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The diffraction of wave beams in resonant anisotropic media is investigated by analyzing the 
topology of the surfaces of the wave normals corresponding to possible types of normal waves in 
the medium. A linear differential equation of nth order is derived which describes the evolution of 
the slowly varying complex amplitude of an arbitrary mode to within (A /a)", where A is the 
wavelength of the radiation and a is a characteristic transverse dimension of the beam. Anoma- 
lous diffraction angles are predicted for the region of dipole transition frequencies in crystals and 
also for magnets near the magnetoacoustic resonance, with allowance for dipole interaction and 
spatial dispersion. For a beam traversing a plane-parallel plate the range of angles of incidence is 
found in which the transmitted field is related only to the response of the exciton subsystem of the 
crystal. An analysis of self-action effects in such media leads for the complex amplitude to a 
Hirota- type nonlinear equation which is a combination of a nonlinear Schrodinger equation and 
a complex modified Korteweg-de Vries equation. 

PACS numbers: 03.40.Kf 

51. INTRODUCTION 

The problem of an approximate theoretical description 
of the diffraction of wave beams in anisotropic media has at 
present become most timely in connection with research into 
the linear and even nonlinear properties of crystals, in the 
vicinity of the absorption band, using sharply directional 
beams, as well as in view of the need of taking into account in 
this case the effects of spatial dispersion and damping. In 
optics, the anisotropy near the frequencies of dipole or qua- 
druple transitions is far from a small quantity.' The same 
holds also for the passage of acoustic beams through magne- 
tically ordered media in the region of the magnetoacoustic- 
resonance frequencies; these media have, besides natural 
elastic anisotropy, also large magnetodipole and crystallo- 
graphic a n i ~ o t r o ~ y . ~  In the investigation of diffraction in 
anisotropic media within the framework of linear theory, it 
is customary to use the known Kirchoff m e t h ~ d . ~  With an 
aim at generalizing the theory to include the case of nonlin- 
ear media, however, it is desirable to obtain not a complete 
solution in integral form, but a suitable differential equation 
whose solution would be a function obtainable in the corre- 
sponding approximation from the exact integral solution. 
Such an equation, was first obtained in the parabolic approx- 
imation in Ref. 4 for a complex envelope in the case of iso- 
tropic medium. The extensive use of this equation, especially 
in nonlinear optics, is due to the trailblazing on the 
fundamentals and applications of the method of slowly vary- 
ing amplitudes. For isotropic media, the use of this method 
in the existing form encounters considerable difficulties, for 
in this case the directions of the ray and wave vectors do not, 
generally speaking, coincide, and since the initial differential 
system of equations is itself quite cumbersome it is not al- 
ways possible to establish in the best manner a sequence of 
formal small parameters for a comparison of the field com- 
ponents and their spatial derivatives. 

A parabolic equation for a medium with the simplest 
uniaxial anisotropy was first obtained in Ref. 7. It did not 
describe, however, the obvious ellipticity that should arise 
upon propagation in an initially axisymmetric beam. This 
was achieved by another choice of the sequence of the small 
parameters in Ref. 8. Nonetheless, the unwieldy and, most 
importantly, far from obvious connection between the entire 
hierarchy of the introduced formal parameters and the only 
small parameter for the beam, A /a < 1, practically excludes 
the possibility of investigating more complicated anisotropic 
media with allowance for spatial dispersion and losses. 

In addition, even in the case of an isotropic medium, the 
usual method of obtaining the parabolic equation from the 
initial Helmholtz equation, if it is regarded as a first approxi- 
mation, does not make it possible to construct a successive 
procedure for deriving the higher-approximation equations. 
Yet this is necessary not only for finding simple quantitative 
corrections, but also when resonant anisotropic media are 
considered. It will be shown below that in the latter there 
exist such special directions for which the coefficient of the 
second derivative, and also of the nonlinear term in the cor- 
responding nonlinear Schrodinger equation, vanish. Clear- 
ly, the diffraction and self-action have in this case an anoma- 
lous character. 

We describe in this paper a method of obtaining an ap- 
proximate differential equation for the complex amplitude 
of the envelope (52) when all the expansions connected with 
the small parameter A /a are made after taking the Fourier 
transform of each normal mode in the dispersion law. The 
equation itself is obtained by taking the inverse transform of 
the dispersion relation reduced with the required accuracy. 
This approach makes it possible, in the presence of a small 
parameter, to investigate beam diffraction in any anisotropic 
medium with a known dispersion law. Bjr way of example 
(53) we consider the diffraction of a focused Gaussian beam 
in a lossy optically uniaxial crystal, obtain the beam trajec- 
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tory, whose nonrectilinearity is due to the dispersion of the 
damping, and calculate the ellipticity parameter and the se- 
paration of the foci. 

In 554 and 5 we investigate the diffraction of a planar 
beam in the vicinity of an optical dipole transition in a crys- 
tal, and also at the frequencies of magnetoacoustic resonance 
in magnets. The fundamental role of the long-range Cou- 
lomb interaction is established for the former, and of the 
magnetodipole interaction for the latter. It is shown that in 
the region of the frequencies of the longitudinal-transverse 
splitting, even without allowance for the spatial dispersion, 
this interaction leads both to a splitting of the beam and to 
the existence of a certain angular region of opacity, to ap- 
pearance of special directions of the anomalous diffraction, 
etc. In 56 are discussed effects of self-action in resonant an- 
isotropic media. It is shown that only far from resonance 
these effects are well described by the usual parabolic equa- 
tion with cubic nonlinearity.' In the vicinity of the resonance 
itself, on the other hand, owing to the competition between 
different forms of nonlinearity and the dispersion of the me- 
dium, the coefficients of this equation can vanish or reverse 
its sign. To describe these situations, a nonlinear equation of 
the Hirota type is prop~sed ,~  and a method of calculating its 
coefficients is indicated. 

52. DIFFERENTIAL EQUATION FOR THE ENVELOPE 
AMPLITUDE 

A most important characteristic of a linear medium is 
its dispersion law F (k,o), which determines the number and 
character of the normal waves. In the development and cor- 
roboration of various approximate methods of solving phys- 
ical problems, it is frequently useful to investigate the topo- 
logical properties of the function F (k,o). Fromthe viewpoint 
of the problem of the diffraction of a stationary wave beam 
(o = const), the dispersion law F(k,o) establishes the con- 
nection between the three components of the wave vector, 
two of which, for example k, and k,, can be regarded as real 
and independent. We represent the roots of the dispersion 
equation with respect to the third component in the explicit 
form - 

kiO = k F  (k,, k,, a), 2=1, N, (1) 

where the index I numbers the type of the normal waves, and 
the Z axis is chosen in accordance with the geometry of the 
problem. When considering nonequilibrium media, rela- 
tions (1) become complex. In the case of an unbounded medi- 
um, if the amplitudes of all the normal waves in the Z = 0 
plane are given, the general solution of the problem can be 
represented in terms of the Fourier integral 

The topology of any of the 2N surfaces (1) can in the 
general case be very complicated, but for a beam whose 

transverse dimensions are much larger than the radiation 
wavelength, only small sections of these surfaces play a sig- 
nificant role in the integration in (2), and we assume these to 
be sufficiently smooth and nonintersecting. The essential 
spectral amplitudes E,(k,, k,) are concentrated on the I th 
surface in the vicinity of the point k g' with an effective trans- 
verse size xlf?,, satisfying the inequality 

( 1 )  ( 1 )  
~ n r , y K k r ~  . (3) 

In the case of an unfocused beam x,,, -a,', where a , ,  are 
its characteristic transverse dimensions. 

Assume that the field structure at z = 0 causes excita- 
tion of only one normal mode in the medium. We introduce 
the radius vector x = k - k, and write down the general 
solution of (2) in the form of two factors, one of which is 
slowly varying by virtue of the inequality (3): 

E (r) =sA (r) eikor, ( S  1 =1, (4) 

where A (xxxy) is defined in analogy with (2a), the index I 
here and elsewhere will be left out. We expand the function 
x,(x,x,) in a Taylor series in the vicinity of the point 
xx = xy = 0: 

where 
1 

P n m  = 

Substitution of (6) in the integrand of (5) at a fixed Mand 
at an initial distribution A g,r]) solves the problem of deter- 
mining, with the required accuracy, A (r) at all points z#O. 

In a number of problems of the theory of optical resona- 
tors, and also of nonlinear optics, it is convenient to have in 
place of the integral solution (5) an approximate differential 
equation for the amplitude A (r). For a suitably chosen num- 
ber of terms of the expansion (6), the integral representation 
(5) makes it possible to contruct the equation 

whose Fourier transform in k-space is relation (6). Inasmuch 
as the medium is assumed to be unbounded in the x and y 
direction, and the initial distribution E(6,y) has the Fourier 
transform (2a), the boundary conditions as 1x1 and lyl-co 
can be regarded as the zero conditions for all the derivatives 
with respect tox andy. Thus, lowering the order of the initial 
system of differential equations with respect to the variable z 
to unity within the framework of the inequality (3) brings 
about the appearance in (7) of derivatives of arbitrarily high 
order with respect tox andy, and the terms corresponding to 
the sth derivative are small terms of order (x, /k, )". We note 
that similar reasoning was used in hydrodynamics to de- 
scribe with the aid of the Korteweg-de Vries equation the 
propagation of waves on shallow water,'' the propagation of 
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surface magnetostatic waves in ferromagnetic plates within 
the framework of the parabolic equation," and others. A 
suitable small parameter in these cases is the ratio of the 
layer thickness to the wavelength. Confining ourselves in (6) 
to the quadratic terms of the expansion we obtain the para- 
bolic equation 

a A -i d Z A  d A + P20 - d 2 A  
ax'z + Pzt - 

az + Pzz -= 0, (8) dx' d y' 3 y'Z 

where x' = x + PIOz and y' = y + P, ,z. The quantities PI, 
and PI, determine the inclination of the wave vector to the z 
axis, and the difference between the coefficient PZj in (8) is 
due to the different curvatures of the surface k,(k, , k,) in the 
orthogonal directions. In the simplest case of an isotropic 
medium, the Z axis can be chosen as the beam propagation 
direction (k, = k,,, = 0). Calculation of the coefficients (6a) 
shows that Eq. (7) contains only terms with even n and with 
m = 0, n: P,, = P2, = - 1/2k, P,, = P4, = - 1/8k 3, etc. 

93. DIFFRACTION OF A FOCUSED GAUSSIAN BEAM IN A 
UNIAXIAL NONEQUlLlBRlUM MEDIUM 

To describe a nonequilibrium anisotropic medium 
within the framework of linear macroscopic electrodynam- 
ics, one introduces into Maxwell's equations, b$sides the di- 
electric tensor, i, also the conductivity tensor a. The direc- 
tions of the principal axes of these tensors do not coincide in 
the general case. We confine ou r se lv~  here to consideration 
of the case in which the tensors i and a can be simultaneous- 
ly diagonalized. Choosing a Cartesian system of coordinates 
that coincides with the principal axes of these tensors we 
reduce the corresponding dispersion equation to the known 
Fresnel equation for the wave n~rrnals , '~  in which 

In the particular case of an optically uniaxial crystal 
(Ex  = Ey), the normal modes for this equation are the ordi- 
nary and extraordinary waves. Their wave surfaces in an 
equilibrium medium are respectively a sphere and a spher- 
oid: 

By virtue of the axial symmetry we can put k,, = 0 without 
loss of generality. The coefficient of the expansion of (6a) for 
the modes (lob) take in this case the form 

In an equilibrium medium (a = 0) they are simply expressed 
in terms of the angles I9 and I9 ' between the optical axis and 
the directions of the waves and ray normals: 

where E, =&,/(I -. Asin26) is the effective dielectric con- 
stant of the extraordinary wave, and A = 1 - &,/&, is the 
anisotropy factor. 

Assume in the plane Z = 0 a given linearly polarized 
field [ xz c0;~0+ y2 

E ( x ,  y )  =Eo exp - ( I f i p )  + iksox] , (12) 

that determines the contribution of a focused axisymmetric 
Gaussian beam at an angle I9 to the optical axis Z, where a is 
the beam radius, R is the curvature radius of the wave front, 
and p = ka2/2R is the phase-modulation parameter. The 
electric-field polarization vector lies in a plane containing 
the optical axis and the wave vector k; this corresponds to 
the extraordinary wave (lob). On the whole, the beam (12) 
will excite in the medium all the normal waves, but we shall 
investigate the peculiarities of its propagation taking into 
account only the preferred excitation of one of them. The 
amplitude A (x,x,), as follows from (2a), has likewise a 
Gaussian form: 

A (xsx , )  -- aEo 
4nx ,  cos 0 

where x, = 2(1 + p2)'12/a is the angular spectral halfwidth. 
Calculation of the integral (5) under the condition 
b,, = 1 + x: P ;b,22 > 0 in the parabolic approximation 
yields 

( x - x ~ )  C O S ~  e 
E ( r )  =E,  ( 2 )  exp [ - 

a: 
( l + i p x )  

where 

El ( z )  =a(asb=u,bu) -":E0, cp l  (x, z )  

ar, ,(z)=aI ( ~ - - p d , , , ) ~ + h , , l ' " ,  (16) 

~ s , , ( z ) = ~ ( ~ - ~ ~ s ,  ")--&, Y, (17) 

x,  ( z )  = ( ~ , o N - P t O ' ) ~ ,  (18) 

rx=2k. cosZ 0 I Pzof-pPzOu I ,  r,=2k, I Pzzf-pP~pff  1, (19) 
22 I f  

, ( z )  = , C,=arctg pj, Pm=hnr+iPnn.  (20) 

Thus, the curve of the maximum amplitude of the field in the 
XZ plane, a curve that determines the direction of propaga- 
tion of the energy in the beam, is described by the equation 
x = x,(z). Only in an equilibrium medium ( P  ;b = 0) is this a 
straight line inclined to the optical axis at an angle that coin- 
cides with @ '#@. The bending of the beam trajectory, due to 
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the dispersion of the relaxation, also depends, as follows 
from (1 7) and (1 8), on the beam parameters, and in particular 
on the curvature of the phase front. With the aid of (16) and 
(17) it is easy to show that at P;b = P& = 0 the angular 
spectral width of the beam is a conserved quantity: 

n 

This property of Gaussian beams, which is valid only within 
the framework of the parabolic approximation, was already 
noted in an investigation of the propagation of Gaussian 
pulses in dispersive media.I3 The space-time analogy of these 
problems is based on the use of the dispersion law w(k ) for 
pulses and of its analog ko(kx) for beams. 

As a result of the difference between the rates of spread- 
ing of the beam along orthogonal directions, two foci are 
produced in an anisotropic medium, and their separation 
depends on the angle of inclination of the beam to the optical 
axis: 

p2 er 
zlx = -- 2e."R cos 0, 

i+u2 El 

This also leads to the appearance of ellipticity in the initially. 
circular cross section of the beam. In a transparent medium 
in the absence of focusing (R-a,) ,  the maximum ellipticity 
E (z,O ) = a, /ax is reached according to ( 16) as z- co and is equal 
to E,/E,. In focused beams, e can reach much higher values. In 
particular, at z = z .  we have 

JX 

w. ANOMALOUS DIFFRACTION OF BEAM IN THE REGION OF 
DIPOLE-TRANSITION FREQUENCIES 

We consider now the peculiarities, in the vicinity of an 
electrodipolex-polarization transition, of a wave incident on 
and propagating through a crystal at an angle to the optical 
axis. The wave has the electric vector in the incidence plane. 
The pure states in the crystal are in this case the extraordin- 
ary wave and the Coulomb exciton.' Of the two independent 
components and E~~ of the dielectric tensor, only the trans- 
verse one will then be resonant: 

where the pole w2 = w& = oi + fiook2/m* determines in 
the isotropic-effective-mass approximation the dispersion 
law of the mechanical exciton,'f = 4?re2~F/&,m; e and m 
are the charge and mass of the electron, N is their number per 
unit volume, F is the oscillator strength, m* is the effective 
mass of the exciton, and E, #E ,  are the background values of 
the dielectric constants due to the contributions of the re- 
maining resonances. In analogy with (23), the pole E, (a) de- 
termines the dispersion law of the Coulomb exciton 

It follows from (24) that, without loss of generality, we can 
again consider propagation in the crystal only in the XZ 

plane (k,, = 0). For simplicity we neglect also the dissipa- 
tion. Allowance for the retardation mixes the "pure" states, 
and we shall call the new state an extraordinary polariton. 
Its dispersion law is of the form 

where w2 = c2k 2 / ~ d  and E, = E, (w-co ). It follows from 
(24) and (25) that if 8 = 0 the Coulomb exciton is trans- 
formed into a mechanical one, and if 8 = 1r/2 it is trans- 
formed into a purely longitudinal wave that does not interact 
with the electromagnetic field. To clarify the pecularities of' 
the diffraction in the interval of angles 0 < 8 < ?r/2, we pres- 
ent the relation (25) in the form (1): 

e,fZkv2 
( k 2 - k z e Z )  (kzZ-kZ:)  + k,l=O, 

m2-0,,2 ( k )  

where k, is determined by the expression (lob), 

Neglecting the spatial dispersion in the frequency region 

we have for the Coulomb excitons (27) a linear dispersion 
law, since ct > 0. It follows from this that the behavior of the 
dispersion curve, when account is taken of the retardation, is 
qualitatively different in the region (28) and outside it. We 
investigate here only the region (28). The qualitative charac- 
ter of the relation (26) is shown in Fig. 1. The dashed line 
shows the interacting branches (lob) and (27). The reverse 
course of curve 2 at large k, is due to the spatial dispersion 
effect. The independent x component of the vector k is speci- 
fied by the field incident on the crystal, on the basis of the 
equality of the tangential components of the fields on both 
sides of the boundary. The quantities k,/k, and dk,/dkx 
determined respectively the inclination angles of the wave 
and the ray vectors to the Zaxis. Thus, the multivalued char- 
acter of the function k,(kx) corresponds to splitting of the 
beam in such a medium. It can be seen from Fig. 1 that the 

FIG. 1. The function k,(k,) for extraordinary polaritons in the region of 
frequencies of longitudinal-transverse splitting (o, < o < (oi + f Z)"2); 

k, = &:"k,, k4 = ~:'~k, , ,  k5 = (2m*ti-'(0 - o,))'12, p = arctan c,, and k ,  
is defined by relation (29). 
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range of values of k, at which propagating waves exist is 
divided by points k,, k, and k, into three qualitatively differ- 
ent sections: 

a) 0 < k, < k,. When account is taken of the spatial dis- 
persion, the beam splits into three; the value 

determines the critical angle at which the directions of the 
wave vectors of the interacting waves become perpendicular 
to the optical axis. 

b) k, < k, < k, = k,~:". The only wave that propagates 
in this range of angles is the exciton wave 2. If we denote by 
E, and 8, the dielectric constant of the external medium and 
the incidence angle of the ray on the planar boundary of the 
crystal (E, > E,), then in the angle interval 

one can expect direct observation of the exciton response in 
the form of a light beam passing through the resonantly ab- 
sorbing plate. A similar observation of the exciton response 
with the aid of ultrashort pulses of laser radiation is based on 
the large differences in the group velocities of the normal 
waves, and has been now realized in a number of experimen- 
tal An alternate method of observing the re- 
sponse with the aid of light beams, as follows from the fore- 
going analysis, is possible because of the strong difference 
between the directions of the ray vectors of the normal 
waves, and seems simpler from the experimental point of 
view. 

c) k, < k, < k,. We note on this interval only the anoma- 
lous character of the diffraction at the inflection point k *, 
where a ,k,/ak = 0. In the case of a plane beam (Nay = 0) 
the corresponding differential equation for the complex am- 
plitude (7) takes the form of a linear Korteweg-de Vries 
equation 

The solution of (30) for the real and imaginary parts of the 
amplitude is expressed in terms of an Airy function. A fea- 
ture of the solution is that the intensity of the diffracted light 
is oscillatory even for smooth distributions of the envelope, 
of the Gaussian type, while the picture of the diffraction is 
asymmetric with respect to the propagation direction. 

65. PROPAGATION OF AN ACOUSTIC BEAM IN A 
FERROMAGNET UNDER CONDITIONS OF 
MAGNETOACOUSTIC RESONANCE 

We consider a ferromagnetic ellipsoid magnetized to 
saturation along the Z axis by a constant magnetic field Ho. 
We shall assume that the energy of the magnetic crystallo- 
graphic anisotropy and of the magnetoelastic interaction 
have cubic symmetry, and the edges of the cube coincide 
with the axis of the Cartesian coordinate system. The mag- 
netodipole field, neglecting retardation, is potential and is 
described by the magnetostatic potential, h = V$. With re- 
spect to the elastic properties the medium is assumed linear 

and isotropic, and we neglect the inhomogeneous exchange 
interaction. We investigate the evolution of a planar beam of 
magnetoelastic waves (a /a = 0) with an elastic-displace- 
ment vector lying in the XZ plane and making an angle 0 
with theZ axis: u = ( u sine, 0, u cose j . In this case the cou- 
pled system of equations for the components of the magneti- 
zation vector and of the elastic displacements can be repre- 
sented, within the framework of the effective-field 
formalism,' in the form 

a 
&.+ova,-a,.a,a, sin 0 - + cos 0 - u=O, ( a, ax a 1 

a* a &,-a,a,+ya, - -om, (a:-a2) sin 0 - + cos 0 
Ox ( d z  

A*=-4nMa div a, a:=l-la.iz-lu,lz, la,, ,I<i, (32) 

d + - sin 0 - + cos 0 - &a,=U, 
a z  P ax a )  

where 

a,ll=~o-~o(Nz-No)~z-HA1(a~- Iaul2)az+H~zIC'-lZ 

+alp/az, (33) 

a = M/Mo, om, = yB2/Mo, c , ,  are the respective velocities 
of the longitudinal and transverse sound,p is the density, y is 
the gyromagnetic ratio, Mo is the saturation magnetization, 
Nx,y,z are the demagnetizing factors of the ellipsoid, 
HA ,,, = 2K,,,/M0 are the effective crystallographic anisot- 
ropy fields of the first and second order, and B2 is the magne- 
toelastic constant. An expression for w, is obtained from (33) 
by the interchange of the indices, x e y ,  the dissipation effect 
in the subsystems can be included by making the transition 
a/at--d/at + 7,:. Bearing in mind the discussion of the 
self-action effects at resonance in $6, we have retained in 
(3 1)-(33) all the cubic nonlinear terms and discarded the qua- 
dratic ones. 

Forastationary beam (u, a,, -exp( - iwt ),a = const), 
after linearizing the initial system of equation and eliminat- 
ing the variables $ and a,, we obtain 

a a 
-om. (sin 0 - + oos 0 - ) A ~ = o .  

d z  dx 

The equation for u remains in the form (32) with the substitu- 
tion a, = 1. The form of (32) makes it possible to analyze 
simultaneously magnetoelastic waves with longitudinal and 
transverse elastic displacements. The cases 

a a a a 
cos0-=sine- dx dz  ' sin 0 -'=- ax cos 0 - dz 

correspond to propagation of a longitudinal elastic wave at 
an angle 8 and of a transverse elastic wave at an angle d 
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2 - 6 to the direction of the field Ho. 
It can be seen from (34) that without the magnetoelastic 

interaction (w,, = 0) the equation for a, in the frequency 
region 

0=0~<0~<0~(0%+0,)  (35) 

is of the hyperbolic type, i.e., it describes propagating waves 
with a linear dispersion law: 

Allowance for magnetoelastic interaction with a longitudi- 
nal elastic wave leads to a biquadratic dispersion law: 

(k,"k,2) (kzZ-ke2) +E,k,'k:=O, 
where 

It follows from (37) that far from resonance the curve k,(k,) 
is an ellipse with an axis ratio that determines the birefrin- 
gence. At 0' > a y  (w, + w,) and m2 < w,w,, the crystal is 
respectively acoutically positive and acoustically negative. 
In the rejection band (35) the qualitative character of the 
dependence (37) is shown in Fig. 2. The dashes show the 
continuation of curve 2 without allowance for the exchange 
interaction. Just as in Fig. 1, there exist in this case three 
angle intervals within which the character of the wave-beam 
propagation is qualitatively different. The critical values 
k * , between which there exists only one propagating ex- 
change spin wave, are 

In contrast to the situation considered in $4, in the interval 
k-  < k, < k, there exist two directions of anomalous disper- 
sion k r2 . 

It is possible to analyze in similar fashion the character 
of the interaction of a transverse elastic wave with a magnet- 

FIG. 2. The function k, (k , )  for magnetoelastic waves in magnets in the 
case of magnetoacoustic resonance ( o x m y  <m2 < my(m, + m,)), k j  = 0/ 

c,, k * is determined by relation (39), k,  is the root of the equation 
(m, + pk :) (my + q:,) - m2 = 0, and q is the exchange constant. 

ic subsystem, and on the basis of Eq. (37) also extraordinary 
polaritons in the region of quadrupole-transition frequen- 
cies. 

56. PECULIARITIES OF EFFECTS OF SELF-ACTION IN 
NONLINEAR ANISOTROPIC MEDIA 

The propagation of an intense beam with a narrow an- 
gle spectrum in a medium, whose parameters are functions 
of the field intensity will be investigated by including in the 
dispersion equation (1) the dependence on \A l 2  (Ref. 16). As- 
suming the beam to be planar, we confine ourselves to expan- 
sion of K, only in terms linear in IA 1 
x ,  (x,,  I A 1 ' )  =P10~X+P20~b+PSo~B+~i  I A I '+qzx% I A I '+. - . , 

whereq, = dk,/dlA 12, q2 = dP,ddlA 12, and the coefficients 
Pp are defined in (6a). The corresponding differential equa- 
tion takes the known Hirota form9 

i[g-- q2 ( ~ I A I ~ ~ + A ' - )  d A  dA' + P ~ ~ - ]  dSA 
3 dx' axt3 

The reconstruction of Eq. (41) from the expansion (40) is 
unique, with the exception of the last term, which gives a 
more complicated construction because (A 2A *), = 2 1A 1 
A, +A,A:. 

Usually self-action effects are investigated within the 
framework of a nonlinear Schrodinger equation 
(P,, = q, = 0). Its stability to longitudinal perturbations is 
described by the condition q,PzO < 0 (Ref. 16). Far from the 
resonances P2, = - 1/2k in this case and whether the medi- 
um focuses or defocuses the beam depends exclusively on the 
sign of q,. In the vicinity of the resonances the situation 
changes substantially, and this was shown for the first time 
theoretically and confirmed experimentally in an investiga- 
tion of the passage of acoustic pulses through an antiferro- 
magnet in the vicinity of the NMR frequency." It turned out 
that on going through resonance the sign of q, remained 
constant, and owing to the reversal of the sign of the disper- 
sion the formation of soliton took place only to the left of the 
resonance. The appearance of the nonlinear properties 
themselves in resonant media, as already noted in Refs. 18 
and 19, is also a distinguishing feature. The point is that a 
normal wave is a superposition of modes of noninteracting 
subsystems. Each of them is characterized by its own nonlin- 
ear properties whose contribution is determined by the 
weight of the given mode in the coupled wave. We shall call 
these detuning nonlinearities, emphasizing by the same to- 
ken the dependence of the unperturbed frequencies on the 
amplitude. In addition, there is also an interaction nonlin- 
earity characterized by the dependence of the coupling pa- 
rameter on the amplitude. The simplest manifestation of this 
nonlinearity is the self-induced transparency which occurs 
when a wave passes through a gas of noninteracting parti- 
c l e ~ . ~ ~  In this case the free field is described by a linear wave 
equation, and the particles are simulated by linear oscilla- 
tors. 
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The number of different nonlinearities of  the medium 

should thus be determined by the number of  independent 

parameters of  the dispersion equation (1). Their  resultant 
action, at least qualitatively, can therefore be investigated by 
introducing the dependence of  these parameters on the am- 
plitude. W e  consider, for example, Eq. (37), which is charac- 
terized by  three parameters: c, , c, , and ge. Confining our- 
selves t o  an expansion linear i n  / A  l 2  for these parameters, we 
obtain 

where 

A complete calculation of  a, and a6 can be carried out with 

the aid of relations (33) for by substituting there the 
linearized connections between u, $, and a,,: 

3 = 4 n ~ ,  (1-a.)cos 8, okZ=o, (o.+om sin' 8) 

W e  note that the ellipticity E -o,/o, is connected only with 
the dipole interaction. A giant ellipticity arises in easy-plane anti- 
ferromagnets (H,/H, - lo6), and the results of this are the ef- 
fects of exchange enhancement of the magnetoelastic interaction 
and acoustic a n h a r m ~ n i c i t y . ~ ' . ~ ~  For the same reason one should 
expect also singularities of the diffraction and self-action of acous- 
tic beams in such substances, since the coefficients a, and at are 
anomalously large for them. 

Depending on the chosen direction of propagation and on the 
frequency, as follows from (43) and (44,  the coefficients q,,, can 
reverse sign. In addition, q,,, have holes on the edges of the non- 
propagation region, defined by the relation (39). By choosing the 
direction of propagation and the frequency within the limits of the 
band (39, it is possible to achieve simulataneous vanishing of the 
coefficients P,, and q,. 

In this case the self-action of the beam is described by a com- 
plex modified Korteweg-de Vries equation. In hydrodynamics 
this equation, for a real function, is also used in those cases when 
the coefficient of the nonlinear term in the Korteweg-de Vries 
equation vanishes for some reason.23 The "unidirectivity" of this 
type of equation determines in this case, besides the asymmetry of 
the self-focusing phenomenon, also the effect of self-bending of the 
trajectory of a ray or rays, if the initial condition admits of soliton 
production. In the general case, however, Eq. (41) is a combination 
of a nonlinear Schrodinger equation and a complex modified 
Korteweg-de Vries equation, in which the role of each term is 
determined by the specified propagation direction and by the 
specified working frequency. 
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