in the Cou- 
lomb field 

which leads together with F ,  (25) without allowance for F ,  

FIG. 2. Dependence of T, on A / A , .  A value 12 c m  ', corresponding to 
the data of Ref. 10, was used for A ,. The variation of A was introduced by 
varying N M  with Jconstant (line 1 corresponding to T, - A  '") or by 
varying Jat fixed N ,  (line 2 corresponding to T, - A  5 ' 2 ) .  
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(23) to a minimum of the energy at 

where a, is the Bohr radius of a shallow donor, as might be 
expected from (24), and y = 25.93 (Table I). 

The problem of the change of the localization region 
because of the spin correlation of the electron with the LSM 
should be solved in the general case with allowance for the 
possible change of the form of the wave function of the Cou- 
lomb localized state. We, however, shall not take this change 
into account, but consider the possible change of only the 
localization region radius [or of n connected with it by 
expression ( 5 ) ]  from the solution of the equation for the mini- 
mum of F,,, = F M  + Fk + F,. 

In the general case the analytic solution of this problem 
is complicated, so that it makes sense to consider a number of 
limiting case. First, when nK >Rm, where xm is deter- 
mined by FMk, it can be assumed that as T+Tc the system 
will be localized in a volume corresponding to a,, and this 
localization can have for certain parameters the character of 
a local phase transition. For real magnetically mixed 11-VI 
semiconductors with Mn2+ the inverse relation holds, 
gK < n,,, . In this case there is no phase transition, the radius 
of the state varies continuously with temperature, and the 
dependence of the equilibrium N = Re, on the temperature 
is represented by a curve with a minimum in the region 
T- Tc with Re, -+Nk  as T-0 or T-+ m . For comparison 
with experiment, the important temperature region is the 
one corresponding to x , ( l .  In this case 

and the minimum of F M k p  (g ) corresponds to 

(31) 
The correction ton,for real objects is small, so that to 

solve (3 1) we can replace N,, in the right-hand side by m, 
(29). Numerical estimates for the experimental ~ i tua t ions~ , '~  
using y = 25.93 yiled a change (Z, - geq)/xK at T = 1 K 
amounting to 4% (loz0 ~ m - ~ )  for CdS:Mn (Ref. 10) and 7% 
for CG,, Mn,,,, Se (Ref. 9). We note that these estimates are 
possibly too low, since the shrinking of the radius of the state 

TABLE 11. 

because of the spin correlation alters also the form of the 
wave function (the value of y).The role of the magnetic field 
in this effect reduces to a decrease of the shrinking, so that at 
I w d x  ) 2 1 we have a-a, (Re, -8, ). 

5. RAMAN SCATTERING WITH ELECTRON SPIN FLIP 

To consider SFRS in this model we must find the possi- 
ble transitions between the states (9) in the course of the 
SFRS and obtain the envelope of the spectrum of the SFRS 
transitions. The last proble, cannot be solved by knowing the 
partition function of the system, since its solution calls for a 
determination, in explicit form, of the statistical weights of 
the spectrum (8). 

The SFRS transition occur when the electron center 
interacts with a virtual electron-hole pair.14 The operator 
part of Hamiltonian, which describes the SFRS transitions, 
is determined in the electron-spin basis by Sex. Accordingly, 
the SFRS frequency shifts and quantities proportional to the 
transition probabilities were obtained for the energy spec- 
trum (8) with the eigenvectors (9). The calculation results are 
given in Table 11. We see that there are two types of transi- 
tion, one with a shift of the SFRS, equal to Ifl w, (if the 
approximation o, = w ,  is not used, it can be established 
that these shifts are proportional to the Zeeman frequency 
w ,  of the LSM), and with a shift - 2fA /(S, + ?)/R. The 
latter transitions were the ones observed in Refs. 10 and 11, 
whereas the transitions of the first type were apparently ob- 
served in Ref. 15. We note that the selection rules for SFRS 
and EPR of an electron center formally coincide, therefore 
the question of the SFRS shift is fully equivalent to the ques- 
tion of EPR of a shallow donor. 

The SFRS spectrum contains in accord with the data of 
Table I1 a set of discrete closely-lying transitions (they merge 
into a single line in the experiment) with intensities 

where 

Z is the partition function (14), and the statistical weight 
Psz,/( p )  of the states of the system with a fixed set of quan- 

Transition probabilities Wi 1 Selection ruler I SFRS frequency shifts ui I (in units) 
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IS,, p , f > - + ~ s ~ v  
p  -1, - f )  

I S ~ . ( I ~ ~ I - I S ~ ~  
p  +I, -f) 

- 2 f ~ ( ~ ~ + ~ ) - ~ a  

A 
- 2 f = ( ~ ~ + $ ) + ~ ~  N 

- 

( 2 f p  + Sr, + - f - l:4 

(2SX + 1)' 
(- 2 f p  + s, + l i z  - f)" l l '4  

( 2 6 ,  + 1)" 



tum numbers S,, f, and p coincides with the statistical 
weight x ?(M) (13) introduced above and is thus indepen- 
dent ofp; expressions for wi and Wi are given in Table 11, 
and d is a dimensional coefficient that reflects the experi- 
mental conditions and the connection of the SFRS probabili- 
ties with Wi . 

For S, = 1, the statistical weight Xw(M) is equal to the 
number of combinations of c$+ W ' / 2 .  For arbitrary S, this 
problem becomes more complicated and in a number of 

it is solved by direct numerical calculation using, 
e.g., the recurrence relation 

BY 

x,+, (M)  = XN (M+m) 

and the "initial condition" X,(M)  = 1 at IM I <S, and 
X,(M) = 0 at IM I > S, . For sufliciently large80ne can use 
in place of the exact values of X, (M ) the approximate for- 
mula 

~ F ( M )  =(2SM+1)'"(n~)- '  exp (--MI*), (34) 

sij='lSSM (S,+t)IIT. (351 

It can be easily verified that in the case S, = 4 the approxi- 
mation (34) coincides with the standard asymptotic (R- w ) 
representation of c $$' + For S, = 5/2 this approxima- 
tion is good enough already at N = 5, but for IM I substan- 
tially smaller than WS,. As IM 1-lii's, this approximation 
is poor, and moreover gives an incorrect dependence of 
z R ( ~ )  on M for IM I z ~ s , ,  and this leads to errors in the 
region where the Brillouin function for (S,, ) differs sub- 
stantially from the linear approximation. However, in that 
region of external fields and temperatures where only the 
lowest states are populated in the spectrum (8), the experi- 
mental situation is described in the mean-field approxima- 
tion (1). The vital region of weak external fields, however, 
corresponds to validity of the approximation (34). We note 
that approximation (34) for the region IM I -%s, can be 
easily improved, but this complicates substantially the form 
of the analytically obtained results. 

We consider below only transitions corresponding to a 
giant shift of the SFRS (i = 3 and 4 in Table 11). Substituting 
in (33) in place of PSJ p) the derivative of y R ( ~  ) (34) with 
respect to M at M = S, + 4, taken with a minus sign [this 
approximation is obvious from (1 3)], and substituting next in 
(32), we obtain after summing over p :  

I (o)  =I+ (o )  +I- ( a ) .  (36) 
Here 

(Sr+'/z) "A 1 x exp {- OR - X f ( ~ ~ + P )  3 ( f + ~ ) B O . }  

where C = d (2SM + -'(T&)-'/'. 

For sufficiently large R, the set of levels (9) is quasicon- 
tinuous, so that we can consider a continuous envelope 7 (0) 

of the SFRS spectrum. Recognizing, in addition, that in ac- 
tual cases w, is much less than the SFRS shifts, the transition 
to the continuous spectrum is effected in (37) by replacing 
S, + 4 by - 2 f V ~ / A .  It  must be stipulated here that - 
I (w) = 0 outside the interval 11 1 ( lo1 ~ ( 2 8 ~ ~  + 1)Iz 1. 
Within the limits of this interval, the SFRS line is of the form 

1 0 1  - O' PO sh[Po0 ( I  oiV/AI -'I,) ] 7 ( a )  =2C - N2 exp - - 
A2 ( 6' '1) sh( loo /2 )  

where A = - wA /2 1wA I. In the case of a zero external field 
(w, = 0) the SFRS envelope is described by the expression 

Positive and negative values of w in (38) and (39) correspond 
respectively to a Stokes and anti-Stokes line. The position of 
the maximum for the Stokes component is defined as the 
positive root of the equation 

It can be seen that, in contrast to the effective-field model, 
the SFRS line has a finite width - u p / A  I/N, the splitting of 
the SFRS is preserved at w, = 0 and this initial splitting does 
not vanish in the limit as T-W. At low temperatures the 
shifts w,, and anti-Stokes a,,, components at w, = 0 are not 
symmetrical, with 
w,,(T-O,o, = O)-+SM lA I,wast(T4,wo = 0 ) 4 .  

~t hightemperatures,R = N K  = const(T) accordingto 
(29). At low Tit is necessary to take into account in (38), (39), 
and (40) the temperature dependence of R = Re, ( T  ) (3 I), 
which is due to the change of the localization-region radius. 

We note that the results show that EPR of shallow elec- 
tron centers in magnetically mixed semiconductors should 
broaden and shift in frequency, becoming practically obser- 
vable in accord with Eqs. (38) and (40). 

The results cited were obtained assuming noninteract- 
ing LSM. At sufficient concentration of the latter ( 2 1%) the 
interaction between them becomes noticeable, and for the 
investigated magnetically mixed semiconductors in the in- 
teraction between the LSM is antiferromagnetic, and the 
high temperature of an LSM system can be described in the 
molecular-field approximation 
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where 8 is the Curie-Weiss parameter for the magnetization. 
In the model considered, this behavior of the LSM mag- 

netization can be obtained by introducing a rough approxi- 
mation of the spin-spin interaction inside a system of rn 
LSM: 

Inclusion of this interaction changes the system energies by 
8 [(S, + 1/2)' - 1/4]/aE. Allowance for this contribution 
in (8) reduces to replacing a3 in all the expressions that de- 
scribe the SFRS by 

a = m ( l + B / T )  -'. (43) 

6. COMPARISON WITH EXPERIMENT 

The comparison with the experimental datag7'' was 
made in the following manner. For the data of Ref. 9, start- 
ing from the results given there, we chose A = 70 f 5 cm- ' 
and 8 = 1.9 f 0.1 K. Next, using (43), an iteration solution 
of Eq. (40) was sought for a definite X. The value of 8 that 
describes best the experimental data was obtained for each 
temperature. The calculated SFRS shifts together with the 
experimental results of Ref. 9 are shown in Fig. 3. The opti- 
mal Rare cited in the figure caption. These values should be 
compared with N, for a neutral donor in CdSe (a, -- 39 A) 
with the LSM density equal to 9X1020 cm-3 for 
Cd,,95 Mn,, os Se. According to (29), x, = 1380, much high- 
er than the obtained values. The following should be noted in 
this connection: first,. the effective LSM concentration 
should be lower than the value that follows from the crystal 
composition, since part of the LSM are bound into antiferro- 
magnetic pairs, triads, etc; second, the obtained 8 have a 
substantial temperature dependence that agrees qualitative- 
ly with (31) but is quantitatively stronger, so that the 
R = 800 obtained for T = 4.2 seems still to differ from the 
high-temperature = zK. 

In the comparison with the data of Ref. 10, we chose for 
each of the H-dependences given there for the shift of the 
SFRS Stokes component, besides N, also the temperature 
(inasmuch as in this experiment was determined from the 
magnetic-field dependence of the SFRS shift, and this de- 

FIG. 3. Comparison of the theory with the experimental data of Fig. 2 of 
Ref. 9: 0, a, A-results of Ref. 9 obtained at 2.5,2.2, and 4.2 K, respective- 
ly. Curves 1,2, and 3-calculated shift of the Stokes components althe 
indicated temperatures, using O = 1.8 K and A = - 70 cm- ' at N equal 
respectively to 650,700, and 800. 

A E,, cm-' 

FIG. 4. Comparison of the theory with the experimental data of Fig. 3 of 
Ref. 10. Solid line-regions of experimental values of Ref. 10 with their 
accuracy limits, obtained at various temperatures; dashed lines--linear 
extrapolation of the experimental data to weak fields, carried out in Ref. 
10. Curves 1-4 show the calculated shifts of the Stokes component, using 
A = - 12 cm-', O = 0, and Nand Tequal respectively to 26 and 3.32 K, 
27 and 41.6 K, 28 and 6.91 K, and 30 and 14.7 K. 

pendence is modified by the zero-field splitting). The results 
of the calculations together with the data of Ref. 10 are 
shown in Fig. 4. We used in the calculation the values 
A = - 12 cm-' and 8 = 0. For CdS with Mn (lo2' ~ m - ~ )  
we have a, = 23 A, henceSK = 31, in very good agreement 
with N = 30 for T = 14.7 K. The temperature dependence of 
3 also agrees qualitatively that expected from (31), and is 
quantitatively somewhat higher. This difference, just as in 
the case of the experiment of Ref. 9, seems to reflect a vari- 
ation of y in the course of the shrinking of the electron local- 
ization region on account of the spin correlation. The vari- 
ation of y within the range of the values in Table I overlaps 
the discrepancy between the calculation and experiment. 

The proposed model describes thus all the principal re- 
sult of the experiments not only qualitatively but also quanti- 
tatively. 

We note in conclusion that the "plane bounded wave 
function" model used in this paper may apparently not be 
quite exact for the description of the behavior of the magnet- 
ic-field dependence in weak fields (outside the accuracy lim- 
its of the experiments of Refs. 9 and 10) and for the descrip- 
tion of the SFRS line shape, details that should be sensitive 
to the inhomogeneity of the LSM magnetization distribution 
in the carrier localization region. On the other hand, an ad- 
vantage of the model is the possibility of consistently de- 
scribing the entire picture of the spin correlation of the car- 
rier and the LSM, and the possibility of obtaining analytic 
solutions. 

The authors are grateful to S. I. Gubarev, M. A.Krivog- 
laz, and B. V. Egorov for helpful discussions of the questions 
touched upon in the article. 
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