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It is shown that multiple nonresonant scattering in a magnetic field alters substantially the char- 
acter of the decay (the argument of the exponential) of the wave function of a tunneling electron. 
For example, the wave function in a strong magnetic field is proportional to exp( - x2 /U  2, 

without allowance for scattering, but when scattering is taken into account it takes the form 
exp( - Ixl/b ),where x is the coordinate in the direction perpendicular to the magnetic field, A is 
the magnetic length, b = A /Iln B I, and B is a parameter that describes the scattering. The mean 
square modulus of the Green's function with negative energy in a magnetic field is calculated for 
scattering by a random Gaussian potential. It is shown that in semiconductor solid solutions this 
quantity can be used to describe the tunnel transparency of films in a magnetic field parallel to the 
surface, as well as the magnetoresistance of bulk samples in the region of hopping conduction. 

PACS numbers: 72.20.My, 73.40.Gk, 73.60.F~ 

1. STATEMENT OF PROBLEM 

The problem of electron tunneling with allowance for 
below-bamer scattering is frequently encountered in the 
physics of disordered systems. The simplest example is the 
calculation of the tunnel transparency of a dielectric film 
with impurities, dealt with by Chaplik and Entin1 and by 
Lifshitz and Kirpi~henkov.~ In Ref. 2 were introduced the 
concepts of resonant and nonresonant tunneling. In reso- 
nant tunneling an important role is played by impurity 
centers with energy levels very close to the energy of the 
tunneling electron. The existence of such resonant centers 
increases sharply the tunnel transparency of the barrier.' 
When nonresonant tunneling is considered it is assumed that 
there are no resonant impurities at all or that they are very 
sparse, and can therefore be disregarded. The present paper 
is devoted entirely to nonresonant tunneling. 

In an impurity-free film of thickness L the transparency 
is known to be given by D = Do exp( - 2L /a), where a is a 
characteristic length that depends on the tunneling-electron 
energy E reckoned downward from the bottom of the con- 
duction band. In the effective mass approximation, for ex- 
ample, a = fi/(2m~)"~. As shown in Ref. 2, in nonresonant 
tunneling the below-barrier scattering by impurities alters 
little the argument 2L /a of the exponential, introducing in it 
a correction proportional to the impurity density N. 

We show in this paper that in a magnetic field Hparallel 
to the film surface the nonresonant below-barrier scattering 
leads to much more substantial effects. We consider a film 
bounded by the planes x = 0 and x = L. A magnetic field 
oriented along the z axis produces for the electron an addi- 
tional potential 

U ( x )  = ( e z ~ / 2 m c Z )  (x-x,)  a, 

where x, is the center of the Landau oscillator. To calculate 
the argument of the tunnel-transparency exponential it suf- 
fices to describe the tail of the electron wave function with 
x, = 0 below the barrier. The presence of a parabolic "mag- 
netic" increment to the tunnel barrier (Fig. 1) causes the 
electron wave function to fall off in a direction perpendicular 

to the film surface (the x axis) not in accord with the usual 
formula exp( - x/a), but following the laws 

where A = ( d i / e ~ ) " ~  is the magnetic length. If A <a,  only 
Eq. ( lb) has meaning. The transparency has a similar depen- 
dence on H, namely, D a I $(L ) 12. It is shown in the present 
paper that scattering by impurities changes strongly the fall- 
off of the wave function (I), so that the argument of exponen- 
tial of the transparency depends linearly on L: 

D (L) (2) 

where b is a quantity that depends on Hand N. Thus, at large 
L the scattering by impurities increases the tunnel transpar- 
ency exponentially. This phenomenon can be compared with 
the influence of impurity scattering on the transverse electric 
conductivity of free electrons in a magnetic field. 

The role of the below-barrier scattering can be qualita- 
tively explained by recognizing that each scattering act 
changes the quantum number x, jumpwise and brings it 

FIG. 1. Effective tunnel barrier in the presence of a magnetic field in a 
pure film (dashed line) and in a film with impurities (solid line that tennin- 
ates at x = L ). The energy level of the tunneling electron is shown by the 
horizontal dash-dot line. 
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closer to the coordinate of the scattering center. The magnet- 
ic potential then "drops" to zero, and in the state with the 
new value x, it is reckoned already from the coordinate of 
the scattering center. As a result, the effective potential U ( x )  
that acts on the electron is not monotonic but has a sawtooth 
shape (Fig. l) ,  so that the tunneling is greatly facilitated. 
Such a potential leads only to an upward shift of the bottom 
of the conduction band. Disregarding fluctuations, it turns 
out therefore that 1 $(x) 1 decreases like exp( - 2x/b ), and 
not according to Eqs. (1). 

Other examples where the below-barrier scattering in a 
magnetic field is significant are the Franz-Keldysh and the 
Zener effects in crossed electric and magnetic  field^.^ Scat- 
tering by impurities should increase strongly the probability 
of tunneling in the electric-field direction and change its de- 
pendence on the magnetic field. It is known4 that in a pure 
material, in the two-band approximation, the Zener effect 
vanishes completely in a sufficiently strong magnetic field. 
At the same time, when account is taken of scattering by 
impurities, the effect has no threshold magnetic field, i.e., 
Zener tunneling is possible in an arbitrarily strong magnetic 
field. 

The law that governs the fall-off of the wave function at 
close distances plays an important role also in the theory of 
hopping conduction. This law determines the probability of 
hopping from impurity to impurity and the concentration 
dependence of the resistance. In a magnetic field, the law 
that governs the fall-off of the wave function determines the 
hopping magnetoresistivity.5 At low temperatures the 
length of the electron hop can exceed considerably the aver- 
age distance between impurities, so that the electron can un- 
dergo multiple scattering in the course of tunneling. The 
existing theory does not take this phenomenon into account. 
Without a magnetic field, the scattering has little influence 
on the fall-off of the wave function but, as already men- 
tioned, in a magnetic field the fall-off is substantially altered 
by the scattering, and this changes strongly the exponential 
dependence of the resistivity on the magnetic field. 

The idea that the law governing the wave-function fall- 
off is altered by below-bamer scattering was advanced in a 
paper by one of us,6 where the temperature dependence of 
the hopping conductivity with variable hopping range in a 
strong magnetic field was obtained with allowance for be- 
low-barrier scattering. 

In the present paper we calculate the value of b in Eq. (2) 
for tunnel transparency in the case when the impurity poten- 
tial can be regarded as Gaussian with a 6-function correlator 
{white noise). Such a potential is produced, for example, by 
fluctuations in the composition in a substitutional solid solu- 
tion. As a rule, in isoelectronic substitution the difference 
between the potentials of the atoms is found to be so weak, 
that the substituting atom produces no impurity level. 
Therefore the main contribution to the scattering is made by 
composition fluctuations that involve a large number of sub- 
stituting atoms. Such fluctuations can be regarded with good 
accuracy as Gaussian. 

The object of the investigation in this paper is the quan- 
tity (IGE(r,r')12), where G,(r,r1) is the Green's function of an 

electron in a magnetic field and in a random impurity field. 
The energy E of the tunneling electron lies lower than the 
renormalized bottom of the band. The symbol (...) denotes 
averaging over the impurity configurations. 

The quantity (I G,(r,r')I2) can be used to investigate the 
transparency of a film. Let the film be bounded by the planes 
x = 0 and x = L, and let the magnetic field be directed along 
thez axis. It turns out that in an impurity-containing film the 
argument of the exponential of the tunnel transparency of 
the film coincides with the argument Qr, (L ) of the exponen- 
tial in the quantity (I G, (r,r')12) at r = (O,O,O) and 
r' = (L,O,O), i.e., 

In the absence of a magnetic field the property (3) is 
quite obvious. In a magnetic field, however, it appears only 
because of the scattering by the random impurities. In Sec. 3 
we present expressions for the Green's function of a free elec- 
tron with negative energy in a magnetic field [Eqs. (7) and 
(8)]. Comparing these equations with (la) and (2b) we see that 
the numerical coefficients in the arguments of the exponen- 
tials are different. Consequently, it would be incorrect to 
calculate the transparency of a pure film by using Eq. (3). 
The reason is the interference of the waves that emerge from 
different points of the plane x = 0. In a magnetic field, two 
waves that follow different paths acquire a phase difference 
proportional to the magnetic flux linked with the contour 
enveloping these paths and bounded by the planex = 0. As a 
result, waves from closely located points suppress one an- 
other. 

In a film with impurities this interference is inessential. 
The point is that waves that follow different paths are scat- 
tered by different sections of the Gaussian potential. Since 
the correlation radius of the potential is assumed to be very 
small, the phases of these waves are not correlated at all and 
their intensities are additive. To calculate the argument of 
the exponential of the tunnel transparency it suffices there- 
fore to find the probability of tunneling along the shortest 
path, i.e., along a path perpendicular to the film, and average 
the probability over the impurity configurations. The result 
is Eq. (3). 

To calculate the pre-exponential factor Do we must for- 
mulate correctly the boundary condition, as was done in Ref. 
2. 

When I G, (r,r')12 is averaged over the impurity configu- 
rations, the main contribution is made by the configurations 
corresponding to exponentially large values of IG, (r,r')12, al- 
though their probability can be exponentially small. This 
rule reflects the physics of the film problem, since the film 
transparency D is determined by the most transparent sec- 
tions with which an exponentially small fraction of the sur- 
face can be connected. To calculate the influence of the scat- 
tering on the Franz-Keldysh and Zener effects in crossed 
electric and magnetic fields we also need the quantity 
( I G, (r,rl) 12), but calculated with a uniform electric field tak- 
en into account. 
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It must be borne in mind that in other physical prob- 
lems the averaging of the quantity IG,(r,r')12 may turn out to 
be an utterly inadequate procedure. Consider, for example 
the problem of hopping conduction with a large hopping 
range in a semiconductor doped, say, with donors. We 
choose in the sample all the donor pairs joined by the vector 
r' - r. The values of IGE (r,rl) l 2  for different pairs can differ 
greatly from one another. The mean value (I G,(r,r')12) is 
determined by the pairs for which the Green's function has 
an anomalously large modulus. The donors that form such a 
"bound" pair are connected by a chain of other donors that 
are anomalously close to one another and are located on a 
straight line drawn from r to r'. The bound pairs can be 
exceedingly sparse and be very far from one another in space. 
It is clear that such pairs cannot determine the hopping con- 
ductivity, which requires that the donors be connected by 
paths that penetrate through the entire sample. The use of 
the quantity ( I GE (r,rl) 1 2, to calculate the donor overlap inte- 
gral in the theory of electric hopping conduction can greatly 
underestimate the resistivity. 

To calculate the hopping conductivity by percolation 
theory we must know the distribution of the arguments of 
the exponentials of I G, (r,rl) 1 for pairs with specified values 
of r' - r. If many other donors are located between the 
points r' and r, the variance of the argument of the exponen- 
tial of I G, (r,r')12 is relatively small. We can therefore confine 
ourselves to calculation of the mean value of the argument of 
the exponential, i.e., of the quantity (In1 GE (r,rl) 12). This 
quantity, in contrast to (I GE(r,r')12), is determined by the 
typical zigzag chains that join the points r and r' and in 
which the donors are separated from one another by dis- 
tances of the order of the mean distance between them.6 As a 
result the quantities (In1 G, (r,r')12) and In( I GE(r,r')12) differ 
greatly from each other. The possibility of such a difference 
was already noted in the monograph of Lifshitz, Gredeskul, 
and Pastur.' 

The model studies in this paper, that of a Gaussian ran- 
dom potential, has, in contrast to the just-considered case, of 
an impurity band made up of states localized on donors, a 
unique property that follows from the assumption that the 
weakly scattering centers have a high density: 

(the mean logarithm is close to the logarithm of the mean). 
This property reflects the relative weakness of the fluctu- 
ations of IGE(r,r')12 and will be discussed below. Here we 
note only that it allows us to use the quantity In( I G,(r,r')12) 
to construct a theory of hopping conduction of solid solu- 
tions of semiconductors. We have in mind here that a solid 
solution doped by non-isoelectronic impurities that produce 
local states (e.g., donors). The conduction is due to hops over 
these donors. In the space between the donors, the electron is 
scattered by the fluctuations of the composition of the solid 
solution, and this scattering forms the wave function of the 
electron. According to the foregoing, its asymptotic form 
can be described with the aid of the quantity (IG,(r,r')12) 
calculated in the present paper. 

2. QUALITATIVE DERIVATION OF THE ARGUMENT OF THE 
EXPONENTIAL OF < IG, (r,rf) 1 '> 

The potential V(r) connected with the fluctuations of 
the composition in a solid solution AyB,  -, is a Gaussian 
random function with a &function correlator (white noise); 

(V(r) V(r') )=76(r-r'), (5) 

where 

7 = ( a Z / N )  Y (1-y) , a=dE,ldy, 

and Ec( y) is the energy of the bottom of the conduction band 
of the solution AyB, -, , and N is the density of the lattice 
sites at which the atoms A and B can be located. Equation (5) 
is valid under the condition that the lengths that are signifi- 
cant in the problem greatly exceed the mean distance 
between the atoms of the component with the minimum den- 
sity. The Green's function GE (r,rf) can be represented by a 
series 

G, (Y, r') =G,O ( r , r r)+J d r , G '(r, rd  V (rl) G2 (r,, r') 

+J dr, drzG." (r. r,) V(r,) G; (r,, r2) V (r,) GS0(r2, r') , + . . . , 
(6) 

where G :(r,rl) is the free Green's function in a magnetic field 
with negative energy. It is of the form 

(7) 
at A>a, R sin2 Be2 4/a2, and 

(8) 
atA<a. In (7) and (8), R =(r '  - r J ,  Bis the anglebetween the 
vectors r' - r and H, and 

0 (r, r') = ( ie /2f tc)  H [r, x r'] 

is the phase determined by the choice of the vector potential. 
Let us investigate the asymptotic form of the Green's 

function G, (OJ) along the x axis perpendicular to the mag- 
netic field. We consider that term of the series (6) which 
describes n scattering acts, and define as the scattering re- 
gion (SR) that region of space in which is concentrated the 
integration of this term of the series with respect to one of the 
n variables. Each scattering act takes place in one of the 
points of the corresponding SR. Assume that the SR are 
equidistant along the x axis and that their dimensions are 
small compared with the distance between them (see Fig. 2). 
Then the argument of the exponential of the product of 
n + 1 free Green's functions in this term of the series turns 
out to be smaller than the argument of the exponential of the 
function G:(OJ). For example, at A>a the argument of the 
exponential of the product is 

whereas the argument of the exponential of G ~ ( O J )  is equal 
to - (x/a + x3a/24A 4). Thus, the scattering decreases 
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strongly the probability of the below-barrier tunneling con- 
nected with the magnetic field, and the effect is stronger the 
larger the number of scattering acts. (It is easily shown that 
at a fixed n and at a nonequidistant spacing of the SR along 
thex axis the gain due to the scattering is decreased.) On the 
other hand, the probability of each scattering is low. This 
means that if each integral with respect to ri is set in corre- 
spondence with a dimensionless factor B it turns out that 
B( 1. The point is that the volume of each SR is relatively 
small. The transverse dimensionp of the SR cannot increase 
strongly because in this case the tunneling paths become 
more and more zigzag-like and their length increases, and 
with increasing longitudinal dimension h of the SR the scat- 
tering points become nonequidistant, thereby decreasing the 
gain described by Eq. (9). Thus, the (n + 1)-st term of the 
series (6) is proportional to 

Expression (10) has a sharp extremum with respect to n at 

Substituting (1) in (10) we find that at A>a 

where 

In the derivation of (12) and (13) we used for the Green's 
function Eq. (7), which is valid if R 4  */a. This is correct if 
the distance between neighboring SR 

satisfies the inequality R o d  2/a, which follows in fact from 
the condition Ass. 

In a strong magnetic field, when A(a, we obtain for the 
(n + 1)-st term of the series (6) 

This expression has a sharp maximum at 

Substitution of (16) and (1 5) gives at A(a 

FIG. 2. Chain of scattering regions along the electron tunneling path for 
n = 3. 

Comparing (17) and (12), (1 3) with (1 j or (7), (8) we see that the 
scattering does indeed alter radically the character of the 
falloff of the wave function across the field. Expressions (12) 
and (17) are valid under the condition that the length x is 
large enough, so that n,,, > 1. 

In the foregoing derivation we have neglected the phase 
factors in (7) and (8). The possibility of this simplification will 
be confirmed in the next section. It is physically connected 
with the fact that the phase of the wave function varies ran- 
domly because of the scattering, so that there is little inter- 
ference between the scattered waves. 

We discuss now the parameter B in greater detail. We 
shall show below that at A>a 

is the volume of the SR. It will be shown below that the SR 
dimensions are approximately 

h=h2/ (Roa) "'=£to I ln B I -", (20) 

In the preceding reasoning we used the fact that B(1. It 
can be seen from (20) that the longitudinal dimension h of the 
SR is smaller than the distance between the neighboring SR 
only if this condition is satisfied. To clarify the physical 
meaning of the condition B(1, we use expressions (19) and 
(14) and transform (1 8) into 

B I In B I "= (178E0/48ne)'", (22) 

where 

E,=aPyZ ( I - y )  zm3i178A5N1 

is the characteristic energy of the tail of the state density g(&) 
in the forbidden band; this tail is connected with the fluctu- 
ations of the composition of the solid solution8: 

( E )  e - ( e : ~ g ) ' 1 2  P3) 
At &>Eo the density of statesg(&) is very small and the states 
are localized in individual potential wells. At a distance of 
the order of Eo from the renormalized bottom of the band, 
the states become delocalized. We see thus from (22) that the 
condition B< 1 coincides with the condition that the states 
with energy E are localized and are far from the mobility 
threshold. 

With decreasing &/EO, the parameter B increases and 

-- 
0 

P 

FIG. 3. 

473 Sov. Phys. JETP 57 (2), February 1983 B. 1. Shklovskil and A. L. ~ f r o s  473 



a 

FIG. 4. 

the scattering becomes more favorable. According to (20) 
and (14), at Iln B I 2 1 the length h becomes comparable with 
R,, i.e., the gaps between the neighboring SR vanish. More- 
over, as seen from (1 l )  and (16), as B+l the quantity n,, 
becomes infinite, attesting to a strong bending of the quan- 
tum trajectories and to a tendency to delocalization of the 
electron states. Of course, the theory expounded above is not 
intended for a description of the Anderson transition. 

3. CALCULATION OF <JG,(r,rf)l '> 
We shall use a diagram technique in coordinate space. 

The free Green's function G:(r,,r,) defined by Eqs. (7) and 
(8) will be represented by a solid line, and the interaction line 
will be wavy. Since the Green's function in a magnetic field is 
complex, it is necessary to take into account the direction, 
marked by an arrow, of the solid lines. Since the random- 
potential correlator (5) is of the form of a 8-function, each 
wavy line must start and end at one coordinate point. To 
each wavy line corresponds a factory. Integration is carried 
out with respect to the coordinates of all the points to which 
wavy lines are secured. In each diagram for (IG (O,x)I2) the 
points 0 with coordinates (0,0,0) and (x,O,O) are "terminals": 
one line enters and one line leaves each of them. The points 
on the diagrams are assumed ordered along the x axis. Fig- 
ure 3 shows a diagram without interaction. Figure 4 shows 
two diagrams for the self-energy part of the Green's func- 
tion. The diagram of Fig. 4a contains the Green's function at 
r, - r, = 0. Such a diagram diverges, thus indicating that it 
was incorrect to use a &function correlator. As shown, for 
example in Ref. 9, it must be assumed that the 8-function is 
"smeared" over a small length, and this length determines 
only the shift of the edge of the band. It can be assumed that 
the energy is reckoned from the renormalized edge and the 
diagram of Fig. 4a can be disregarded. The diagrams of the 
type shown in Fig. 4b (and more complicated ones) for the 
self-energy part describe the appearance of levels in the for- 
bidden band. They can be disregarded in the study of nonre- 
sonant tunneling. We consider now diagrams on which are 
connected lines going in different directions. Diagrams 
"with backtracking," one of which is shown in Fig. 5a, need 
not be taken into account. Indeed the diagram in Fig. 5a is 
clearly much smaller than that of Fig. 5b, since on the sec- 
tion (x,,~,) the diagram 5a contains not two but four Green's 
functions, each of which has a small tunnel exponential. It 
turns out as a result that it is necessary to sum only the 
"ladder" diagrams shown in Figs. 5b and 6. 

The contribution of a diagram containing n wavy lines 
is 

<IG,l2) 

-7" J I G ~ ( O , ~ . )  JzI~O(*l,rz) Iz . .  .IG0(4.rn+1) 1 .4 .  - .&.(24) 

As seen from (24), in this approximation the phase factors of 
the Green's function are negligible. The derivation that fol- 
lows is for the case of a weak magnetic field, when expression 
(7) can be used for the Green's function. The argument of the 
exponential in the integrand of (24) is of the form 

where r,,+ , = r i+ ,  - ri, f l =  a4 sin2 6 / 1 U  4, and 6 is the 
angle between the magnetic field and thex axis. It is assumed 
that r, = 0 and r, + , = (x,O,O). As already mentioned, the 
transverse dimensions of the SR are much smaller than the 
distances between the SR. Assuming this beforehand, we 
expand the first term of (25) in terms of the ratios 
yi,, + , /xct+ I and z,, + , /xi,i + , . In the second term, which is 
small compared with the first, it suffices to put 
riri + , = xi,, + . Using the ratio 

we can write the argument of the exponential in (24) in the 
form - 2x/a - F, where 

The integration in (24) is by the saddle-point method in 3n- 
dimensional coordinate space. As seen from (26). At the sad- 
dle point yi = z, = 0 for all i from 0 to n + 1. Since 
x, + , = x, the values ofx, at the saddle point are not equal to 
zero. Differentiating F a t  yi = z, = 0 we obtain 

Equating to zero the right-hand sides of (27), we find that at 
the extremum the points xi are equidistant, so that 
xi,,+, = x/(n + 1). The function F at the saddle point is 
equal to 

To calculate the integrals we must find the second derivative 
of the function F a t  the saddle point: 

a 

FIG. 5. 
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FIG. 6. 

Here i ranges from 1 to n. The other second derivatives are 
equal to zero. 

When calculating the integral (24) it is necessary to re- 
place R in the pre-exponential factors of the Green's func- 
tions by x/(n + 1). Then 

We expand F - F, near the saddle point, using the second 
derivatives of (29), and introduce the new variables 

2 (n+ I )  ''2 

z;= [--I zi. 

We obtain 

It is known that 

where C,l,( - 1) is a Gegenbauer polynomial equal to 
( - l)"(n + 1). As a result we get 

The quantity (IG, 12) as a function of n has a sharp 
maximum at n = n,,, ) 1. Therefore in the calculation of 

we can replace the sum over n by an integral, which can be 
calculated by the saddle-point method. The expression in the 

argument of the exponential of (34) is a maximum at 

where B satisfies the transcendental equation 

Equations (1 1) and (22) coincide with (36) and (37). Calcula- 
tion by the saddle-point method yield 

As expected, at sin 9 = 1 the argument of the exponen- 
tial in (38) is larger than the one in (12). 

4. FLUCTUATIONS OF THE GREEN'S FUNCTION 

We discuss now the differences that should arise when 
averaging In 1 G, (r,rl) 1 and I G, (r,rl) 12. This calls for identifi- 
cation of the character of the Green's-function fluctuations 
connected with various configurations of the impurity in the 
space between the points r and r'. We shall do this very ap- 
proximately, assuming that each term of the series (6) breaks 
up into a product of integrals over the volumes of the indi- 
vidual SR. In the arguments of the Green's functions we 
substitute then the differences of the coordinates of the 
centers of neighboring SR. We denote the dimensionless fac- 
tor that results from integration with respect to ith SR by B,. 
The quantity B,. is proportional to $ V(r)d 3r, where the inte- 
gration is over the volume of the ith SR, and V (r) is a random 
Gaussian potential. The quantities Bi are random and cause 
the fluctuations of the Green's function. The fluctuations of 
B, are due to the fact that the potential V(r), averaged over 
the given SR, has random sign and magnitude. The mean 
value of B, is zero, and the mean square is (B 3) 'I2 = B and 
is determined by (18). It is natural for this equation to con- 
tain the quantity [NOy(l - y)]'12 which, roughly speaking, 
is the mean squared fluctuation of the number of substitu- 
tional atoms in the SR. Clearly, the condition for the appli- 
cability of Gaussian statistics to the fluctuations of the num- 
ber of substitutional atoms in the SR and of the quantities B, 
is of the form 

If this inequality is satisfied, the probability density of 
B, takes the form 

The square of the Green's function includes the product 

Therefore 
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whereas 

It follows therefore that 

(lnlG12>-ln<lGIZ>=n,, In- ( ::) 
01 

=n, 5 in x2 erp (-x2/2) di= - 1.27 n-. (42) 
- m 

Comparing (42) with (40) and (41) we see that the inequality 
(4) is satisfied. The derivation presented makes no claims 
with respect to the numerical coefficient in (42), but it seems 
to us that the correct order of magnitude of the difference 
(1nlG 1 2 )  - In([ G 1') was obtained. 

5. CONCLUSION 

We have investigated in this paper the influence of the 
magnetic field on nonresonant tunneling in a solid solution. 
We examine now when the resonant tunneling can be ne- 
glected. According to (23), at the energies E>E, of interest to 
us, the density of the localized states connected with the 
composition fluctuations of the solid solution is small but 
finite. If a state with energy E is encountered approximately 
half-way between the points r and r', the exponentially small 
factor in G,(r,r1) vanishes because of the resonan~e."~ 

For hopping conduction over donors with level energy 
&)Eo, the presence of exponentially sparse donor pairs, 
between which the fluctuation state turns out to be acciden- 
tally resonant, is negligible. Therefore the resonant scatter- 
ing does not demarcate the regions of applicability of our 
results in the theory of hopping conduction. Things are dif- 
ferent in the case of tunneling through the film or in the case 
of the Franz-Keldysh and the Zener effects. In these cases 
even exponentially sparse resonant configurations can deter- 
mine the transparency. For example, in the case of a film the 
transparency turns out to be proportional to g(e)A~, where 

g(e) is the density of states (23) and AE is the level width of a 
local state with energy E, located midway in the film. (The 
width is connected with the tunneling in vacuum.) For our 
theory to be valid in a weak magnetic field it is necessary that 
the nonresonant transparency in a zero field prevail over the 
resonant. Sincede a exp( - L /a) at H = 0, thecondition un- 
der which the nonresonant transparency prevails is of the 
form 

where Lo is the characteristic radius of the composition fluc- 
tuations that produce the localized states.' 

It must be noted, however, that in the investigation of 
the influence of the magnetic field on the resonant tunneling 
it is also necessary to take into account the multiple nonre- 
sonant scattering by impurities, which changes the value of 
AE. This question is outside the scope of the present paper. 

We are grateful to M. I. D'yakonov, V. I. Perel', M. E. 
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