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A mathematical apparatus is formulated for the study of polarization properties of a large class of 
two-photon coherent transition phenomena at any degeneracy multiplicity of the atomic or mo- 
lecular levels. Polarization features are investigated of two-photon optical nutation, of third- 
harmonic generation in a previously excited medium, and of two-photon echo. The possibility is 
demonstrated of determining the parameters of the two-photon interaction operator, of identify- 
ing optically forbidden transitions, and of investigating atomic relaxation by starting from the 
polarization properties of the considered coherent transition phenomena. 
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Nonlinear spectroscopy is a new trend in the physics of 
interaction of coherent radiation with matter under reso- 
nance conditions. Methods of nonstationary coherent spec- 
troscopy are being intensively developed in recent years for 
the investigation of atoms, molecules, and condensed me- 
dia. '~~ The most widely used is the method of Doppler-free 
two-photon spectroscopy .4 

Two alternate techniques have by now been proposed 
and are under development for spectroscopic research into 
two-photon (optically forbidden) atomic and molecular 
transitions. One is based on trilevel echoS and two-photon 
coherent transition phenomena (such as optical nutation6*' 
and two-photon echo8). Up to now only trilevel echo has 
been exhaustively studied theoretically, since its analysis is 
in essence based on the physical premises and analytic re- 
sults of the theory of one-photon resonance. " The reported 
theoretical investigations of coherent transition phenomena 
in two-photon resonance usually disregard the resonant-lev- 
el degeneracy that always takes place in experiments with all 
media, including condensed ones. A multiphoton vector 
model was used in Ref. 19 to consider optical nutation on 
vibrational-rotational transitions in a diatomic molecule, 
neglecting thermal motion of the molecules. The vector 
model, however, does not reflect the polarization properties 
of the coherent transition phenomena. In addition, the cal- 
culation method in Ref. 19 is restricted to two molecules. 

We construct in this paper a theory that covers a large 
class of two-photon coherent phenomena from a unified 
viewpoint. We consider an ensemble of atoms or molecules 
that move in the field of linearly or circularly polarized light 
waves under conditions of two-photon resonance with de- 
generate levels. The degeneracy is due only to the arbitrary 
orientation of the total angular momentum. The behavior of 
the resonant system is described by an equation for the den- 
sity matrix, whose solution is obtained in the approximation 
of a given field of arbitrary intensity. The expressions ob- 
tained make it possible to investigate various two-photon 
coherent transition phenomena with allowance for thermal 
motion of the atoms or molecules, for Stark shifts of resonant 
levels, for level degeneracy of arbitrary multiplicity, and for 
the polarization state of the exciting light pulses. On the 
basis of this approach we analyze in this article, for the first 

time ever, the polarization properties of two-photon optical 
nutation and consider the polarization features of third-har- 
monic generation in a pre-excited medium and of two-pho- 
ton echo. As a result, new features of these transition phe- 
nomena are observed and extend substantially the possibility 
of using these effects for the investigation of two-photon 
transitions; they yeild more spectroscopic information than 
trilevel e ~ h o . ' . ~ * ' ~  

It is established that by comparing linearly polarized 
two-photon nutation with circular-polarization optical nu- 
tation it is possible todistinguish between the Q, P (orR ), and 
0 (or S ) branches of vibrational-rotational transitions. Sim- 
ple expressions are obtained that make it possible to deter- 
mine from the period of the optical nutation the parameters 
of the operator of two-photon interaction at any multiplicity 
of the level degeneracy. It is shown that polarization investi- 
gations of third-harmonic generation and of two-photon 
echo can yield extensive information on the relaxation char- 
acteristics of two-photon transitions and energy levels whose 
number increases appreciably if elastic depolarizing atomic 
collisions are significant besides the radiative decay. 

1. CALCULATION METHOD AND BASIC RELATIONS 

Assume that the nth (n = 1,2, ...) exciting light pulse 
propagates through a medium in the Y-axis direction. The 
pulse electric-field intensity is of the form 

Here a, and p, are respectively the amplitude and phase, 
while the polarization unit vector I (p )  is equal to 1"' = l,, 
I(-'' = 2-1f2(zlx - l,), and 1"' = 2-1f2(z1x + 1,) for linear 
( p  = O), left-circular ( p = - I), and right-circular polariza- 
tion ( p  = 1) respectively, with 1, and 1, the unit vectors of 
the Cartesian axes. The carrier frequency w = kc of the wave 
(1) is at two-photon resonance 12w - w ,  I ( w  with the fre- 
quency wca = (E, - E,)/fi of some two-photon (optically 
forbidden) atomic or molecular transition between levels 
with energies E, and Ea, which are also characterized by 
total angular momenta jc and ja and by their projections v 
and m on the quantization axis. 
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The interaction of the light wave (1) with the resonant 
atoms is considered on the basis of the quantum-mechanical 
equatiop for the density matrix p: 

p= (H-End) p-p (H-Eid) , (2) 

where H is the Harniltonian of the free atom in its c.m.s., d is 
the dipole-moment operator, and v,, is the projection of the 
atom velocity v on the Y axis. We assume that the reaction of 
the atoms to the light wave (1) is small [the case (13) of an 
optically thin medium] and therefore Eq. (2) contains the 
given external field E,. The relaxation operator takes into 
account the radiative decay, the elastic and inelastic atomic 
collisions, and the pumpingZ0 

h 

w h i l ~  the quantity (rp),,. is obtained from the expression 
for ( r p ) ,  by the interchanges c + a  and v -+ m of the in- 
dices. Here p,. and p,,. are the density matrices of the 
atoms in states with energies E, and E,, respectively, N, and 
N, are the stationary densities of the atoms on these energy 
levels, f (u )  = exp( - v2/u2) is the Maxwell distri- 
bution, and u is the most probable velocity of the atom. The 
constants fiy, and fiy, are the partial widths of the levels Ec 
and E,, and are governed by the radiative decay and inelastic 
gaskinetic collisions. The real quantities f 5) [0<x<2jc) and 
r (0<x(2j4) represent the contributions of the elastic de- 
polarizing collisions and the level broadening. The complex 
quantities 

(4 
gcb"'=I'z."' +iAca , 1 jc-j.1 Gx<jc+j .  

describe the relaxation of the optical-coherence matrix p, 
of the atomic transition jc -+ j,. 

Following Ref. 12, we introduce a new matrix R con- 
nected with the density matrixp by the unitary transforma- 
tion 

R=e-iqpeiq=p-i (Qp-pQ) - . . . , 
where we have in the approximation linear in the field En 

Here ,u is the projection, on the quantization axis, of the 
angular momentum jb of the nonresonant level with energy 

The matrix element Q,, is obtained from Q, by interchang- 
ing the indices, c + a and v + m. 

In the resonance approximation, the slowly varying 
functions 

r,=RVm exp (BicD,) , rv,.=Rv,., rm,.=Rmm. 

satisfy the system of equations 

ifi - f u, - r,,, (ddt ddy) 

We sum here over the repeated indices. 
It is convenient to choose the quantization axis along 

the polarization vector (the Z axis) in the case of linear polar- 
ization and along the Y axis in the case of circular polariza- 
tion. The interaction operator takes then the simplest form 

where 

( -UX ] { ; % } (-i)Jc+Jal 
2 "*" [.'+ w u - o  -. wa.+o . h 1. 

1 ( I )  1 x l "" =c I"" [--- + - ] { . . . } (-1, .'J@, 
(2 j ,+ l ) ' "  o,b-o o,b+o j ,  1 6  Je 

and the quantities U ti and 17:' are obtained from U',; and 
17 by interchanging the indices, c -+a and v + m. The 
quantity U,,, characterizes the frequency of the two-photon 
transitions induced by the field (1) between the levels Ei and 
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E,, while U t i  and U 1') are the Stark shifts of the Zeeman 
sublevels of these levels. By dcb and d ,  we denote the re- 
duced dipole moments of the optically allowed transitions 
jc -+ jb and jb + ja (Ref. 21). The subscript b in the expres- 
sions for Z7:', IIF),  and 175) numbers all the nonresonant 
levels connected with the levels Ea and Ec by optically al- 
lowed transitions. 

Equations (3)-(5) describe two-photon resonance of the 
light wave (1) with degenerate atomic or molecular energy 
levels whose degeneracy is due only to the difference in the 
orientation of the total angular momentum of the atom or of 
the molecule relative to the fixed quantization axis. In this 
case the quantities HE), a ? ) ,  and 17:) are parameters of the 
two-photon interaction, are difficult to calculate, and must 
be determined from experiment. In a number of cases, how- 
ever, the parameters I7 :' for diatomic molecules can be ex- 
pressed in terms of the probabilities of two-photon vibra- 
tional-rotational transitions, calculated in Ref. 19. For the 
vibrational-rotational transitions in a diatomic molecule, 
without change of the total angular momentum, the results 
of Ref. 19 leads to the relation 17 E) = m Z 7  &). 

It can be seen from (3)-(5) that the level degeneracy 
complicates appreciably the initial equations and the subse- 
quent solution compared with the nondegenerate 
Nonetheless, allowance for the level degeneracy is essential 
in principle for the description of the polarization effects. It 
must be emphasized that Eqs. (3)-(5) do not reduce to the 
equations obtained in Ref. 19 for the multiphoton vector 
model, even in the simplest case of strict resonance A = 0, in 
the absence of thermal motion of the m2lecules (7 = O), and 
neglecting the irreversible relaxation (r = 0) and the linear 
polarization ( p  = 0) of the light wave (1). They can be re- 
duced if it assumed in addition that the matrices r ,  , r,,. , 
and r,,, are diagonal: 

rvm-6ym, ryyr-6yyr,  rmm*-dmrnr. 
This assumption is patently not satisfied in experiments in 
which the exciting light pulses have different polarizations, 
or in which additional static fields, say a magnetic one, are 
present. 

In investigations of coherent transition phenomena the 
durations of the exciting pulses (1) are usually shorter (much 
shorter) than the irreversible-relaxation time, and the time 
intervals between pulses are comparable with the irrevers- 
ible-relaxation time. U%der these conditions we need a solu- 
tion of Eqs. (3)-(5) at r = 0; we write this solution in the 
form 

r ( t )  =S ( t ,  to)r( t0)  S+ ( t ,  t o ) ,  (6) 

where to is a certain initial instant of time. The matrix ele- 
ments of the evolution operator S (t,t,) are obtained by solv- 
ing the corresponding differential equations that follow 
from (3)-(5). It is easy to find that 

S,,, ( t ,  to) =6,,.AnV* (t-lo) exp [-iOnv(t-to)l, 

STnrn, ( t ,  to) =6mmrAn, m+Zp(t-tO) exp [+en, m+zp(t-to) I ,  
S,,(t ,  to )  =id,, ,+,, (-l)'c-vB,,'(t--to) exp [- iOnv(t- to)  I ,  
S,, ( t ,  t o )  =is,. m+2p(- l ) 'c -vBnv( t - to )  esp  [-iOnv(t-to) I ,  

Qnv (t-to) q- Anv Qnv (t-to) Anv( t - to )  = cos 
2 

+ i  - sin 
Qnv 2 '  

Unv . Qnv(t-to) B,, ( t - to )  = - sin (u,t"'+un:"12,) , o n , =  
Q," 2 2ii a 

The solution of Eqs. (3)-(5) at? #O, in the time intervals 
between the pulses (I), can be easily found by expanding in 
periodic tensor  operator^.^^^^' 

Resonant interaction with the atoms outside the light 
wave (1) induces in the medium an electric field E that can be 
obtained by starting from the d'Alambert equation 

The polarization P of the medium can be represented in the 
form 

P= Jsp ( p d )  dv- 5 Sp ( R D )  dv, (8) 

in which 

D=e-iQdeiQsd-i (Qd-dQ) . 

The matrix elements of the spherical component D, of the 
vector (9) are given by the expressions 

and (D,),,, is obtained from (D,),, by letting c -+ a and 
v + m .  

Expressions (7), (8), and (lo) can be used also to deter- 
mine the Raman scattering of a test wave 

Eo=l(P'ao(t-y/c) exp ( - iQo)  +c.c., ~ o = o o t - k o y + c p o  

in a pre-excited medium. In this case it is necessary to re- 
placea,, @, , andZ7(;), in (10) by a,(t - y/c), @,, and Z7(;',o, 
respectively. 

Expressions (6), (8), (lo), and (1 1) are necessary for the 
investigation of arbitrary transition phenomena in two-pho- 
ton resonance with transitions between levels that are degen- 
erate in the projections of the total angular momenta. They 
make it possible to analyze the polarization properties of 
these phenomena as functions of the degeneracy multiplicity 
of the resonant levels, of the type of transition, and of the 
polarization state of the exciting light waves. 
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2. OPTICAL NUTATION 

If a powerful light pulse in the form of a step 

E1=l(P'al exp [i(ky-ot-cp1)] +c.c., o ~ t - ~ l ~ ,  
(12) 

is incident on the entrance ( y = 0) into a two-photon excit- 
ing medium, a phenomenon known as optical nutation takes 
place, wherein the alternating processes of absorption and 
induced emission cause the amplitude of the pulse to oscil- 
late near its leading front. For a distinct observation of the 
effect it is necessary that the leading-front growth time be 
short compared with the period of the optical nutation. In 
addition, to prevent violation of the condition that the inter- 
action with the medium be coherent, the irreversible-relaxa- 
tion time must be long compared with the nutation period. 
We thereere assume below that there is no irreversible re- 
laxation, r = 0. 

Let the length L of the resonant medium be such that 

In this case the intensity of the electric field due to the re- 
emission of photons by the resonant atoms is small com- 
pared with (12) and is obtained with the aid of Eqs. (6) and (7). 
Ultimately, after the pulse (12) leaves the medium, its inten- 
sity time-averaged over the period 21r/o of the fast oscilla- 
tion is of the form 

(14) 
where the amplitude ~ ' ( t  ) of the nutation oscillations (14) is 
given for linear ( p  = O), left-circular ( p  = - I), and right- 
circular ( p  = 1) polarization of the pulse (12) by the expres- 
sion 

fc  
sin Qd 

~ ' ( t ) = - E o ~  d-I u~,.I j dvf(v)-, 
Q,v 

In the absence of thermal motion of the atoms, when 

at strict resonance A = 0 with the vibrational-rotational 
transition in a diatomic molecule (l7 t' = ml7 &') and for 
linear polarization ( p  = 0) of the optical nutation, Eq. (15) 
coincides with the result of Ref. 19. In the indicated region 
(16) the character of the optical nutation differs substantially 
from optical nutation on single-photon  transition^.^^*^^ In 

particular, under certain conditions19 it becomes possible to 
observe undamped nutations, and in some cases the response 
of the system is reminiscent of random noise.I9 

We consider now nutation in a region where the ther- 
mal motion of the atoms cannot be neglected. This is precise- 
ly the situation at optical and infrared frequencies: 

In the region (17), the period of the nutation oscillations 
(unlike in Ref. 19) is independent of the Stark shifts of the 
levels 17:) and l7?', but is determined entirely by the field 
broadening a:17t1/#. This circumstance can serve as a ba- 
sis for an experimental determination of the indicated quan- 
tity. 

Computer calculations" show that in the case of the 
optically forbidden transitions j, + j,, which are character- 
ized by large numerical values of the angular momenta, j, > 1 
and j, > 1, the period of the optical nutation is well described 
by the quantity 27r/L!,,,, where 

= max I UIvI. 

For each of the transitions j c* j + 2, j c* j + 1, and j + j, 
the quantity indicated is different, depending on the polar- 
i z a t i on~  of the light wave: 

a) for the transitions j c* j + 2( j> 1) 

b) for the transitions j c* j + l (  j> 1) 

c) for the transition j + j( j> 1) 

The circumstance noted should make it possible in practice 
to determine the parameters l7t)and 17F10f the two-photon 
interaction operator by starting from the experimentally ob- 
tained value of the period of the optical nutation. In addi- 
tion, by investigating experimentally the change of the nuta- 
tional oscillations when the linear polarization of the pulse 
(12) is replaced by circular, we can distinguish between the 
optically forbidden transitions j tr j + 2, j + j + 1, and 
j -+ j. Thus, in the case o f j  c* j + 2 transitions with j> 1 the 
period of the linearly polarized nutation is double the period 
of the nutational oscillations with circular polarization and 
furthermore the latter attenuate more rapidly (Fig. I). Opti- 
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FIG. 1. Two-photon optical nutation near the leading edge of a rectangu- 
lar exciting pulse in the region (17) for large values of the angular momenta 
of the resonant levels. Cases of the quantum transitionsj tt j + 2 (curves 1 
and 2) and j c j + 1 (curves 3 and 4). Curves 1 and 3 describe nutation 
with linear polarization, and curves 2 and 4 with circular polarizations. 
The abscissas and the ordinates are respectively 2kut and (a"Zo,Z17,/ 
2kuti2)(~'(t )/&,,). It is assumed that a, 'n  15'/2ku# = 0.1, A = 0. 

cal nutation on the transitions j t+ j + 1 (j, 1) with linear tional-rotational transitions in a diatomic molecule, when 
and circular polarizations attenuates approximately at the IT!' = m17&', the period of the linearly polarized nutation 
same rate, whereas the period of the nutation with linear is half the period of the nutation with circular polarization. 
polarization exceeds that with circular polarization by 1.3 If IT!' = IT&', the periods of nutation with circular and lin- 
times. The laws of optical nutation on the transition j + j are ear polarizations are approximately equal (Fig. 2). The regu- 
less universal, since they are determined also by the relation larities indicated can serve as a basis for a method of identify- 
between the quantities n!' and IT&'. For example, for vibra- ing two-photon (optically forbidden) atomic and molecular 

i 0.6 

0. B 

0.2 

0 

V - 
FIG. 2. Transition j --+ j. Curves 1 and 2 correspond to the case 
IIEl= If:). Curves 2 and 3 describe optical nutation on the vibrational- 
rotational transition in a diatomic molecule (when I7:' = mnf?).  All 
the value of the parameters are the same as in Fig. 1. 

-11.6 

. 'rVv 
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transitions. 

3. THIRD-HARMONIC GENERATION 

When the high-power linearly polarized pulse (12) pro- 
pagates through a two-photon absorbing medium, optical 
nutation is accompanied also by generation of electromag- 
netic radiation at the f r e q u e n ~ y ' ~ ~ ~ ~ - * '  313 (third-harmonic 
generation). This radiation is linearly polarized in the same 
plane as the exciting pulse. We shall consider third-harmon- 
ic generation in a medium taken beforehand out of equilibri- 
um by a two-photon interaction with a perturbing pulse 

E,=l,a, exp [ i (ky-at-cp,) ]  + c.c., O<t-y/c<z,.  (18) 

Then the pulse 

E2=12a2 exp [i ( k y - a t - q 2 ) ]  +c.c., r i + t < t -  y l c ~ z l + z 2 +  z ,  

(19) 
which propagates in the medium at a time rafter the passage 
of the perturbing pulse (18), generates radiation whose elec- 
tric field intensity is 

E,=e, ( t - y / c )  exp [i(3ky-3ot-3rp,)] +c.c., 

~ , t ~ d t - y / c < t , + ~ z + t ,  
(20) 

where 

e, ( t )  =-eo3 J d s f ( u )  ( 1 , ~ ~ + 2 ~ ~ 1 ~ ~ - , ) ,  (21) 

c -  ( ( J  J c  Ax - . ' ) l B ~ v ( ~ i )  IZ7 
v -v 0 

.x(- 1 )  3a-'nA2,* ( t ' )  Bzv ( t ' )  exp [ i  (Omt-02") t' 1, 

X (-1)k-vA2Y' ( t ' )  Bz ,  ( t ' )  exp [i (02,,,-OZv) t' 1, 

Here r1 and 7, are the durations of the pulses (1 8) and (1 9), $ 
is an arbitrary angle between the polarization vectors 

1, = 1, cos $ + 1, sin $ and 1, = 1, of these pulses, d ;q. @I ) is 
the Wigner D function D iq. (a,  P, y) at a = y = 0 (Ref. 21), 
and the remaining quantities are defined in Sec. 1. 

Expressions (20) and (21) were obtained under the as- 
sumption that the durations of the pulses (18) and (19) are 
small compared with the irreversible-relaxation time, and 
the time interval r between the pulses is long compared with 
r1 and 7, as well as with the time To = 1/2ku of the Doppler 
dephasing of the emitters. In addition, it is assumed that the 
level Ec is not populated: Nc = 0. 

The third-harmonic amplitude (21) contains the relaxa- 
tion parameters yb") and y't) with even x and with x = 0. 
These parameters describe the relaxations of the population, 
of the alignment, and of the other multipole moments of the 
resonant levels.20 If the time interval r is longer than the 
irreversible-relaxation time, the third-harmonic polariza- 
tion plane coincides with the polarization plane of the excit- 
ing pulse (19). If r does not exceed the irreversible-relaxation 
time, the parametric frequency transformation takes place 
with strongly inhomogeneous population of the Zeeman 
sublevels of both the upper and lower levels. Under these 
conditions the linearly polarized wave (19), which is an as- 
sembly of equal numbers of left- and right-polarized pho- 
tons, generates unequal numbers of left- and right-polarized 
photons of frequency 3w. As a result, at $#O the polariza- 
tion of the third harmonic becomes elliptic: a component (20) 
appears in a direction (X axis) perpendicular to the plane of 
polarization of the exciting pulse (19). This makes it also 
possible, by measuring the damping (with changing r) of the 
third-harmonic intensity along the x projection of the elec- 
tric field intensity (20), to investigate the relaxation of the 
alignment and of the other multipole moments of the levels 
Ea and Ec . 

We shall illustrate the foregoing using as an example an 
atomic transition with change of total angular momentum 
jc = 5/2 + j ,  = 1/2. If the angle $ between the planes of 
polarization of the momenta (18) and (29) are chosen to sa- 
tisfy the condition cos $ = (3/7)'12, i.e., d 4- ,,($) = 0, the 
projection of theamplitude (21) on theXaxis attenuates with 
increasing T like 

exp ( -y . ( ' )z) ,  

so that it is possible to determine the rate +:)of the relaxation 
of the alignment of the level Ec. The same quantity, but at 
cos $#(3/7)'/2, $#0, and $#n-/2, varies like 

F ( ~ )  A ( c )  2 ( 2 )  
2 2 - 1  z d- , .  (9) exp ( -1 ,  T )  + ~ : : 1 , ~ : ~ ' d ' , ,  ($) exp ( -y? ' z ) ,  

where y':) is known. This law enables us to determine 9:' in 
experiment. 

We note that an investigation of the damping of the 
third-harmonic intensity on the Z axis makes it possible to 
determine from (21) the relaxation rates do) and yr' of the 
populations of the levels Ea and Ec. In this case, however, 
the reduction of the experimental results becomes somewhat 
more complicated. It is important to emphasize that in the 
general case of arbitrary angular momenta of the levels, Eq. 
(21) makes it possible, in principle, to determine the con- 
stants y?) and y(,"' with even x and x = 0 from experimental 
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investigations of the damping of the intensity of the third 
harmonic (20) as a function of T for different values of the 
angle $. 

4. PHOTON ECHO 

In contrast to optical echo at one-photon resonance (see 
the the propagation of two ultrashort resonant 
pulses (18) and (19) in a two-photon absorbing medium does 
not lead under ordinary conditions to the onset of an echo 
phenomenon, inasmuch as in this case the single-photon 
transition is forbidden in the dipole approximation. To ob- 
serve a photon-echo signal it is necessary to illuminate the 
excited medium by nonresonant radiation 

Eo=l,ao exp [i(koy-mot-qo)] +c.c., (22) 

or apply external static fields. In this case a photon echo is 
produced at the instant of time t = 27 both at the Stokes 
frequency ws = w, - 2w and at the anti-Stokes frequency 
w,, = 0, + 2w (we assume for the sake of argument that 
w,>2w). This process is usually considered within the 
framework of the two-photon vector m ~ d e l . ' ~ . ' ~ . ' ~  This 
model, however, cannot describe the photon echo if the ex- 
citing pulses and the nonresonant extraneous illumination 
are differently polarized. The solution of the problem is 
based here on Eqs. (6),  (8), and (10) above. By using them it is 
easy to obtain the intensities E, and E,, of the photon-echo 
electric field at both the Stokes and the anti-Stokes frequen- 
cies when the sounding wave (22) is scattered in a medium 
excited by pulses (18) and (19) with polarization vectors 

1,=1, cos q,+i, sin 9, and 1,=1, cos $2+1, sin 41~. 
Leaving out the intermediate calculations, we write down 
the photon-echo electric-field intensity 

E, .,=e., ., (t-y/c) exp [ r i ( k ,  .,y-o., .,t-q,, .,)I +c.c., 

(23) 
where the upper and lower signs correspond to the Stokes 
and anti-Stokes frequencies, w,,, = ck,,,, p,,, = p, 
+ 2(p, - +,), and the photon-echo amplitudes are given 

by the expressions 

s.,., ( t )  jdsf(v) (~,w:.'"+~'~~I,w?:"! 

x exp [-i(q-A) (t-t,) I, (24) 

The photon-echo signals (23) occur near an instant of 
time t = t,. With increasing T, they attenuate as a result of 
irreversible relaxation. In contrast to the results of the pre- 
ceding section, this damping is due only to the relaxation 
constants #,",I and A 5) with even x and x = 0 and 1; these 
constants describe the relaxation of the optical-coherence 
matrix of the optically forbidden transition j,-t j, as a result 
of radiative decay and of the elastic depolarizing atomic 
collisions. The photo-echo damping law (23) varies with the 
values of $, and $,. It makes it possible to estimate the relax- 
ation constants yg) and A :) with even x and x = 0 from the 
measured damping of the photon echo as a function of T at 
the different values of the angles $, and $,. The possibility of 
using the general formula (24) for the investigation of the 
relaxation can be illustrated with the simple example of the 
atomic transition jc = 3 --+ ja = 1. 

If we put $, = 0 and cos$, = (3/7)'12, the projection of 
the amplitude (24) on the X axis in the case ja = 1 and jc = 3 
depends on T in the following manner: 

exp (-2y2' Z) . 
A comparison of this dependence with the experimental one 
makes it possible to determine #2. On the other hand, at 
$, = Oand cos$, = 1/14 the projection of the amplitude (24) 
on the Z axis attenuates with changing T like 

exp [- (r,?' +y:' ) Z-i (A:;' -A::' ) z] . 
This damping law makes it possible to determine 7'2. The 
quantity A - A can be measured by investigating the 
damping of the echo intensity as a function of T at 
$, = $, = 0; this damping is determined by the factor 

exp(-4yZht' z)  {I+a, cos[ (A:'' -A:' )z+a21 

~ e x p  (yzrr) +as exp (21242) 1, 

where $2 and y2,4 = #2 - y': are known in accordance with 
the foregoing, while the quantities a , ,  a,, and a, do not de- 
pend on T and follow from the general formula (24). 

5. DISCUSSION OF RESULTS 

The main difference between the present paper and the 
known researches is that account is taken of the degeneracy 
of the resonance levels and of the polarization state of the 
exciting pulses. In the case of optical nutation with linear 
and circular polarizations, we were able to establish a defi- 
nite dependence of the period of the nutation oscillations on 
the parameters of the two-photon-operator interaction and 
on the type of the optically forbidden transition. Undoubted 
interest attaches to the use of the observed regularities in 
practice, with an aim at investigating optically forbidden 
transitions and determining the parameters of the two-pho- 
ton-interaction operator. Notice must be taken, however, of 
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the following. It is not desirable to investigate optical nuta- 
tion with an aim of obtaining spectroscopic information by 
the method of Stark pulses, for in this case there occurs a 
complicated transition process which constitutes in the best 
case a superposition of nutation oscillations and a decay of 
free induction, in analogy with the phenomena occurring in 
single-photon resonance." It seems advisable to set up ex- 
periments on two-photon nutations using the recently pro- 
posedz9 method, already experimentally realized for one- 
photon re~onance,~' of producing optical nutation by 
shifting the phase of the light wave. In this case, as shown by 
calculations, all the regularities of optical nutations formu- 
lated in the present article remain in force near the leading 
edge of a rectangular exciting pulse. Optical nutation was 
excited in an experiment7 by using a pulse of a standing wave 
in whose field the thermal motion of the atoms is insignifi- 
cant, so that the regularities obtained do not hold. 

Attention must be called to the promise offered by the 
use of third-harmonic generation in spectroscopy. Usually 
generation of harmonics is regarded as a means of obtaining 
intense coherent radiation in the short-wave region of the 
spectrum. Ls.24-27 Yet in the study of ordinary echo effects, 
where the resonant medium is excited by two and more ul- 
trashort pulses, definite interest attaches to the investigation 
of parametric conversion of the frequency of the second ex- 
citing pulse, since it makes it possible to determine the quan- 
tum-state relaxation times which are determined both by 
radiative decay and by elastic depolarizing atomic collisions. 
The polarization features of third-harmonic generation by 
the second pulse can then be used to separate the third-har- 
monic signal from the exciting pulses. To this end we need 
counterpropagation of the first pulse 

El=(l, cos $+I, sin $)al exp[-i(ky+ot+cpl)] +c.c., 

and of the second pulse (19). The third-harmonic electric- 
field intensity is described in this case as before by expres- 
sions (20) and (21), from which it can be seen that at $#O the 
projection of the third harmonic on the X axis is completely 
separated from the exciting pulses (25) and ( 19). 

We emphasize in conclusion that the mathematical for- 
malism developed in the article [Eqs. (6), (8), (lo), and (1 l)] 
can be used also to study the polarization peculiarities of 
coherent transition phenomena in two-photon resonance of 
two light waves traveling in the same direction and having 
frequencies w, and o2 satisfying the condition 
o, + 02zo , .  The equations obtained can cover also the 
case of nonstationary SRS, when w, - w, zw, . In the case 
of two-photon resonance w, + w 2 z  o, the components of 
the waves making up the two-frequency exciting wave pulse 

must be of like polarization, while in Raman resonance 
w, - o2 =: w, these waves should have either like linear or 
unlike circular polarizations. All that changes in all the indi- 
cated cases are then the expressions for lZ k), 17 ?I, and l'Z ',"I. 
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