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The Berezinskii method is used to study nonstationary phenomena that occur in a one-dimension- 
al chain with random probabilities of intersite hopping when an electric field is turned on. The 
asymptotic behavior of the currentj(t ) as t - + ~  depends substantially on the field strength. In the 
case of weak field, the asymptotic behavior is governed by carrier relaxation near the cluster 
boundaries, and in strong fields the main contribution is made by hops over large-size clusters. 
The results are generalized to include the quasi-one-dimensional case. 

PACS numbers: 72.20.Dp, 72.20.J~ 

It is known that in a one-dimensional system an elec- 
tron is localized independently of the degree of disorder, so 
that its motion along such a system consists of hops at finite 
temperatures.' In the case of deep Anderson localization, 
the probabilities of hopping between neighboring localized 
states are in turn random quantities. 

Hopping conduction in the presence of disorder is the 
subject of an extensive literature (see, e.g. the reviews2-' and 
their cited references). Various methods were used to ana- 
lyze this problem: the cluster approximation, the effective- 
medium method, the percolation method, and others, but all 
are based on various a priori unproven assumptions. Com- 
parison with the results of the present paper will show that 
the use of such assumptions is not always valid. 

It should be noted that in a chain in which the probabili- 
ties of the intersite hops has a large scatter the dc conductiv- 
ity is zero, so that actual interest attaches to the study of 
nonstationary conduction in such systems. We consider in 
fact the time dependence of the current j(t ) produced by an 
instantaneous application of a dc electric field E .  Concrete 
results are obtained for two disorder models: a chain of sites 
with randomly distributed breaks, and a chain of sites with 
random coordinates. 

An effective method of investigating one-dimensional 
disordered systems is the use of the Berezinskii diagram 
technique,' a variant of which as applied to the problem of 
hopping conduction was recently proposed by one of us.6 
This method yields exact equations for the Green's functions 
of the disordered chain. These equations will be investigated 
in the present paper for the case of the aforementioned two 
types of disorder. 

1. THE MODEL. BASIC EQUATIONS 

We consider an electron whose motion along a one-di- 
mensional chain is by hopping from site to site. The probabil- 
ity of finding the electron on site number n at the instant of 
time t, P, (t ), satisfies the balance equation 

dPn/dt=w+ (n -1 )  Pn-,+w- (n)Pn+,-  [w+ ( n )  +w- (n-1)] P,, 

(1.1) 
where w * (n) denotes the random quantities-probabilities 
of hops respectively between the sites n and n + 1: from left 
to right and from right to left. It is assumed that the system is 

an electric field E, so that 

where coordinate r, of the nth site is also generally speaking 
a random quantity. 

The distribution w(n) of random quantities is deter- 
mined by the character of the disorder in the system. We 
shall consider two types of disorder, and in both cases w(n) 
are independent random quantities for different n. 

I. The broken chain model. Here w(n) takes on values 0 
to w with respective probabilities c and 1 - c. The distance 
between all neighboring sites are equal, r, + , - r, = a. 

2. Model of randomly distributed sites. Here w(n) is a 
function of the distance between sites, w(n) = w(r, + , - r,), 

w ( r )  =v exp ( -2p-IF)  ; (1.3) 
where r is assumed to have a Poisson distribution: 

P ( r )  =F-' exp (-r /F).  (1.4) 
In these formulas Tis the average distance between neighbor- 
ing sites, T/ f i  is the electron-localization radius, and v is a 
quantity of the order of the phonon frequency. 

It is convenient to express the physical quantities in 
terms of averaged Green's functions (GF). We define the G F  
in the site approximation in the following manner: 

Dnnl ( t )  =(Dnn, ( t )  >, (1.5) 

where a,, is the solution of Eq. (1.1) with initial condition - 
D,,. (0) = S,,. , and the angle brackets denote averaging over 
the realizations of the random quantities. We shall need also 
the G F  in the coordinate representation, whose Fourier 
transform is given by 

After changing over into the Laplace representation 
with respect to time, the current j(s) in the system, where s is 
the Laplace variable, is expressed in terms of G (9,s) as fol- 
lows: 

j ( s )  =enis dGt 1 
where n is the electron density. 
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FIG. 1 .  Example of diagram for the Green's function D,,. . The 
vertex types are shown with the corresponding multipliers. The 
dashed sections break up the diagram into blocks corresponding to 
R,(n), L,, (n'), and K,.,, - , (n1,n); in this example m' = 2 = m. 

For a regular lattice, the G F  has the standard form l-Z- m'-m n(mr-m) w:~,  ( n )  = (-) (5) w:.., (1.12) 
" dk e i k ( n - n ' )  z+-1 Z -  

D:,,. (s) = J - 
2n s+w+ (I-e-") +w- (I-eik)  ' 

-X w : " : = Z  ~~~b.t"-"(l+f*)"-~(l+f+)m-*(-f+)"-f+)k+m~-m; 

It can be easily seen that in the site representation D,,, can be 
represented as a product of two factors pertaining to the sites 
n and n'. The Berezinskii method1 can therefore be used to 
analyze this problem. The details of the method itself can be 
found in Berezinskil's original paper and in Gogolin's re- 
view.* 

A characteristic feature of the method is the use of dia- 
grams ordered along the chain. The diagram for the G F  D,,. 
is a line going from n' to n, on which, as is done in the cross 
technique, a definite number of vertices localized on the 
bonds is placed; the vertices localized on one bond are joined 
into a bundle (Fig. 1). Each such diagram can be broken up 
into three factors that contain respectively vertices lying to 
the right ofsites n and n', to their left, and between them. For 
the sum of the diagrams of the right, left, and central parts, at 
a definite number of pairs of incoming and outgoing lines, we 
can obtain the following equations (for details see Ref. 6): 

L. ( n )  =jz w:., ( n )  (n-11, (1.9) 
m ' 

Rdm (n', n )  =j vim,, ( n )  Ern,.,, (n'. n-1)  at n>n'; 
m' ' (1.10) 

(1.15) 
the transition matrices with index I are obtained by making 
the substitutionsz+ttz- and f-t-,f+. The quantitiesz,, z- 
and f,, f, are connected respectively with the parameters 
of the chosen zeroth approximation (ordered chain with 
hopping probabilities b+ and b- to the right and to the left, 
respectively) and with the fluctuations about this approxi- 
mation, u * (n) = w + (n) - lo, , in the following manner: 

f+ differs from f, by the substitutions z+++z_- '  and - 
u + t t u  -. Going from R, , L, , and K,., to their generating 
functions: 

OD 

z -1 mn 

R ( z )  = R.Z'". Rm= (2) (:) R m b )  ; (1-18) 
m-0 

1-2- 

(1.1 1) - 0s z+-1 m ( n + i )  

Here Rm(n) [Lm(n)] is the sum of all the diagrams in which L ( Z )  = Lmzm. Lm= (=) (5) L,,,(n) ; (1.19) 
the vertices lie to the right [left) of the site n + 1 and have m m - ~  - ~ .  
pairs of lines in the section passing through this site. In the K ( z J ,  z; n f ,  n )  = ~ . , ~ ( n ' ,  n )  Z ' ~ ' P ,  
diagrams for k,., (nl,n) the vertices lie between the sites 1 1 1 8 1 4 1  

n' + 1 and n + 1, the numbers of line pairs in the corre- n t n - t n ' ( n ' + i ~  

sponding sections are m' and m, and furthermore they con- 
tain each one more line directed from the site n' + 1 to the 
site n + 1. The symbola denotes averaging over the realiza- z if n>nl J 

( X znv -" ,  m r m  n', n )  tions of all the random quantities located on its right. i f  n<n' 
The expressions for the transition matrices W k,. (n) 

and V L,. (n) are6 and transforming the latter as follows: 

175 Sov. Phys. JETP 57 ( I ) ,  January 1983 V. N. Prigodin and A. N. Sarnukhin 175 



1 1 2,-z- 
K (z', z ;  n', n) = --- 

1-2' I-z z- 

(1.21) the Green's functions D (k ) will be expressed in terms of the 
functions introduced above in the following manner: 

D ( k )  =D+ ( k )  +D- (-k)  -Do,,, (1.32) 

and introducing new variables x' and x: The equations for the functions Q,,(x,k ) are of the form 

wherex is connected withzin similar fashion with the substi- (1.35) 
tution z+t*z--', we arrive at the following equations for Similarly, the GF G (q) can be represented in the form 
@,,/ and K: 

G(Q)  =G+ (9)  +G-(-q) -Do,, (1.36) 
( I - X )  [I+ ( I - X )  @ , I  ( x )  

W z  1 x ax 5 x-1 
(1.25) G.(P)=- 2nis 5 v[@l . l  X-1) (-) x- 1 

rr.l(x9 9 1 ,  
- im 

(1-5) F (x', x; n', n)  (1.37) 
W- x S , n ,  n - )  a n>nl, where the generating functions Q,,(x,q) of the central part 
w+ I-x w+ satisfy the following equations: 

(1-x) F (x', x; n', n )  

These equations should be supplemented by conditions that 
follow from the obvious requirements R,  = Lo = 1 and 
K,,, (n,n) = S,., : 

F (x', x; n', n )  = 
1 

(x'-I) (x-11-1 * 

It is convenient to combine the function F with @, at 
n)n' and with @, at n < n', by introducing the functions Q,,,: 

Expanding expressions ( 1.36)-( 1.38) in powers of q and 
substituting in Eq. (1.7) for the current, we obtain 

( x )  [or (5) -el +B.(x) [ @ I  (2) -s]}l 

1-1 x 

(1.39) 

where the functions B,,, (x) are defined as follows: 

rr, (x, q) =A,, ( X I  -iqB,, I ( x )  +. . . ( 1.40) 

and must be sought by solving the System of equations 
1 x' dx' 5' x'-I 

2n i 
Q ( ' 1 -  [ ( )  - 7 1  ( I - X )  A.,[ ( x )  -$Ar (:= -, 

- i m  11.4 1) 

F (x', x; n', n)  , 

the equations for which will be similar to (1.26), and the 
-1--- . =$rAr,l ( w, 1-2 w, 

( 1.42) 

initial condition (1.28) must be replaced by 

Qr. (5; n, n)  =or, I ( x )  . (1.30) 2. CHAIN WITH BROKEN BONDS 

After changing to the Fourier representation with respect to In this model, the broken bonds make a zero contribu- 
the site numbers tion to the right-hand sides of Eqs. (1.25), (1.41), and (1.42), 
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so that these equations take the form 

where 0 = eEa/2kT.  The corresponding equations for the 
functions with index r are obtained by substituting 6- - 6. 
Making the following substitutions: 

hz+p x = -  P-x z = - -  
z+l  ' 2-a ' (2.4)  

3, (2)  A,  ( x )  = 7 ( 1 + ~ )  + 
( 1 -p )  

' ( I - ' )  . (I+.) ,  (2.6) 
( A - P )  ( c -p )  

BI ( I )  = - h(I-PIC 
( I - F )  ( X - F )  ( c - F ) ~  

. ( l + z ) ,  (2.7)  

where we have introduced the parameters 

h=l-e-e/u,  p=l-e-'u, 
(2.8)  

u=r+ ( ? - I )  %, r=ch O + S / ~ W ,  

we can reduce (2.1)-(2.3) to the form 

a, ( z )  =b  ( I - C )  &l ( b z )  +C 
1 -  1 -  1 

A -  l+bz ' (2.9)  

1-c a, (z) +(az+p)  5r ( z )  = - A (  ( b z ) ,  (2.10) 
1-P 

where b = ( 1  - A ) / ( I  - p).  Equations (2.9)-(2.11) can be 
solved by applying to both sides the Mellin transformation - 

Substituting (2.15)-(2.17) in (1.39) we get after lengthy but 
straightforward calculations an expression for the Laplace 
transform of the current 

f ( u )  =c" I-c) (u-u-') 
U-2n  2 n=O { [ I -  ( I - c )  u-'" [ I -  ( I - c )  U - ~ " - ' J  

where jo = 2ena sinh6 is the current in the unbroken chain. 
Taking the inverse Laplace transform we obtain 

It can be seen from (2.19) that the set of singularities of the 
function f (u) is a family of poles that condense on approach- 
ing the unit circle. At (1  - c)ee < 1 all the poles are inside the 
unit circle so that the asymptotic form ofj(t ) as t-+w is 

j ( t ) - jo  exp [-2wt(ch 0 - I ) ] .  (2.21) 

At ( 1  - c)es > 1 one of the families of the poles off (u) goes 
inside the unit circle and then, taking into account only the 
poles farthest to the right, we obtain for the asymptotic form 
ofj(t 

0 
Equations (2.21)  and (2.22) offer evidence that the 

as a result of which we obtain for the Mellin transforms of asymptotic form ofj(t ) as t - tm depends substantially on the 
the corresponding functions field strength. The behavior of j(t ) determined by the func- 

n ( 1 )  ( 1 )  b-" tion a ( w )  takes place only in the region of not too large t. For 
SIN (q) = .- C 

a -p  ' I -  ( I : c ) ~ I - n  ' 
(2.12) a more detailed consideration of this question we turn to the sin nq 

case of low density of broken pairs, cg 1 .  Under this assump- 
h@iN (q+1)  + p @ l N ( q )  atM ( 1 1 )  = - (2.13) tion Eqs. (2.18)-(2.20) takes the form 

I -  ( I - c )  b-"1 ( i - p )  ' 
7 ( ~ ) = j a q  (u') /wc', (2.23) 

( I -C)  b-"1 ( I - p )  
B'"(q)= [ 1 - ( l - c ) b - v ( ~ - C ) ] 2  [ k S l M ( q f l ) + ~ ~ , "  I .  

(2.141 

After taking the inverse Mellin transforms, the expressions 
(2.12)-(2.14) go over into 

S, ( z )  =c (2.15) 
k- u 

1 l -u  -* ( T + F ) ] ] 7  

177 Sov. Phys. JETP 57 (I), January 1983 V. N. Prigodin and A. N. Samukhin 177 



Here v = 8 /c, u2 = u2 + s/wc2, and T = wc2t, and $ is the 
digamma function. The function p(q) has the following sin- 
gularities: a cut going from 0 to - m and poles due to the 
digamma functions. If v < 1 the poles are located on the sec- 
ond sheet. Closing the integration contour on the right, we 
have only the contribution from the cut - xdx xx I-tchnvx 
j ( t )  =2j.e-@' 5 , e"" cth - . . (2.26) 

(l+v x ) 2 chnx+chnvz 

This integral is calculated at T> 1 by the saddle-point meth- 
od, after which we obtain 

wherex, = [27/41 - v) 1 'I3. It can be noted that as v 4  the 
asymptotic form ofj(t ) has an unusual behavior: 

The reason is that as w 4  the function a(@) has an essential 
singularity, a(w) a exp( - l/o1lZ), 

At v > 1 the pole singularities p(q) go over to the first 
sheet, and as t-, oo we have 

4(v-1)' 
1 0 )  -10 expt- (2v-l) r ] ,  

which corresponds to the behavior described by Eq. (2.22). 

3. MODEL WITH RANDOM SITE DISTRIBUTION 

The exact solution of Eqs. (1.25) and (1.26) in the case of 
the distribution (1.3), (1.4) is a complicated mathematical 
problem even in a zero field.6 Allowance for the field aggra- 
vates the difficulties, and we therefore restrict ourselves to 
calculation of the exponent of the first power of the asymp- 

a 

tote ofj(s) as s+O. We determine the corresponding coeffi- 
cient only in the case of a weak field. 

Recognizing that for a regular chain the solution of Eqs. 
(1.25) and (1.26) is in the form of a pole, we seek the solution 
of (1.25) in the form 

Substituting (3.1) in (1.25) and taking into account the nor- 
malization condition (1.27), which now takes the form 

f f 1  (Y)dY=l, 
0 

we obtain for the pole distribution density&( y) the equation 

where 8 = eEr/2kT. In the derivation of (3.2) we have made 
the substitution x+ - x/(l - x). We note that at s = 0 this 
equation has a nonzero solution, so that the asymptotic ex- 
pansion off,( y) as s 4  begins with the zeroth order ins. The 
corresponding term of the expansion can be calculated for an 
arbitrary field. We indicate here only that in the weak-field 
limit the solution of Eq. (3.2) takes at s = 0 the form 

f,(y) =6(y-2p), p=eEF/2kT. (3.3) 

We turn now to the equations for the central part with 
the index I. Substituting A, in the form 

in (1.41), we obtain for a,( y) the equation 

Multiplying the latter by xv - ' and integrating with respect to x from 0 to a, we have 

iiY(7,)-(i-2~7,) [au(rl+l)+aM(rl) I 

I 
where aM(q) is the Mellin transform of a(  y), and by ii(q) is We put q = 0 in (3.6); the left-hand side of the equation 
denoted the following integral transformation of a( y): is then identically zero. Recognizing that f,(l) = 1, we can - y q-1 conclude that the expansion of a( y) as s 4  begins with a 

a (q)=  J ~ Y ~ ( Y )  (F) . 
0 Y 

(3.7) term of the form 

The functions a,( y) and ii( y) are connected by the relations a (y, s) =a (y) s-'/(~~-"'. (3.8) 
m 

r(2-q) Wenote that the derivation of (3.8) above is based actually on 
-5(q+k), a ~ ( q ) = x  k-o (-l)y'(k+l) r(2-i-k) the condition of integrability, at infinity, of the second iter- 

rn action of (3.5). 
(2-7,) aM (q-k k) . 

r(q)=.~I ' (k+l)I ' (2-q-k)  
Similar arguments forb, ( y,s) lead to the conclusion that 

A=O its asymptotic form as s+O is 
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bl (y, s) =bl (y) (3.9) 
In the weak-field limit b,( y) is equal to 

bl(y) =Fa (y-2p). 

We turn now to the equation for the function @,(x).  The 
corresponding equation for the distribution function of the 
poles off,(y) differs from (3.2) in that 0-t - 9. After this 
substitution, however, Eq. (3.2) has at s = 0 only a zero solu- 
tion. This means that the second term in (3.2) must be taken 
into account on a par with the first. To this end it is necessary 
to carry out the scale transformation y-+sy. In other words, 
the asymptotic form of @,(x) as s-+O is 

where h ( y) satisfy in the limit as s - tO  the equation 

In the Mellin representation, the last equation takes the form 

It follows from (3.12) that h,(v) has only pole singularities 
located on the real axis, and the singularity farthest to the 
left is located at 7 = qc, where vc = 1 + 142 B - p). Conse- 
quently, the function h ( y) decreases exponentially [like 
exp( - l/y)] at zero and in power fashion at infinity: 

The explicit form of h ( y) in the case of weak field is given in 
the Appendix. 

It is possible to establish in similar form the asymptotic 
behavior of A, and B,. It can be noted, however, that the 
most diverging among the functions with index I are B,, 
therefore the main contribution to the asymptotic form ofj(s) 
is made by the first term in (1.39). Substituting (3.9) and 
(3.10) in (1.39), we have 

The last integral in (3.14) diverges ass-&. Taking (3.13) into 
account, we obtain ultimately 

j (s) =lo (p) s - ' / ( (@-~ ) ,  (3.15) 

where j,(p) is calculated in the Appendix for the case of a 
weak field and is equal to 

From (3.15) we conclude that the current falls off with time 
in power-law fashion 

j ( t )  = jo  (p) t - ( t - ' / ( z B - ~ ) ) .  (3.17) 
We note that the presence of an electric-field threshold fol- 
lows from (3.15). 

4. CONCLUSION 

We have obtained the general expressions (1.25), (1.39), 
(1.41), and (1.42), which make it possible to determine the 
kinetic characteristics of a large class of disordered systems 
whose behavior is described by an equation of the type (1.1). 
The method itself can be generalized also for a larger class of 
one-dimensional systems with disorder. 

The results obtained in Secs. 2 and 3 indicate that the 
hopping conductivity of one-dimensional system is nonlin- 
ear. The behavior ofj(t ) conforms to the relation 40) only at 
s~nall t; thus, in the broken-bond model, at 
t(t, = P(C - 0 )/0 ' (at 8< 1 and c( 1) [see (2.7)]. The asymp- 
totic form of j(t ) as t--t oc , as can be seen from (2.2 I), (2.22), 
and (3.17), is not connected with the character of the a(@) 
dependence even in the weakest fields. In this sense any field 
is strong in the systems considered. 

We present now a physical interpretation of the results. 
When an electric field is turned on the carrier distribution, 
which is equally probable over all the sites of a given cluster, 
begins to go over into a new Boltzman~ distribution. In the 
course of this redistribution, a carrier current sets in and 
relaxes with a characteristic time t- (w, + w- - w)-'. 
This can be easily verified using as an example the problem 
with two sites, into which our problem is changed as c e l .  
The carriers located initially at the start of the cluster should 
then move through the cluster. 

Depending on the strength of the field, two regimes can 
be distinguished in the behavior ofj(t ) as t * ~ .  In the weak- 
field regime the main contribution to the current stems pre- 
cisely from the processes that spread out the carriers, and the 
j(t ) dependence is described by Eq. (2.21). It is clear that in 
this case calculation ofj(s) from the formula j(s) = a(s)E /s is 
incorrect at small s, since this formula does not take the 
spreading into account. 

In the strong field regime, the main contribution to the 
current comes from the carrier drift over the clusters along 
the field. In this case a contribution toj(t ) at the instant t will 
be made only by clusters having a dimension I much larger 
than w +t. The statistical weight of such clusters is 

Consequently the current decreases like exp( - w+tc), in 
agreement with (2.22). 

In the model with randomly distributed sites the carrier 
will continue to move over the field at a certain finite t, and 
only at t--t w will it reach a bond where w + 4 .  Thereforej(t ) 
is here not an exponential but a power-law function, with the 
exponent depending on the field strength. 
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Using the results of Ref. 6, we can indicate times5start- 
ing with which the power-law behavior mentioned above 
sets in. In the case of weak fields, 2/3 - p> 1 (it assumed that 
8% 1) we have:=: v - ' e x p ( ~  - p). ~t times shorter than:, j(t ) 
will fall off more slowly than l/t, according to Ref. 6, by a 
logarithmic factor. Near the threshold field value 
(W -p - 141) 

At t<? one can expect in this case j(t ) to fall off like lAn2t. 
Recognizing that v- 1013 sec-I and 8 2  10, can become 
quite appreciable. 

As seen from (3.15), in fields in which a finite dc conduc- 
tivity appears above a certain threshold, the threshold field 
is 

Fields below the threshold correspond to a finite value ( I /  
w,). In real systems such a situation can be realized only in 
fields on the order of intra-atomic. 

One can attempt to generalize the results to include the 
case of quasi-one-dimensional systems. Allowance for hop- 
ping from a string to a string leads, in the effective-medium 
approximation, to the substitution s+s + w, in the formulas 
obtained for the one-dimensional chain. Here w, is the prob- 
ability of hopping from string to string: 

wL=v exp (-2p,r,) -K w,. (4.2) 
In this case j(t ) has a finite limit as t+ co , corresponding in 
weak fields to a( + iw,). For the broken-bonds model 

for the model of randomly distributed sites 
( 2 ~ - 1 ) / ( 2 e . + l )  

kT C ( a ) .  (4.4) 

The results can be used to interpret the experimental 
data on quasi-one-dimensional compounds such as 
QN(TCNQ), (Ref. 7), and also on charge transport along 
linear  dislocation^,^ where the considered type of hopping 
conduction is possibly realized. 

The authors thank V. V. Bryksin and Yu. A. Firsov for 
a discussion of the work. 

APPENDIX 

In the case of a weak field we put 
hns(,-,) = (+)  '1-n""-a' x ( q ) .  (A.1) 

According to (3.12), in the limit p - 4  we have for x (17) 

where a = 1 - 1/2 8. In (A.2) we took into account also the 
first term of the expansion in s, Y = s/(~,u)(~ - ")/(I - 

We write next ,y (7) in the form 

and from (A.2) we obtain the following equation for g(t ): 

We note that g(t ) and h ( y) are connected by a Laplace trans- 
formation. 

An asymptotic solution of (A.4) can be obtained by us- 
ing boundary-layer t h e ~ r y . ~  At sufficiently large t the solu- 
tion is obtained by direct interaction of Eq. (A.4) with respect 
to v: 

This expression is applicable at t%vl/". 
To obtain the solutions in the region of small t we make 

the change of variable t = vp, after which (A.4) takes the 
form 

Integrating (A.6) with respect to the small parameter v' -" 
we obtain 

The region of validity of (A.7) is bounded by the condition 
p > l  or t sv .  Matching together (A.5) and (A.7) we can write 
an asymptotic equation that is suitable everywhere 

(OD 

g ( t )  = exp - r(a)  J dq  e-dv[ ( q + t ) - .  - p-.]. [ I-a 
0 (A.8) 

This result leads to two conclusions. The first is that the 
function h ( y, p) as p+O can asymptotically represented in 
the form 

The second is that the asymptotic form (3.13) is valid at 
y(s - ". Consequently the integral in (3.14) can be calculated 
using the asymptotic relation (3.13), and its value as s-4 is 

1 yh  ( y )  d y  = - pi/"-"' s-a. 
u 

'V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 65, 1251 (1973) [Sov. Phys. JETP 
38, 620 (1974)l. 

'A. A. Gogoiin, Preprint University of Helsinki, 1981. 
'H. Bottger and V. V. Bryksin, Phys. Stat. Sol. (b) 78, 9, 415 (1976). 
4S. Alexander, J. Bernasconi, W. R. Schneider, and R. Orbach, Rev. Mod. 
Phys. 53, 175 (1981). 
'B. I. Shklovskii and A. A. ~ f r o s ,  Usp. Fiz. Nauk 117,401 (1975). [Sov. 
Phys. Usp. 18, 845 (1975)l. 
6V. N. Prigodin, J. Phys. C, 16, 12 (1983). 
'G. Griiner, Bull. Am. Phys. Soc. 25,255 (1980). 
'Yu. A. Osip'yants, V. I. Tal'yanskii, and S. A. Shevchenko, Zh. Eksp. 
Teor. Fiz. 72, 1543 (1977) [Sov. Phys. JETP 45, 810 (1977)l. 

9J. D. Cole, Perturbation Methods in Applied Mathematics, Xerox Col- 
lege, 1968. 

180 Sov. Phys. JETP 57 (I),  January 1983 

Translated by J. G. Adashko 

V. N. Prigodin and A. N. Samukhin 180 


