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Macroscopic effects of vacuum polarization by a strong nonuniform and nonstationary fields, 
which are kinematically forbidden in the case of a uniform magnetic field, are considered. Calcu- 
lations are perfomed for the deflection of a light beam in the field of a magnetic dipole, for the 
production of photon pairs by an inclined rotator, and for doubling and modulation of the fre- 
quency in scattering of low-frequency electromagnetic waves by the magnetic field of an inclined 
rotator. 

PACS numbers: 12.20.D~ 

1. INTRODUCTION carried out in powers of the additional weak field. A similar 

Interest in the study of phenomena due to vaccum method was used earlier in Refs. 4 and 7 where, however, the 

larization by a macroscopic electromagnetic field has in- perturbing field was assumed to be of special form. The gen- 

creased of late.'-3 ~h~ possibility of observing vacuum ef- eral expansions obtained below allow us to consider a larger 

fects in a strong magnetic field in the vicinity of neutron stars group problems- 

is discussed in Refs. 4-8. Dealt with, in particular, is bire- 
fringence in a ma~netic field, splitting of a photon into 2. EXPANSION OF THE EFFECTIVE LAGRANGIAN 

tWo,4,9-~ I vacuum Cerenkov radiati~n,~." and neutrino gen- If the spatial and temporal scales Al and At, within the 

ration by photons.6 ~t was shown in Refs. 2 and 3 that shock limits of which a classical electromagnetic field F Can be 
waves can be produced in a magnetized vacuum by nonlinear regarded as uniform, satisfy the ~onditions 

effects. These processes can be realized in a constant and 
uniform field of intensity close to the Schwinner critical AlBm-', AtBm-' max (I, eFlmZ) , (2-1) 

field" F,, = m2/e = 4.41 x 1013 G. 
- 

The purpose of the present note is to point out some where m is the electron mass, the polarization of vacuum by 

other macroscopic manifestations of vacuum polarization such a field can be described by the effective-Lagrangian 

by a strong electromagnetic field, which can be realized in method. In a constant and uniform field, the effective Hei- 

the case of nonstationary and nonuniform fields. We note senberg-Euler-Schwinger Lagrangian is of the 

that the magnetic field of a neutron star is nonuniform over 
distances of the order of the radius of the star, and is nonsta- 
tionary with a characteristic rotation frequency. In a nonun- 
iform magnetic field, the effective refractive index of vacu- 
um becomes coordinate-dependent, and this can lead to the 
effect of "vacuum" focusing of the light rays. Scattering of a 
low-frequency electromagnetic wave by the nonstationary 
field of an inclined rotator can be accompanied by multipli- 
cation of the wave frequency and by the appearance of mo- 
dulation harmonics. The analog of this process in a uniform 
magnetic field is the coalescence of two photons into one, but 
this process is suppressed by kinematic forbidenness in the 
lowest order of perturbation theory. If, however, the field is 
nonuniform over distances on the order of the wavelength of 
the electromagnetic (radio) wave, the kinematic forbiden- 
ness is lifted. Finally, a nonuniform macroscopic field can 
itself create single photons and groups of correlated photons. 
The one-photon "evaporation" of a classical electromagnet- 
ic field constitutes a quantum correction to classical radi- 
ation. The two-photon effect yields a continuous radiation 
spectrum that differs qualitatively from the spectrum of 
classical radiation. 

The processes considered can be described with the aid 
of the Heisenberg-Euler-Schwinger Lagrangian, in which 
the strong-field contribution is separated and expansion is 

e2 9 =- - j- e-." a Rech esz 1 f , (2.2) 
( i  - ----) 

851' s 2, Im ch esz e2s2 3 

where 

The expansion of the Lagrangian (2.2) in powers of the 
tensor F,, starts with terms of fourth order. In the case of a 
coordinate-dependent field, account must be taken of the 
contribution of the second-order diagram (Fig. 1) that yields 
under the condition (2.1) an in~rement""~. '~ 

e' dPgV dFAv P'= ---- 
120nzm2 a s p  a.2 ' 

We estimate now the ratio of (2.4) and (2.2). Assuming 
C?F~"/L~X~-I -'Fpv, we find that at field intensities F#F,, 

where A, is the Compton wavelength. In the actual cases 
considered below F5 F,, and h A , ,  so that the contribution 
(2.4) of the second-order diagram is small. 

In the problem considered, the field F,,,, takes the form 
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FIG. 1. Second-order contribution to the effective Lagrangian of a 
nonuniform field. ft" Y cth y  

- - (cth y+ - - 2 y z T )  
8 shZ y sh y 

of the sum 

where F,, is the tensor of the external field of arbitrary 
intensity and f,, is the weak-field tensor. Expanding the La- 
grangian (2.2) in powers off,,, we can carry out next a sec- 
ond quantization in the field f,,, so that the results can be 
formulated in terms of photon creation and absorption (in 
such a theory, of course, we must confine ourselves to Feyn- 
man diagrams of the "tree" type). We construct the sought 
expansion under the additional condition that the pseudos- 
calar invariant of the field 3 be zero ( E , , , F ~ " ~ ~ '  = 0). 
Introducing the dimensionless parameters 

'h p=ej:/m2, y=esfo , 
f1=S,vf"'lfo, fz='/zf,b'lfo, (2.7) 

g l = - 1 1 2 e ~ V ~ I S P V ~ / f 0 ,  g2=-11k~lly~cPCYf"'If0, 

where f, = &FpvFpv, we represent (2.2) in the form 

The function 

corresponds here to the initial Heisenberg-Euler Lagrangian 
for the field F p v ;  the function 

describes the processes of creation and absorption of a pho- 
ton by the vacuum (Fig. 2a); the succeeding terms of the 
expansion correspond to two-photon (Fig. 2b), three-photon 
(Fig. 2c) processes etc. We note that when condition (2.1) is 
satisfied the contribution of the multiphoton diagrams is 
small, since it contains the factor where N is the 
number of photons. We present the terms of second and 
third order off,, : 

FIG. 2. Expansion of the Heisenberg-Euler-Schwinger Lagran- 
gian. The thick line corresponds to the Green's function of an 
electron in the field FPv. 

Y 2  +- c thy- - - -  
l 2  8 shzy 3 

3 2 
- --Ag12 [ ( I - F ~ 2 )  cthy 

16 
1  2 y  2 cth y  
3 Y ' - ]  - - ( I + ?  Y ' ) ~ - ~  sh2 

f l f 2  Y -- (c thg+--  
4 shL y sh2 y  

glRz + - ( c t h y - - - -  4 y2cth y )  . (2.12) 
dlZ y  3 

We note that expansions (2.1 1) and (2.12) contain no combi- 
nations of the type f, gl, f: g,, g,, g,, etc. by virtue of the P- 
invariance of the electrodynamics. The terms proportional 
to f13 and f,d were previously calculated in Ref. 4. In the 
limiting case of a weak field, P< 1, it suffices to retain in (2.1 1) 
and (2.12) the principal terms of the power-series expansions 

(2.13) 

(2.14) 

2 
0,=- $ [ ( I  - ;; y2) f 1 2  

4 

2 2 
m a = - - - s ' [ ( l  45 - -p~)f l f z  

In the opposite strong-field limit, P )  1, the main contribu- 
tion to the integral (2.8) is made by largey and we can confine 
ourselves to the asymptotic representation for Qi: 

3. DEFLECTION OF LIGHT RAY IN A NONUNIFORM 
MAGNETIC FIELD 

It is known that allowance for the second-order terms 
(2.11) in Maxwell's equations for f,, leads to the appearance 
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of an effective refractive index n, of the vacuum (A = 1,2 is 
the polarization index), which depends on the external-field 
intensity F. In the case of a uniform magnetic field the two 
stable modes A = 1, 2 have definite CP parity (the corre- 
sponding functions n, ( P ) are given in Refs. 4 and 7). Within 
the limits of the restriction (2.1), these expressions can be 
used for a nonuniform field (but the polarization is no longer 
necessarily conserved along the ray). Since the refractive in- 
dex depends on the coordinates, the ray trajectory is no long- 
er a straight line. Let us estimate the deflection of the ray in 
the magnetic field of the dipole that simulates the magnetic 
field of a neutron star: 

where R is the radius of the star, p is the magnetic moment, 
and n = r /r .  

For rays propagating in a plane perpendicular to the 
magnetic moments, the polarization states with magnetic 
vectors perpendicular (A = 1) and parallel (A = 2) to the vec- 
tor p are stable. The corresponding refractive indices are, 
subject to the condition (2. I), 

(the functions p, and p2 are given in Ref. 7). By virtue of the 
symmetry, trajectories of rays initially located in the equa- 
torial plane do not leave this plane. To find the ray trajectory 
we write down the eikonal equation 

(grad +A)Z-nAZ(a+,/8t)"0.  (3.3) 

Since n, depends only on the absolute value of the radius 
vector, we obtain the solution of (3.3), in polar coordinates, 
in the form 

where o and I are constants. The ray trajectory is defined by 
the equation a$/dl= const, whence 

wherep = I /w is the impact parameter. 
Using (3.5) we easily obtain the deviations from linear- 

ity of the ray trajectory. The asymptotic expansions (2.15) 
and (2.17) of the function @, in the case of a weak field, p/ 
(p3Fc,)( 1, we obtain the deflection angle 

Acpn=qA ( B , / F c r ) Z ( R / ~ )  6, (3.6) 

where q, = $ e2, q2 = e2/12; B, = p/R is the magnetic 
field intensity on the surface of the neutron star. In the limit- 
ing case of a superstrong magnetic field, P / ( ~ ~ F ~ ) )  I ,  we 
have 

Ap, - 2". The described "attraction" of the ray to the neu- 
tron star is a small correction to the gravitational deflection 
of the ray, but can be discerned in principle because of its 
stronger dependence on the impact parameter. 

4. FREQUENCY DOUBLING IN SCATTERING OF AN 
ELECTROMAGNETIC WAVE BY A ROTATING DIPOLE 

If the length of the electromagnetic wave is comparable 
with the parameter R that characterizes the inhomogeneity 
of the magnetic field, photon coalescence y, + y,+y, be- 
comes possible in lowest-order perturbation theory (this pro- 
cess is kinematically forbidden in the lowest order of pertur- 
bation theory in the case of a uniform magnetic field4). To 
calculate the probability of this process we substitute for f,, 
in (2.12) the sum of the field p,, of the initial field and the 
second-quantized field described by a vector potential A,, 
and replace 3 by a nonuniform nonstationary magnetic 
field B. Retaining terms linear in A,,  we reduce the action 
term proportional to @, to the form 

J z 3 d 4 x = - j  J ~ ~ ( x ) A , , ( x ) ~ ~ x .  (4.1) 

The process considered can then be described as "emission" 
of electromagnetic field by the effective vacuum polarization 
current J,,". Expressing the initial-wave field tensor in the 
form 

qpv= (a,k,-a,k,) sin a, a=kx=ot -k r ,  (4.2) 

we obtain the effective current in the case of a weak magnetic 
fieldB(1: 

The effective cross section of the process is determined 
by the Fourier transform of the current (4.3). Substituting in 
(4.3) the expression for the magnetic field of a rotating dipole 
(3. l) ,  where we must put 

PI 0 p ( t )  =Saopll + - (e+eiPt+e-e-i"), Q0 = - 
1 2  SZ 

9 (4.4) 

(0 is the vector of the angular velocity of the dipole; e * 
X = 0, 1 e * I = 1, e: = 0; and p,, and p, are constants), 
we obtain after simple calculations2' 

J ~ ~ ( Q ) = J I I ' ( ~ ) ~  (qo-20) 

+ J + ' ( q )  I5 (qo-2o+Q) + J- ' (q)  I5 (9,-2a-Q) , (4.5) 
where 

Assuming by way of estimate B, - F,, and p - R, we obtain 
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The first term in (4.5) corresponds to scattering with dou- 
bling of the frequency. This process takes place in the parti- 
cular case of an axisymmetric rotator ( pL = 0). The two oth- 
er terms describe Raman scattering that occurs only in the 
nonstationary field of an inclined rotator. The total cross 
section for the process is the sum of the cross sections for 
frequency doubling and for frequency doubling with modu- 
lation: 

do=do,,+do++do-. (4.6) 

Integrating over the directions of the scattered wave, we ob- 
tain the total cross section for doubling 

where BII = p,, /R 3, E = aw; 6 is the angle between the vec- 
tors k and a; a is the angle of inclination of the polarization 
of the initial vector to the plane plassing through k and a. At 
BII - F,, we have 

whereA is the length of the incident wave. Putting in (4.7) BII , 
E-0.1 F,,; 0 - lo4 sec- '; R - lo6 cm, we obtain the esti- 
mate a,, - 0 . 2 ~  cm2. 

The partial cross sections for frequency doubling with 
modulation are found to be 

where B, = p,/R 3. 

5. PHOTON PRODUCTION BY AN INCLINED ROTATOR 

Photon production by the rotating magnetic field of an 
inclined rotator is described by diagrams of the type shown 
in Fig. 2, where the wavy lines must be taken to mean the 
lines of outgoing photons. The process represented by dia- 
gram 2a can be regarded as the radiation generated by the 
effective current defined by the function (2.10). The intensity 
of the rotator "vacuum" radiation is, at B, (I;,,, 

and at B, > F,, 

Comparing these expressions with the powerPC, = (2/ 
3)p:R of the classical radiation of an inclined rotator we 
see that the ratio PuaC/Pc, is small in both limiting cases. The 
absolute value of P,, , however, can be quite large and at B, 
-Fc,, 0- lo4 sec-', and R - lo6 cm we obtain Po,, - lo3' 
erg/sec. Nonetheless, this process is only a small correction 
to the classical radiation, from which it is practically indis- 
tinguishable. 

In contrast to one-photon production, the production 
of photon pairs (diagram in Fig. 2b) by a nonstationary field 
yields a continuous spectrum of photons with frequency in 
the interval 0 < w < 2f2. Using for @ the expansion (2.15), we 
obtain the amplitude of the process in the form 

where SII is proportional to pII and is different from zero in 
the axisymmetric case, whereas S, vanishes in this case. We 
note the two terms in (5.3), which correspond to different 
kinematic conditions, do not interfere with each other. 
Averaging over the polarizations of the photons and inte- 
grating over their emission angles we obtain the following 
spectral distribution of the probability of the process in the 
frequency of one of the photons of the pair: 

where 9 (x)  is the Heaviside function. (The spectral curve for 
two-photon production at Bll /B, = 3 is shown in Fig. 3). 

The total production probability is obtained by inte- 
grating (5.4) with respect to frequency, and is equal to 

"We use a system of units with ti = c = 1, e2 = 1/137, and a scalar pro- 
ducta ,b~=a&,-aXb.  

"We assume that 20 > f2. At 2x0 <f2, the harmonic R - 2u is generated 
with the same probability as the harmonic 20 - R is generated in the 
considered case 20 >f2. 
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