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Singularities are considered of collisional processes that take place in complex polyatomic mole- 
cules under condition when the vibration-stochastization time is much shorter than the charac- 
teristic time of molecule interaction with one another in collisions. It is shown that collisions 
between stochastic molecules and buffer gas molecules, a process in which significant energy 
transfer is impossible, lead to diffusion of the population over the energy spectrum. The popula- 
tion distribution function that results from the elementary collision act is obtained, as well as the 
coefficient of diffusion of the population in energy space. Expressions are derived for the change 
of the population distribution function in collisions of two identical stochastic molecules. Using 
an analytically solvable model problem as an example, it is shown that the V- Vexchange process 
in strongly excited stocihastic molecules is not diffusive. The time of relaxation of the population- 
energy distribution function to its stationary (thermal) form is estimated. The singularities of 
vibrational-excitation transfer to isotopically substituted molecules are discussed. 

PACS numbers: 34.50. Ez 

51. INTRODUCTION 

The investigation of col1ir;ionless dissociation of polya- 
tomic molecules1 is the subject of many studies, reviews,'-' 
and  monograph^.^.^ So far, however, there is no unified 
treatment of this phenomenon, combining a consistent theo- 
retical approach that leads to numerical results with an anal- 
ysis of the experimental observation. The reason is not only 
that the phenomenon itself is, too complicated to analyze 
theoretically and calls for the study of the stochastic vibra- 
tional dynamics of a multimode molecule, but also that an 
appreciable part of the expenmental results was obtained 
under conditions when the process of energy accumulation 
in a laser field is influenced by rapid vibrational exchange of 
excitation between the molecules via collisions.10 

The influence of intermolecular exchange of vibrational 
excitation in collisions (V-Vex.change)"." on the dynamics 
of molecule excitation in a laser field was investigated in 
detail by Platonenko and Sukhareva13 within the framework 
of a model of coherent interaction of oscillators, when the 
main contribution to the collision dynamics is made by fre- 
quent collisions during which the level populations change 
little. This model works well in the description of V-V ex- 
change at low levels of polyatomic molecules. To describe 
collision dynamics of the populations of high levels under 
conditions when the internal vibrational motion of the mole- 
cule is essentially stochastic, and the characteristic correla- 
tion-loss time T, (estimated a!; the reciprocal width of the 
absorption contour) is much shorter than the time T, of the 
interaction of the molecules in the course of the collision, 
substantial modification of the cohterent-interaction model 
is necessary. 

The purpose of the present paper is to describe the colli- 
sion of molecules within the framework of the model of com- 
pletely uncorrelated matrix elements of the interaction oper- 

ator,14 a model corresponding to the case of rapid (compared 
with the characteristic time of the change of the level popula- 
tion in the course of the collisions) stochastization of the 
vibrations (7, (ri ). The molecule collisions are described in 
the following sequence. We consider first the elementary act 
of collision of a molecule with a buffer gas, when there is 
actually no energy exchange between the molecules in the 
collision because the process is nonresonant, and discuss the 
kinetic consequences of this effect. This is followed by inves- 
tigation of the elementary act of collision of two identical 
molecules, at least one of which is in a highly excited state. 
Finally, an equation is derived for the paired distribution 
function, from which a kinetic equation is obtained for the 
single-particle distribution function in a simple example that 
lends itself to an analytic treament. For a single-particle dis- 
tribution function, model equations that describe the trans- 
fer of vibrational excitation from the molecule of one isotope 
to a molecule of another isotope will also be given. 

It must be noted that the collision can change not only 
the energy of each of the colliding molecules, but also the 
population distributions, in phase space, of their internal 
variables. This situation is most probable in the case of a 
collision between an excited molecule and a buffer-gas mole- 
cule, when the interaction that plays the principal role is not 
dipole-dipole and is not characterized by any selection rule 
whatever. This phenomenon is not discussed in the present 
paper. We assume that the V-Vexchange due to the dipole- 
dipole interaction does not alter the phase-space population 
distribution function obtained by laser excitation, and the 
elementary collision act with the buffer gas molecules pro- 
duces, on the contrary, a uniform population of all of phase 
space. It is assumed here, in addition, that the main contri- 
bution to the collisional redistribution of the level popula- 
tions is due to collisions with practically no change of the 
translational motion of the molecules. 
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52. ELEMENTARY ACT OF COLLISION OF AN EXCITED 
MOLECULE WITH A BUFFER-GAS MOLECULE 

We assume that a molecule on a high excitation level 
has an energy spectrum En,  where n numbers the quantum 
level. A buffer-gas molecule aproaching the molecule in 
question produces between the levels an additional interac- 
tion described by an increment G (R ) Vnn, to the Hamiltonian, 
where G(R ) is a function of the time-variable distance 
between the molecule, and the matrix ? has a complicated 
structure by virtue of the assmption made that the internal 
vibrational motion of the molecule is sto~hastic. '~ The ener- 
gy of the interaction between the vibrational levels of the 
considered molecule is much lower than thermal, so that the 
relative motion of the colliding molecules can be regarded as 
given, i.e., R = R (t ) and G = G (t ). In this case the qh func- 
tions of the vibrational states of the considered molecule sa- 
tisfy the Schrodinger equation (Ti= 1): 

For conveniencein the derivation of the equations that de- 
scribe the dynamics of the populations, we assume that the 
function G (t ) is periodic and has a discrete spectrum: 

with G, = - G-, , i.e., G I,=, = 0 .  It will be clear from 
the answer that this assumption is not a stringent require- 
ment, and that the result can be generalized to include the 
case of a function G (t ) that varies smoothly from - w to 
+ w .  

We seek the solution of Eqs. (1) in the form 

In this case each of the harmonics qh,,, (t ) satisfies the equa- 
tions 

We take the Fourier transform 

qn, ,( t )  +$n.m ( 8 )  , $nlm(t) +%,m (-El 7 

introduce the matrix 

p : k m ' ( ~ ,  E )  = ~ n , m ( ~ ) $ n . . m ~  ( E )  ( 5 )  

and represent it in the form of a series in powers of ?. We use 
the assumption that the matrix V has a complicated struc- 
ture and use also the ensemble-averaging procedure,'4-'6 in- 
troducing also the operators 

Xn= ( fe-E, f -QB+i(V2)ng(E)  GG)- ' ,  

x',= ( ? ; ~ - E , ? - Q ~ - ~ ( v ~ ) ~ ~ ( E )  G(?)-', 
( 6 )  

where the matrices that enter in the expression have the fol- 
lowing matrix elements: 

( m l f  l rnf>=(ml~lm'+=6, , , , ,  

<ml8(m '>=(ml~1m' )=m~, ,~ ,  (7) 

( m l ~ l m ' > = G , - , . ,  (rnlcl  mf>=G,-- ,  

(the operators with the superior bar act on $(l) or on the 
upper indices, and the operators without the bar on $(E)  or 
on the lower indices of the density matrix pi::' . After sum- 
ming the series, the expression for the density matrix takes 
the form 

6," = gnkn ( V z )  ~e { ( E  - E) 91 - Q ( E l  - gr) 
+ nig < ~ 2 ) ( L % f ;  

+ fdE) - 2nig ( v 2 )  Ĝ G")-l 8r2rPrr ltEO +- fZ.n2n6nn i tEo,  

g  (E )  = g- (8) 
The Fourier transformation with respect to the lower a ~ d  
upper indices can reduce the equations for the matrices Xn 
and in as well as for the matrix 

2 = ( 2 . ~ ~ )  -' (;e,P-12,) (9) 
to equations that can be solved in quadratures 

X ( 5  r') + i n g ( V 2 ) G 2 ( r ) X ( r ,  r ' )  =6 ( r - r ' ) ,  
ar  

e-E+i - +i - Z ( r ,  r', 0,O') ( a ,  a as a )  
+ing(V2> (G ( r )  -G ( 0 ) )  '2 ( T ,  r', 0,O') 

=6 (7-7') 6 (0-Or),  (10) 

Taking the inverse Fourier transform with respect to 
time we find that the population of a level separated from the 
initial populated level by a distance 6 is given by 

1 1-4 

X [ G2 ( r )  dr -  G  ( r )  G (T+B)  d r ] }  d e .  
0 * 

The generalization of (1 1) to include the case of an interac- 
tion intensity that varies smoothly from t = - w to 
t =  + w isoftheform 

.a 

p ( a )  I , = . = R ~  J ei"eexp{-2ng(v2) J [ ~ ' ( t )  -. 
- G ( t )  G ( t + r )  l d t }  dr .  

(12) 

In other words, the population distribution resulting from 
the elementary collision act is equal to the Fourier transform 
of the exponential of the correlation function of the interac- 
tion energy. 

Expression (12) makes it possible to determine the coef- 
ficient of the population diffusion in energy space 

-G ( t )  G  ( t i  t) 1 dt d~  1 
m 

= w,,, ( G v )  2ngt v 2 )  J G ( t )  G ( t )  dt dV, (13) 
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where w,,, (GV) is the probability of collision with an interac- 
tion amplitude GV. 

Estimates based on Eq. (13) using the additional as- 
sumption that the characteristic energy of the vibrational 
interaction at characteristic atomic distances is estimated as 
the product of the square of the product of the squared Born- 
Oppenheimer parameter by the characteristic thermal ener- 
gy, show that the time of equilization of the population over 
the entire spectrum amounts to T = 10-1-10-2 secSTorr. 
Thus, the elementary act of collision of the molecule with a 
buffer-gas molecule leads to broadening of the energy distri- 
bution of the population and can ensure establishment of an 
equilibrium distribution only over times on the order of 
10-'-10-2 sec-Torr. 

53. ELEMENTARY ACT OF HIGHLY-EXCITED-MOLECULE 
COLLISION ACCOMPANIED Blf VIBRATIONAL-ENERGY 
TRANSFER 

The interaction energy of two colliding molecules can 
be expressed as an expansion in powers of normal coordi- 
nates. The resonant vibrational exchange is represented in 
this expansion by quadratic fo~ms in the normal coordinates 
of each of the modes. In collisions of molecules with impact 
parameters that exceed the characteristic geometric dimen- 
sions of the molecules, a substrlntial contribution is made by 
dipole-active modes, for only they correspond to expansion 
coefficients that decrease non-exponentially with increasing 
impact parameter. At such distances it suffices to consider 
only IR-active modes that interact via the dipole-dipole 
mechanism. 

The collision of two poly,atomic molecules having IR- 
active modes can be described within the framework of the 
band theory of spectra."," Each molecule has a self-energy 
function $, and $mB, where the first index numbers the band 
and the second the level in this band. A system of two mole- 
cules is described b a four-index function $,,,, . The eight- 
index matrix h 

P = - R m 5 ( t )  [ 3 ( & ,  R ( t ) )  (I&, ~ ( t ) )  - (A,, &) ~ ' ( t )  ](14) 

which depends on the time and has a complicated structure, 
corresponds to the dipole-dipole interaction operator. l9 We 
note that, as follows from the results of Ref. 16, when the 
characteristic time ri of the interaction is much longer than 
the characteristic sto~hastizati~on time but is much shorter 
than the characteristic reciprocal distance between the 
neighboring levels of the spect~rum of a system of two mole- 
cules, the equation for the popillations can be derived under 
the assumption that V does not depend on t. The time depen- 
dence can be taken into account then in the final expressions 
for the populations. 

We introduce the notatior~ 
~ = t / ~  ( n + n ) ,  M=t /2  ( n - m )  , AN, M ,  a ,  @-En. a+Enl, 8, 

n+i ,m-t ,a ' ,Pr  N , M + l , a ' , @ '  n- t ,m+i ,a ' ,Pr  N,N-f,a',p' 

Vn,m,a,~ = V N , M . ~ . B  1 v n , m , a , ~  =VN,nr,a,p 9 

where En, and Emp are the energies of the first and second 
molecules. In this notation Eq. (14) takes the form 

Equation (15) coincides formally with the equation that de- 
scribes the dynamics of the excitation of a multilevel system 
of the band type in a laser field.I4 The main difference is that 
the band levels (the bands are labeled by the index M ) are 
numbered not by one but by two (Greek) indices. Performing 
the same operations as in Ref. 14 (Fourier transformation, 
with respect to time, of Eq. (15) and of the analogous equa- 
tion for the complex-conjugates, representation of the sol?- 
tion of these equation by a series in powers of the operator V, 
term-by-term multiplication of the series, and selectio! of 
the terms in which each matrix element of the operator V is 
encountered an even number of times, spectrum renormal- 
ization that leads to the appearance of imaginary additions 
to the energy eigenvalues, and summation of the series for 
the population), we find that the total energy of the interact- 
ing molecules deviates little from its initial value, and the 
dynamics of the level populations of the two molecules is 
described by the following kinetic equation: 

bNSl ( a )  = Ida' [-D:$+~ ( t ,  6.8')  P , M  ( 6 )  

-D:,"-$ ( t ,  6 , 6 ' )  P N , M ( ~ )  
N , M + l  +of,':-' ( t ,  6 ,6 ' )  ~ N , M - ,  (6 ' )  +DN,M (4 696') P N , M + ~  (6')  1, 

(16) 
where S = En,, --Ens - n o  + m o ,  and the kinetic coeffi- 
cient is 

Here (d '(a;b )) is the mean squared matrix element of the 
dipole-moment operator for transitions from molecule levels 
lying in the vicinity of the energy a to levels in the vicinity of 
the energy b, and A = A,,, + Am,B. The population is then 
localized in a narrow vicinity of the two-molecule energy- 
space layer corresponding to the initial energy. 

The kinetic equation (16) with the kinetic coefficients 
(17) has a lucid physical meaning. During the time of flight of 
one excited molecule relative to the other, photon exchange 
can take place between them, accompanied by a change in 
the distribution of the populations of the molecules. One of 
the molecules, located, say, in band n on a level shifted by an 
amount A , ,  from the resonant value of the energy, can emit 
a photon of frequency o + S with a spectral probability den- 
sity 

g(nw-o+A,,  ,-6) (d2(nw+A,,  ,; n o - o + A , ,  ,-6) > 
and consequently produce around itself radiation at a fre- 
quency o + S with a spectral intensity 
ImE"=SR-"t) [g(no-of A,, ,-6) 

( d Z ( n o + A n ,  .; no-o+A, ,  .-6) ) ]  . (18) 
The other molecule, located in band m at a level with a devi- 
ation Am,p in such a field, can absorb the emitted photon 
with a probability 
2nEZ(d2 (om+A, ,  P ;  om+o+Am,  B+6) > g ( o m + o + A , ,  B + 6 ) .  

(19) 
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Substitution of (18) in (19), with allowance for the performed 
change of variables, leads to expression (17). 

It must be noted that the elementary collision process 
that takes place with a small value of the impact parameter 
has a high probability of being accompanied by exchange of 
not only one but also many photons. The reason is that with 
decreasing impact parameter the characteristic number of 
photons transferred from one molecule to the other increases 
more rapidly than the decrease of he probability of collision 
at this value of the impact parameter. 

If the relative velocity of the molecules is v and the im- 
pact parameter is r, the collision results in a state-population 
change given by 

where K (R ) is the integro-difference operator in the right- 
hand side of (1 6). 

Thus, the elementary act of collision of two identical 
strongly excited molecules, between which dipole-dipole in- 
teraction can produce vibrational exchange, results in diffu- 
sion of the population over the band spectrum of each of the 
molecules and over the vibrational states within each band. 
The diffusion takes place in steps corresponding to exchange 
of photons of definite frequency, as a result of which the 
molecules go over to neighboring (one to the upper, the other 
to the lower) bands into states that are separated from the 
harmonic value of the energy by an amount determined by 
the form of the frequency characteristic of the absorption 
and emission of the photons. The probability of each diffu- 
sion step depends on the numbers of the bands of each of the 
molecules (i.e., on their energies) and on the positions of the 
levels in the band, and is determined by the product of the 
probabilities of emitting and absorbing photons of a definite 
frequency, or in other words by the frequency characteristic 
of the probability of radiation absorption by the quasicontin- 
uum levels. The number of diffusion steps is determined by 
the values of the relative velocity of the molecules and of the 
impact distance. The summary effect of the collision is given 
by Eq. (20). 

§4. KINETIC EQUATIONS FOR THE MOLECULE 
DISTRIBUTION FUNCTION IN ENERGY SPACE 

Starting from the results of the preceding section, we 
can write down equations for the paired distribution func- 
tion of the populations: 

p , , . ( ~ . .  A,) = J d A l f  dd2' dv drw(v ,  r )  
n' ,m'  

[s;:km' ( v ,  r,  A,. A2. A,'. A z f )  

x~,; ,rn.  (At ' ,  A?')-pn,m(Ai, AZ)S;:A*' (ut r, Ai, A27 A1'71A2') I ,  
(21) 

where 
a 

i=erp J k ( R )  dt. 
- m  

(22) 

and w(v,r) is the probability of molecule collision with rela- 
tive velocity v and impact parameter r. The first term of the 
expression in the square brackets in (21) describes the influx 
into the state (n;A,;m;A,) while the second term describes 
the outflow from this state. It must be noted that by virtue of 
the assumption that the translational motion of the mole- 
cules does not change during the vibrational exchange, we 
get the relation 

For further calculations we need detailed information 
on the values of the kinetic coefficients of the transitions 
between the states of the band spectrum of the molecules 
under the action of the radiation. If these values are known, 
numerical calculation allows us to construct the matrix S 
and to proceed to solve (21) numerically. In all probability, 
however, it is premature to undertake such a laborious pro- 
gram in its entirety, for we are still far from a compelte solu- 
tion of the problem of obtaining the kinetic coefficients, their 
spectral dependences, and the mechanisms by which they 
are formed, despite the large number of papers on this sub- 
ject.,'-,' 

It seems advisable to investigate analytically a simpli- 
fied model problem with the aim of obtaining the basic char- 
acteristic regularities of a collision between highly excited 
molecules; this can facilitate considerably the development 
of satisfactory phenomenological models. As the simplest, 
we choose a model in which the kinetic coefficients D :::' at 
n + m = n' + m' and n - m = n' - m' + 2 do not depend 
on the degree of excitation of the molecules n and m, and we 
ignore the diffusion over the band levels, assuming that it 
does not alter substantially the effective averaged kinetic co- 
efficients of the band-to-band transitions. The following 
expression is then valid for the matrix k :  

(24) 
where d is the characteristic dipole moment of the 0-1 tran- 
sition, and 0 is the characteristic value of the anharmonicity 
constant. Using an integral representation for the function of 
an operator26 in the expression for the matrix inverse to 
(z - K f:') in terms of Chebyshev polynomials, integrating 
with respect to time, using a Maxwellian distribution for the 
relative velocity, and integrating over the impact param- 
eters, we obtain 

1 x z  6:;imrnI (4-cm n0)"~cos [  (n- ' / , )ne]  
n',mV C 

x cos [ (nf- '1,)  nOIctg[ (nl+m') neldepn,,m., (25) 

where v, is the characteristic thermal velocity, no is the par- 
ticle density, and the integration contour Cencloses the seg- 
ment (0,2). 

Equation (25), which describes the dynamics of the 
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paired distribution function, has a stationary solution 
pn,,,,=Fe-h(n+m), (26) 

where Pis  a normalization factor. Expression (26) is in fact a 
thermal distribution, the only difference being that by virtue 
of the model assumptions (24) no account is taken of the 
statistical weight of the states. From (25) and (26) one can 
obtain for the single-particle distribution function p, a ki- 
netic equation that differs little from the thermal one: 

p,,= (no-Ro) e-" (eL-I) -'+(5,,, (27) 
where iiO is the density of the nonthermal molecules. Assum- 
ing a parameter A 4  1 and a characteristic value n) 1, mean: 
ing a strong suprathermal excitation of the nonthermal mol- 
ecules, changing from the discrete variables n to the 
continuous x, and assuming that p(x)l, =, = p, is a smooth 
function, i.e., ap/ax+5, we obtain for this function the equa- 
tion 

1 9 ~  
P (x) =- (A-2D) p (x) -I- D ;-- p (2) 0'xZ 

where f(x)  is the stationary distribution function 
F exp( -Ax) normalized to the density of the nonthermal 
molecules, while A and D satisfy the relations 

It can be seen from (28) that the distribution function 
that differs little from thermal r1:laxes to its stationary (ther- 
mal) form exponentially at a characteristic rate A, and that a 
kinetic equation in the r - a p p r ~ x i m a t i o n ~ ~ . ~ ~  corresponds 
best to the described process. This is the main difference 
between the case of collision of highly excited molecules and 
the collision of weakly excited or nonstochastic molecules, l3 

where the approach of the distribution function to its sta- 
tionary form obeys the diffusion law. The reason for this is 
the following: owing to the rapid stochastic motion, the 
probability i f  transferring a phiton from one molecule to 
another is inversely proportional to the sixth power of the 
intermolecular distance (and not to the cube as in the case of 
coherent interaction), therefore the total number of photons 
transferred during the entire time of the elementary collision 
act is inversely proportional to the fifth power of the impact 
parameter (and not to the square). Accordingly, the main 
contribution to the collision integral is made by small values 
of the impact parameter and b,y large values of the energy 
transfer. In othe words, the collision typical of highly excited 
complex polyatomic molecules a one during which the mol- 
ecule populations are practically equalized. If the fraction of 
nonthermal molecules is small and the collisions are mainly 
with thermal molecules, this means in fact an exponential 

decrease of the distribution function to its stationary value. 
It must be emphasized that owing to the decisive contri- 

bution of the collisions with large energy transfer, the equa- 
tions obtained do not contain a dependence of the excitation- 
relaxation rate on the reverse of the vibrational energy in the 
strongly-excited-molecule fraction. Indeed, the ratio of the 
probability of transferring n photons and 10n photons is only 
1.7, so that the characteristic relaxation time of strongly ex- 
cited stochastic molecules differs little from the relaxation 
time of weakly excited stochastic molecules. This difference 
is taken into account by the kinetic-equation term that con- 
tains the second derivatives. In addition, by virtue of the 
model assumptions made, such a relaxation-time ratio is ob- 
tained without account of the fact that in the elementary 
collision act the probability of one diffusion step can be sub- 
stantially larger for strongly excited molecules than for 
weakly excited ones. Allowance for this circumstance 
should lead to an even smaller difference between the relaxa- 
tion rates. 

Let us estimate the population relaxation rate. At 
v r  = 1.29 X lo5 cm/sec, d = 1 D, P = 1 cm- ', and 
no = 3.5 X 1016 cmP3 thevalue ofA is 5.5 X 10-8sec.Torr; at 
d = 0.6 D we have A = 8.3 X lo-' sec.Torr. The character- 
istic impact parameters are in this case 4(9dd4/ 
@ u ) ' ' ~ z ~ o  - 40 b;, much larger than the characteristic 
geometric dimensions of the molecules. 

Equations that describe the transfer of vibrational exci- 
tation from one isotopic component of a molecular gas to 
another can be obtained in similar fashion. We can use for 
this purpose a model similar to (24), in which account must 
be taken of the isotope frequency shift and the long-wave 
shift of the contour of photon absorption and emission as the 
molecules are excited.29 Under these conditions, excitation 
exchange between molecules of different isotopes can occur 
only if the molecule of the lighter isotope is excited above a 
definite limit x > k, when the shift of its spectral characteris- 
tics can be offset by the isotope shift of the frequency, and the 
photons in its emission spectrum have frequencies that are at 
resonance with the frequencies of the main transition of the 
molecule of the heavier isotope. 

The equations that model this process, without 
allowance for the terms that describe the diffusion of the 
populations, are 

&(x)=--A [ ~ t ( ~ ) - f t  cT(x)] 

+ A ' [ ~ z ( ~ + l - k ) - f 2  ,,(x+l-k)], 

Ej i z  (x) =-A [ R e  (2) - f z  er (x) 1 
(30) 

+A'[~,(x+l+k) -f, ,,(zf l+k) l ,  

where pl(x) and &(x) are the distribution functions of the 
nonthermal molecules of the heavier and lighter isotopes, 
respectively. Equations (30), just as (28), have terms that de- 
scribe the relaxation of the distribution functions of the mol- 
ecules of each of the isotopes to their stationary (thermal) 
form on account of the collisions with thermal molecules 
similar to them. In addition, however, there are crossover 
additions that describe the transfer of above-threshold exci- 
tation of the molecules of the lighter isotope to those of the 
heavier. 
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For a rigorous description of the exchange of vibration- 
al energy between molecules of different isotopes we must, of 
course, know the exact spectral characteristic and solve nu- 
merically the kinetic equations. In a model description with 
the aid of Eqs. (30) it suffices to estimate the ratio of the 
constants A and A '. The roughest estimate of these quantities 
can be based on the form of the frequency dependence of the 
absorption coefficient. If it is assmed that the nonthermal 
molecules are excited by laser radiation to energies equal on 
the average to half the dissociation energy, the ratio of the 
constants A and A ' is given by 

where u(E = UD/2;o) is the frequency dependence of the 
cross section for radiation absorption by the lighter-isotope 
molecule excited to an energy equal to half the dissociation 
energy o, is the frequency of the main transition of the mole- 
cule of the heavier isotope, and o, that of the lighter isotope. 
For the SF, molecule this ratio is approximately 3.5, i.e., the 
rate of excitation transfer from 32SF6 to 34SF6 is of the order 
of 2X lop8 sec-Torr (if it is assumed that 0 = 1 cm-' and 
d =  ID) .  

Thus, in a mixture of molecules of different isotopes, in 
which a red shift takes place in the radiation-absorption 
characteristic with increasing vibrational excitation, the 
collisional relaxation proceeds in two stages under condi- 
tions of strong superthermal excitation of a small fraction of 
molecules of the lighter isotope. First the fraction of mole- 
cules excited above the threshold for excitation transfer 
between isotopes transfers rapidly its energy in excess of this 
threshold to the molecules of the heavier isotopes, and then a 
dominant role is assumed by the relaxation of the distribu- 
tion functions of each of the isotoes to its stationary (ther- 
mal) form. 

05. CONCLUSIONS 

1. When a complex excited molecule collides with a 
buffer-gas molecule, the population diffuses in energy space. 
As a result of the elementary collision act the population 
initially localized on one level of the complex vibrational 
spectrum of the molecule is distributed among the levels clo- 
sest in energy. The population distribution function as a 
function of the energy deviation is in this case the Fourier 
transform of an exponential of the correlation function of the 
interaction energy. After times on the order of 10-'-10-2 
sec.Torr the multiple collisions cause smearing of distribu- 
tion function by an amount of the order of the energy of the 
laser quantum. 

2. The elementary act of collision of two identical poly- 
atomic molecules, at least one of which is in a highly excited 
state, is a multiple incoherent photon-exchange process. 
This process is described by a kinetic equation and consti- 
tutes diffusion in the space of the number of quanta of each of 
the molecules and in the space of the deviations of the energy 
levels from the harmonic position at a fixed total energy of 
the molecules. The kinetic coefficient and the matrix that 
describes the summary effect of the change of the popula- 
tions in the elementary collision act are determined by inte- 
grals of the spectral probabilities of the photon emission and 

absorption, multiplied by a function of the impact distance 
and of the relative velocity of the molecules. 

3. The character of the dynamics of the single-particle 
energy distribution function of highly excited molecules is 
determined mainly by the infrequent collisions with small 
values of the impact distance, as a result of which a large 
number of vibrational quanta is exchanged. It is best to use 
the r-approximation for the kinetic equation that describes 
the single-particle distribution function of the colliding po- 
lyatomic molecules that are in stochastic states. After a char- 
acteristic time r estimated as corresponding to 55 X 
sec.Torr the distribution function relaxes exponentially to 
its stationary (thermal) form. 

4. Energy transfer from highly excited molecules of a 
light isotope to unexcited molecules of a heavy isotope can be 
several times faster than the collisional relaxation if the con- 
tour of the radiation absorption by the molecules is red-shift- 
ed with increasing vibrational excitation. The reason is that 
an excited molecule of the light isotope emits with higher 
probability low frequency photons that are resonant to the 
main transition of the molecule of the heavy isotope, than 
the high frequency photons resonant to the main transition 
of the molecule of the light isotope. 

The author is deeply grateful to N. V. Karlov and S. S. 
Alimpiev for helpful discussions of the results. 
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