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It is demonstrated that the line of the de Almeida-Thouless singularity is identical with the line of 
the phase transition from a state of collinear ferromagnetism to the asperomagnetic state. 
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1. INTRODUCTION 

It was shown re~entlyl-~ that in the molecular-field ap- 
proximation, in magnets with competing ferromagnetic and 
antiferromagnetic interaction and with continuous symme- 
try group, a phase transition is possible from the state of 
collinear ferromagnetism into the asperomagnetic state. The 
authors of Refs. 2 and 3 state that on the phase diagram there 
exists a region in which the asperomagnetic state is stable to 
the de Almeida-Thouless (hereafter AT) s ing~lar i ty .~ ,~  With 
further change of temperature (or of the external magnetic 
field) an AT singularity arises and there are thus, two phase- 
transition lines on the phase diagram. This situation seems 
quite strange. The point is that the asperomagnetic state is in 
a certain sense a mixed state-a ferromagnet in a direction 
longitudinal relative to the external magnetic field or the 
spontaneous moment, and very ordinary spin glass in the 
transverse direction. 

On the other hand, it is known at present that spin 
glasses are not stable to the AT singularity and there are 
therefore no spin glasses characterized by only one Ed- 
wards-Anderson (hereafter EA) ~a rame te r ,~  at least in the 
molecular-field approximation. It might seem therefore that 
in the case of a phase transition into the asperomagnetic state 
the situation should be the same and that the statement made 
in Refs. 2 and 3, that a region exists in which there is spin 
glass describable only by the EA parameter, is thus wrong. 
This is precisely the result obtained in the present paper. We 
note that this question has already been discussed in Ref. 7. 
However, the authors of that reference had in essence split 
the longitudinal and transverse configuration fluctuations 
and thus, reduced the problem literally to the question of 
transverse spin glass. In fact, as we shall show below, there is 
generally speaking no such splitting, i.e., the problem does 
not reduce to a combination of a longitudinal ferromagnet 
and transverse spin glass. Therefore the problem was in fact 
not solved in Ref. 7. 

The present paper is devoted to a detailed study of the 
stability of the asperomagnetic state to the AT singularity. 
Since the problem is difficult to visualize in the general case, 
we consider here only a two-component classical spin and 
assume that (J ) = 0 (J is a random exchange interaction). 
We assume here that there exists an external magnetic field 
and it is this which produces the magnetization in the sys- 
tem. It turns out that for our case there are four eigenvalues 
A, that determine the stability of the system (see Refs. 4 and 

5). If at least one A, is negative, then the system is unstable. 
We have three eigenvalues that are positive ami one that is 
negative and is of the order of& - - q, 2, where q, is the EA 
parameter in the transverse direction. 

Thus, the asperomagnetic state, just as any spin glass, is 
unstable to the AT singularity. 

2. BASIC EQUATIONS 

We consider the case of a vector spin glass in an external 
magnetic field. The Hamiltonian is 

where S is the classical p-component spin, h is the external 
magnetic field, and Jik is a random exchange integral with 
Gaussian distribution and random mean value. 

The molecular-field equations for such a system can be 
easily derived in the same manner as was done for Ising spin 
glass in Ref. 8. They take the following form 

1 
qo=<m,Z>., qP = - (m$),, 

p - l  

h (4Zoqo)" 
z --+ xtt zp= 

(Uoq,) " 
I -  T T * XP, 

S,= (Sn)  n, Sp=S--S,, n=h/h, x,= (xn)n, xP=x-XI, 
- 

Equations (2) were written for four quantities, q,,, and 
G,,,, which are connected by a single relation. There are 
therefore three independent variables, which can be conve- 
niently chosen to be q,, q,, and D. These equations contain, 
as usual8, two types of averaging--over the temperature at a 
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fixed local dimensionless molecular field z,  + z, = z and 
over the local molecular field-longitudinal z, and trans- 
verse z,. The vectors x, and S, in (2) are one-dimensional 
and act in a subspace parallel to the external magnetic field, 
while the vectors xp and Sp are ( p - 1)-dimensional and act 
in a subspace orthogonal to the external field. 

It is easy to show that, at high, temperatures qp and 
consequently also mp are equal to zero and Eq. (2) become 
much simpler. The temperature at which a nonzero qp ap- 
pears is given by 

This is in fact the temperature of the phase transition into the 
asperomagnetic state. 

The AT singularity can be obtained in the following 
manner. Let 

where the averaging over T and x is carried o ~ t  just as in (2). 
Let pi be the eigenvalues of the operator T. Then all pi 
should satisfy the condition 

h,=l--410CrJT>0, (5) 

and the system is then stable. If (5) is not satisfied for at least 
one eigenvalue A,, the system is unstable. This is in fact the 
AT instability. The criterion (5) is obtained obviously with 
the aid of summation of the ladder diagrams 

.. 

(6) 
( E )  T8"=6as6,a. 

h 

The matrix K is, as is well known, one of the generalized 
susceptibilities and its becoming infinite means approach to 
a certain phase-transition line. It is known (see, e.g., Ref. 9) 
that this is a phase transition into a state with degeneracy. If 
the criterion (5) is satisfied, this means that there is no degen- 
eracy and the system can be described simply by the EA 
parameter. If, however, the criterion (5) is not satisfied, this 
is evidence of the presence of degeneracy, which at the pres- 
ent time nobody can describe. 

3. STUDY OF THE AT SINGULARITY 

As seen from (4), to study the AT singularity it is neces- 
sary first to calculate the correlators ma and Ga8 for the 
single-node Hamiltonian Ho written out in (2). The Hamil- 
tonian Ho contains preferred vectors z, and z,. If we intro- 
duce the single-node partition function 

Z= 1 dSe-WT6 (S2-pa.),  (7) 

it can be easily shown that Z(z )  is a function of only the 
moduli of the vectors z, and zp. It can then be readily shown 
that the correlators Ga8 and ma take the following form 

- .  

amp am, G I = - = -  Zt ZP 

ni=z,' I&,=-. az, azp ZP 

I t  can be seen from (8) that the local-magnetization vector m 
does not necessarily have to be directed along the vector 
z = z, + zp . Furthermore, G, is obviously a longitudinal 
correlator with respect to a direction singled out by the ex- 
ternal magnetic field. We note that the unit vector n, can 
differ in sign from the vector n, but the quadratic combina- 
tion n ,, n, is obviously equal to n, n8. Further, in ( p - 1)- 
dimensional subspace orthogonal to the external-magnetic- 
field vector there is also a preferred vector z,, therefore this 
subspace contains two correlators-longitudinal G, and 
transverse G,. Finally, there is an interference correlator G4, 
which entangles both subspaces. If G, were equal to zero, the 
problem could be fully split into longitudinal and transverse 
problems and reduce to the problem of Ref. 7. But G, #O and 
allowance for it yields, as we shall see, the same order in q, as 
the other terms. 

If we average Ga8 over X, we obtain 

<Ga~)x=Gonan~-Gp(6a~-nans), 
(9) 

A 

Obviously, Go and G, are precisely those correlators which 
were defined in (2). It is interesting to note that G4 has 
dropped out of (9). 

We note now that atp = 2 the term with G, dropsout of 
(8) as a result of the orthogonality condition 

Physically this is quite understandable, since at p = 2 the 
( p - 1)-dimensional space is one-dimensional and there ex- 
ists no transverse correlator G, in this space. 

In the general case of arbitrary p, the expression for T $ 
is quite cumbersome and its analysis is difficult. We consider 
therefore only the casep = 2. If we direct the first axis along 
the external magnetic field and the second perpendicular to 
it, we find the following simple expressions for the matrix 
elements T;fi  

The remaining matrix elements are equal to zero. From this 
we oitain directly the following four eigenvalues of the ma- 
trix T: 

pi,z=(GtG,>x*(G,2>x, 
(12) 

ps, r=1/2{<GiZ>x+<G~)~f [((G12)x-(G~)x)2+ 4(G:)2] '). 

As we shall see below, at small q we have (Gd2) - q, , 
and the remaining quantities are finite. We therefore obtain 
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tained from (2). It is of the following form: 

It is easily seen that only p, can be of interest to us. 
Indeed, above the phase-transition point, where G4 = 0. We 
have 

On the other hand, a tp  = 2 we have from (8) and (10) in this 
region, recognizing that n,, n, , = n,n,, 

G ~ B =  (6 ,~-n~n~)  Gg+n,~~(;~. (15) 

Since z, is zero in this region, there is only one singled-out 
vector h, and G, is the transverse susceptibility while G, is 
the longitudinal one. On the other hand, the transverse sus- 
ceptibility exceeds the longitudinal one, i.e., 

G,>Gs, 
(G,2>,> (GIGs)x>(G32)x. (16) 

Since, ascan be easily understood, G, coincides in this region 
with G, from (3), it is clear that the critical mode is A,, and 
for all the remaining Ai  near Tc we have 

We therefore need consider just A, near Tc. To this end it is 
. necessary to solve the system of equations (2), find go, g,, and 

D, and calculatep, in (13). It is of course impossible to carry 
out this program in explicit form. It turns out, however, that 
this is not necessary. The answer can be obtained by studying 
all these quantities in implicit form. It is perfectly clear that 
thecritical variable is q, . We therefore consider the equation 
for q,, assuming go and D to be parameters that depend, of 
course, on the temperature. We consider the equation for q, 
in implicit form. To this end we expand the logarithm of the 
single-node partition function introduced in (7), as well as its 
derivatives with respect to 2, ': 

where a, b, c, and d are functions ofz: , q,, D, and the remain- 
ing parameters of the problem. The primes in (18) denote 
differentiation with respect toz , . It can be seen from (18) that 
(G,'), -9,. The equation for q, at p = 2 can be easily ob- 

(19) 
In the derivation of (19) we have used the fact that z, in (2) 
depends only on x,, and the Gaussian distribution function 
with respect to x breaks up into distribution functions with 
respect to x, and x,. We have therefore averaged over x, in 
(19), and the averaging over x ,  remained. A similar proce- 
dure can be used also when averaging in (1 3). We then obtain, 
using Eq. (19) 

Equation (20) is the final answer. It can be seen from (1 8) 
that the conditions (16) denote that at T ) T , ,  where z, = 0, 

Obviously, this relation remains valid near T,. It is then seen 
from (20) that 

This is precisely the result we wanted to obtain. It  can be seen 
from (20) that if we discard the second term in the curly 
brackets we obtain exactly the same answer as for a single- 
component spin glass. This answer agrees with the result of 
Ref. (7). The second term, however, is generally speaking not 
small compared with the first, except for the case when the 
external field is weak. In the latter case this term can be 
shown to be proportional to (h /T)'. We note that this term, 
which describes the coupling of the longitudinal and trans- 
verse configuration fluctuations, increases tke negative con- 
tribution to A,. This means that the interaction of the longi- 
tudinal and transverse fluctuations strengthens the AT 
singularity and apparently leads in final analysis to a stron- 
ger degeneracy than would obtain without this interaction. 
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