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The influence of an extraneous current and of dissipation on the dynamics of a bion in a long 
Josephson junction is considered. The system is described by a perturbed sine-Gordon equation. 
Equations are obtained for the bion parameters in first-order perturbation theory. It is shown that 
a constant extraneous current and dissipation can alter substantially the dynamics of the bion. If 
the extraneous current exceeds a certain critical value, for which an equation is obtained, the bion 
breaks up into a soliton and an antisolition. In the opposite case, the bion amplitude attenuates 
exponentially and its velocity tends to a certain limiting value that is comparable with albeit 
smaller than the initial value. 

PACS numbers: 74.50. + r 

1. INTRODUCTION 

Wave processes in long Josephson junctions (lines) are 
described by a perturbed sine-Gordon (SG) equation 

vfi-u,+sin v = e R [ v ] ,  (1-1) 

where v = 27r0 ( x,t )/00 is the magnetic flux normalized to 
the value of the magnetic-flux quantum 0, = hc/2e, while x 
and t are the dimensionless coordinates and time normalized 
as in Ref. 1. The right-hand side of (1.1) is the perturbing 
term. In this case it is the sum of the extraneous current and 
of terms that describe the dissipative effects. We shall as- 
sume the right-hand side to be small, as indicated by the 
parameter E X  1 in (1.1). The concrete expansion for ER used 
in this paper will be presented below. 

Important solutions of the SG equation are solitons 
v  (x ,  t )  =40 arctg exp[ (x-  V t )  ( 1 -  V z )  -'"I, 

where a describes the polarity of the soliton, a = +_ 1 (soli- 
ton,antisoliton). In the theory of Josephson junctions they 
are frequently called fluxons, since they can be regarded as 
elementary excitations of the magnetic flux. The dynamics 
of fluxons is being diligently investigated at the present time 
(see, e.g., the review'). 

As shown by Fulton and Dynes,' the characteristic fea- 
tures of the current-voltage characteristic and of the spec- 
trum of the microwave radiation of a long Josephson junc- 
tion can be explained in most natural fashion by starting 
from the concept of solitons oscillating between the ends of 
the junction. This was followed by a number of other papers 
offering evidence that solitons in Josephson junctions are 
experimentally observable objects. Major practical applica- 
tions were predicted for this group of questions (see, e.g., 
Refs. 3 and 4 and the literature cited therein). In Ref. 4 were 
experimentally investigated multisoliton systems in long 
junctions. One of the most interesting observed effects was 
the "bunching" of the solitons of like polarity a, wherein a 
system of soliton is produced with constant distances 
between them. This effect was noted earlier in analog and 
numerical experiments (see, e.g., Refs. 5-9). Its theory, pro- 
posed in Refs. 10 and 11, points to the important role of the 
extraneous current and of dissipation in the formation of 
bunched systems. Indeed, it is known that solitons of like 

polarity, which satisfy the unperturbed SG equation, always 
repel each other. However, as shown in Refs. 10 and 11, it 
suffices to take in Eq. (1.1) the right-hand side in the form 

~ R [ v ] = - f - a v ~ ,  (1.2) 

where f is the dimensionless density of the extraneous cur- 
rent (f = const), and a is a dissipative coefficient propor- 
tional to the transverse electric conductivity of the junction, 
to arrive at an effect wherein a quasistationary state is estab- 
lished even at small f and a, such that the distance between 
solitons of like polarity increases so slowly that its change is 
not noticeable in experiment, and it is this which explains the 
bunching. This is evidence of the importance of taking into 
account even small perturbations in Eq. (1.1) when the ex- 
perimental facts are interpreted. 

In the present paper we consider the effect of perturba- 
tions on a bion, which at E = 0 is a second localized solution 
of the SG equation1 

v ( x ,  t )  =-4 arctg (+=),  
~ = e  ( t )  - ( d v )  VZ, Z= (v/I G I )  [ I - x o  ( t )  ] (1-Vz)-",  (1.4) 

In contrast to a soliton, a bion has besides a velocity V, also a 
natural-pulsation frequency dB /dt. At small q/v ,  at definite 
time intervals, the solution (1.3) can be approximately repre- 
sented as a superposition of two oppositely polarized soli- 
tons which overlap little and are attracted to each other, 
forming a bound system in the absence of perturbation. The 
presence of a perturbation can, on the contrary, cause decay 
of the bion into a soliton and an antisoliton or else lead to 
other effects. An approximate criterion of bion decay under 
the influence of perturbations (1.2) was obtained in a note by 
one of us12 on the basis of the quasiparticle model of the bion, 
where the motion of the soliton and antisoliton is described 
by the equations of mechanics. This model is applicable 
when the bion can be regarded for the greater part of the time 
as a system of two weakly coupled overlapping solitons, so 
that the attraction between them is small enough (?;l/v(l). 
The present paper is devoted to an investigation of the be- 
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havior of bions at arbitrary v/v ,  acted upon by the perturba- 
tion (1.2), at constant f and a. The latter are assumed to be 
small and we use perturbation theory. Without loss of gener- 
ality we can assume that f > 0. 

Various problems of perturbation theory for Eq. (1.1) 
were considered in a number of papers. In particular, in 
Refs. 13-16 they investigated the influence of perturbations 
on a bion. These papers, however, leave open many ques- 
tions and are frequently contradictory. It is difficult to cope 
with these contradictions, inasmuch as different procedures 
are used and the bulk of the intermediate calculations have 
been left out as too cumbersome. In addition, the results 
obtained in this case are pattently not complete enough for 
comparison with experiment. 

We consider it therefore advisable to review the ques- 
tion of the influence of perturbations on a bion from a unified 
point of view, developing further the basic equations to a 
degree of completion such that it becomes possible to de- 
scribe sufficiently fully the evolution of the bion at least in 
the case (1.2), taking into account the basic factors in the 
Josephson junction. The paper is organized in the following 
manner. 

The basic equations of first-order perturbation theory 
for Eq. (1.1) and their concrete versions for the case (1.2) are 
described in Sec. 2, where a comparison is also made with 
equations obtained in other papers. 

The perturbation-theory equations are investigated and 
solved in Sec. 3. It follows from the obtained solutions, in 
particular, that iff exceeds a certain critical value f,, , the 
bion breaks up into a soliton and an antisoliton. Formulas 
are obtained forf,, in terms of the parameters of the unper- 
turbed bion (at f = 0) both for "instantaneous" and for slow 
switching on of the extraneous current (at a = 0). These re- 
sults given quantitative criteria for the decay and refine the 
qualitative results of Ref. 12. 

We next investigate in detail the evolution of the bion at 
f = const( f <f,,) and a #O. It turns out that in first order the 
quantity f does not influence the average parameters of the 
bion, and their damping law is determined only by the quan- 
tity a, with the bion velocity V (t ) tending as t+ oc not to zero 
[if V(0) # 01, but to a certain finite value V ( oc ) is comparable 
with V(0) but smaller. All these results together with 
allowance for the influence of the boundaries of the junction, 
considered in Ref. 12, present a complete picture of the evo- 
lution of the bion both at f <f,, and at f >f,, . They admit of 
experimental verification with the aid, e.g., of methods based 
on the analysis of the emission spectra of long Josephson 
junctions, used in Ref. 4. 

2. INITIAL EQUATIONS 

We start with a perturbation theory based on the meth- 
od of the inverse scattering problem, or more accurately on 
that variant of the problem which uses the formalism of vari- 
ational derivatives" and which seems to us the simplest. As 
applied to the perturbed SG equation it takes the following 
form. 

We set up in correspondence with Eq. (1.1) an eigenva- 
lue problem of the form 

idY /dx=O(x,  t ;  h )  Y ,  (2-1) 
where 

A/2- (8h) -' cos v i (8h) -' sin v- (v,+vt) /4 
- i  (8h) -' sin v- (v,+v,) /4  -A/2+ (8h) -' cos v 

(2.2) 
is a matrix, A (t ) is the eigenvalue, Y ( x,tJ ) = ( Yl,Y2 V,) is a 
two-dimensional vector function that satisfies the usual 
quantum-mechanics conditions. 

The matrix U is the same as for the unperturbed SG 
equation." The difference, however, lies in the fact that in 
our case v( x,t ) satisfies Eq. (1.1). Since t is regarded in (2.1) as 
a parameter, those properties of Eq. (2.1) which are not con- 
nected with the time dependence are the same as in the case 
of the unperturbed SG equation if, of course, V satisifes the 
same boundary conditions 

V ( X ,  t )+2nn ( I x ~ + o J ,  n=O, =ti,. . .). (2.3) 

Obviously, these conditions can be imposed only if R [v] van- 
ishes as Ixl+co. It must be noted, however, that (1.2) does 
not satisfy this condition iff is constant. This difficulty can 
be avoided by assuming first that f = 0 outside a sufficiently 
large interval - L < x < L, and then letting L+ a .  Bearing 
in mind the foregoing stipulations, we now cite from Ref. 18 
the main properties of the spectrum and of the eigenfunc- 
tions of the problem (2. I), which will be used hereafter.' The 
continuous spectrum of Eq. (2.1) fill the entire real axis, and 
the discrete one consists of only complex A. The eigenvalues 
of the continuous spectrum are doubly degenerate, and those 
of the discrete one are nondegenerate. It is useful to recall in 
this connection that if Y ( xJ ) satisfies (2. l), then - 
Y = ( Y :, - Y: ) also satisfies the same equation but corre- 
sponds to an eigenvalue A *. Finally, we consider the Jost 
functions F ( xJ ) and G ( x,A ), defining them as eigenvalues 
of the problem (2.1) that satisfy at realA the boundary condi- 
tions 

F+ (0, l) exp[i (h-1/4h) 1/21 ( x + m ) ,  
(2.4) 

(here and elsewhere t is not included among the arguments so 
long as it is unimportant). These functions at real A are con- 
nected by the relations 

G=A (h)F+ B ( A )  F, F=-A (h)G+B' jh) G. (2.5) 

The functions F and G are analytically continued into 
the upper half-plane of2 and have no singularities there. The 
same can be said of the coefficient A (A ), which is connected 
with the components F and G by the relation 

A ( A )  =GIF,-G2FI. (2.6) 

For the eigenvalues of the discrete spectrum, which are 
located in the upper A half-plane and are designated 
A, (n = 1,2, ...), the following relations hold: 

A ( A n )  =O, G (x, hn) =BnF (2, A n ) .  (2.7) 

The aggregate of the Jost coefficients A and B,  as well as 
the quantities A, and B, , are called the scattering data. 

We proceed now to equations that describe the depen- 
dence of the scattering data on the time, starting from the 
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following considerations. Equation (2.1) determines all the 
scattering data as certain functionals of v and v, . Let Y[v,v,] 
by any of these functionals. Its dependence on the time is 
then given by - 

d.P/dt= 5 [ v, ( x )  62?/6v ( x )  +u,, ( x )  6 9 / 6 u ,  ( x )  ] dx, 
-m 

where SY/Sv( x) ,  etc. are the variational derivatives at the 
point x. Substituting v,, from (1.1) we obtain 

m 

G'/dt= ( d p i d t )  .+e 5 R[V  ( x )  ]6.P/6vf ( x )  dx, (2.8) 
- m 

where 
ca 

(d.P/dt) .= 5 [ u, ( r )  6 P / 6 u  ( r )  + (vZx- sin u )  6P/6u f  ( x )  ] dx. 
- m 

(2.9) 
The quantity (dY/dt  ),is in turn a functional of v and u, , and 
this functional is determined only by the concrete form of Y 
and by Eq. (2. I), which is the same for the perturbed and 
unperturbed SG equations. Therefore ( d Z / d t  ), as a func- 
tional of v and v, has the same form as for the SG equation. 
This can also be verified with the aid of direct calculations, 
by transforming (2.9) into 

( d z l d t )  o={y?, %I, (2.10) 

where Z is the Hamiltonian of the unperturbed SG equa- 
tion: 

and { Y , X ]  are functional Poisson brackets.18 The latter 
can be expressed in terms of the canonical variables of the 
unperturbed problem, from which it follows, in particular, 
that (dY/dt  ), is the same functional of the canonical varia- 
bles as at E = 0. 

Applying (2.8) to the scattering data and using the 
known expressions for their derivatives with respect to time 
in the case of the unperturbed SG equation, which can be 
found, e.g., in Ref. 18, we obtain 

dBJdt=ih (h.) B.+e R [  v ( 2 )  1 6Bnl6v1(x) ax, 

m 

ad ( t ;  A)/at=e R I U ( X )  ]6A/8ut(x)dr,  

where h (A ) = A  + (41 ) - I .  

Using next the corresponding equations from (1 8), with 
the necessary change of notation, we have for the discrete 
spectrum 

fih,/6ut ( x )  =-iB, (4-4,')-'[Fzz(x, hn) -FiZ(x,  An)],  (2.14) 

6B,/6ut (x) =iB,(4Ant)-' (F laG, /a?~-Gl~F~/a~ .  

+GzaFzldh-FzaGzlah) *=I, ,  (2.15) 

where A A = dA (A )/dA 1, = ,, . For the continuous spectrum 
we have 

6A/6ut ( x )  =i (F2Gz-F,G,) 14, 

6B/6vt (x) =i(F,*Gz+F2*G,)/4. 

Equations (2.12)-(2.16) are the basis of the perturbation 
theory in the general case. Apart from the notation, they 
coincide with the corresponding equations obtained earlier 
in Refs. 19 and 14 on the basis of another more complicated 
procedure. We consider hereafter their applications to per- 
turbed bions. 

3. EVOLUTION OF A BlON IN FIRST ORDER PERTURBATION 
THEORY 

In first order we can write 

v ( z ,  t)=va(z, 8 ( t ) ;  8)+6u(x, t ) ,  (3.1) 
where in the case (1.2) 

6v=eu1--f, vf+O (1x1 -+a), (3.la) 

u, (z,O;f ) is the expression for the bion in the adiabatic ap- 
proximation, and Sv is the first-order correction that deter- 
mines the change of its form. According to the general 
scheme, v, (z,O;{) is given by Eqs. (1.3)-(1.5), where now <, 
and consequently also all the parameters v, 7, and V, are 
functions of the time. In addition, the coordinate x,(t ) of the 
center of the bion and its phase 6 (t ) are now determined by 
equations that differ generally speaking from (1.6) by terms 
of order E .  

To find all these functions we express the bion param- 
eters in terms of the scattering data for the potential (3.1). In 
this case the discrete spectrum in the upper half-plane con- 
sists of two eigenvalues 

h,=g ( t )  =q+ iv, A , = - - f ' ( t ) ,  v>O, q>G, (3.2) 

and the corresponding parameters B, are given by 

B -  I-- B 2'--22% (v/q)A,' exp [iB-i(8-1/48)xo]. (3.3) 
We substitute (3.2) and (3.3) in Eqs. (2.12)-(2.15). Con- 

fining ourselves to terms of first order in E,  we choose the 
Jost functions in the adiabatic approximation. Putting 
v = v, in (2.1), we have the following expressions for 
F = { F,,F, 1 and G: 

F,=2qvI'[i I % 1' ch z cos rp+h(q ch z sin (P+V sh z cos cp)] , 
Fz=r [q2  (hZ- 1 g 1 ' )  ch2 z+vZ (Az+ 1 1 ' )  cosZ (P 

(3.4) 
+2ihqv ( q  sh z ch z -v sin cp cos (P) 1, 

-- 

r= [ ( a + ~  (a-g*) ( q 2  ch2 Z+V~ cos2 (P)] - I  

x exp [i(h- I /&)  ~ 1 2 1 ,  

G= (a-g) (if%*) (a -g*) - i (h+g) - l~ .  (3.5) 
As a result we arrive at the following equations of first 

approximation for the parameters of the perturbed bion, de- 
fining its characteristic amplitude as 

r=arctg ( v l q ) ,  (3.6) 
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and using V from (1.5): coefficient of the continuous spectrum of Eq. (2.1). The cor- 
responding procedure is similar to that used in Ref. 19 for dy/dt=e (I- Vz)'" (4 cos 7)-'Zi, (3'7) the nonlinear Schriidinger equation. For single-soliton solu- 

dV/dt=-E (1-Vz)%(4 cosiy)-'I2, (3.8) tions of Eq. ( 1. l),the value of Sv was obtained in Ref. 20; it is 
d8/dt=cos y(l-VL)'h-e(1-V2)'1'[V ctg yl, . also shown there that general relations lead in the case of 

(1.2) to (3. la). We shall not consider here this question for 
+cos2 7 (1- TF)Z,-Is] (4 sin y cosz 7)-', (3-9) bions because the calculations are cumbersome. We note 

dxoldt=V+e (1- V )  (I,-V tg 71,) (2 sin y)-'. (3.10) also that to find the adiabatic part of (3.1) as a function of the 
time, with an error of the order of& at &t - 1, it is necessary to 

We have put here add to Eqs. (3.7) and (3.8) terms of order E'; otherwise the 
OD 

ch z sin cp error in the termination of 8 (t ) andx,(t ) from (3.9) and (3.10) 
"= 5 kh2 z+tg2 y cosz cp R [v.(z) ldz, (3.1 will be of the order of unity at ~ t -  1. This situation in general 

- m and was noted earlier in Refs. 17 and 19 for other cases. To 
OD 

shzcoscp obtain physical results, however, this circumstance is not 

5 chz z+tgz 7 cosz cp R[va(z) ldz, (3.12) very significant; to calculate however, a sufficiently accurate 
- m profile of the wave it is simpler to integrate the initial equa- 
0 

zchzsincp tion (1.1) numerically than to solve Eqs. (3.7)-(3.10) with the 
Is= J ch2 z+tg2 ~ C O S ~  cp R[va(z) ldz, (3. 3, required accuracy. 

- m We proceed now to an investigation of the system (3.7)- 
OD 

zshzcoscp (3. lo), assuming that the perturbation is of the form (1.2). 
''= 5 ch2 z+tg2 l'cos2 cq 

R[va(z) ldz, (3.14) We note first that in this case the system (3.7)-(3.10) has 
- m 

rn a solution with 
ch z cos cp 

Is== 1 ch2 z+tg2 .(cos2 cq 
Rlv.(z) ldz, 

- m 

where q, is a linear combination of 6 and z and is expressed by 
Eq. (1.4). 

Equations (3.7)-(3.10) determine in principle the evolu- 
tion of bion parameters that enter into the adiabatic part of 
Eq. (3.1). The second term in (3:l) can be obtained on the 
basis of Eq. (2.13), which describe the evolution of the Jost 

V(t) 5 0 ,  dxo/dt=O. (3.16) 

This follows from the fact that at V =  0 Eq. (1.4) leads to 
e, = 8 (t ). In this case R [v, (43 becomes an even function ofz. 
Because of this I,  = I, = 0, which leads to relations (3.16) 
which have a simple physical meaning, namely, the pertur- 
bation (1.2) cannot take the bion out of the quiescent state. 

The remaining equations of the system take at V = 0 the 
form 

dy nf -=-- sin 8 tg 7 sinz 0 ctg 7 arsh (tg 7 cos 8) 
dt 4 cos y(l+t8' cos'0)* - ai+tg'T coszO I + i o s  0(l+tg2 y cosz8)* 1 
de 
-= cos 0 
at 

cosy-- - -ctg 7 arsh(tg 7 cos 8) 
cog i(l+tgz 7 cosZ 8)'" 

cos 0 sin 0 tg y arsh (tg 7 cos 0) 
-a sinS 0. 

cosa 7 (l+tg2 7 cosZe)"- a (l+tg2 7 C O S ~  o)*'* 

An equation for dy/dt at V =  0, different from our 
(3.17), was obtained in Ref. 15. The difference is contained, 
first, in the term proportional t o 5  As for the term with a, it 
would coincide with (3.17) if we were to put in the latter 
8 = (cos y)t, but this is generally speaking incorrect. No 
equation was obtained in Ref. 15 for d8  /dt. 

The phase trajectories of the system (3.17) and (3.18) at 
fixed f are shown in the figure. The singular points (where 
dy/dt = dB /dt = 0) are defined by the equations 

8,=2kn (k=O, *l, . . .), (3.19) 
sinZ (21.) [sin 1.-cos2 y, arsh (tg y.)] -'=nf (3.20) 

and are, as can be easily shown, saddle points. It is important 
that they do not depend on a. At f41, the solution of (3.20) 
takes the form 

I At 8 = (2k + l ) ~ ( k  = 0, + 1, ...) all the phase curves 
have minima. At 8 = 2 k ~  and y > y, the functions y(8 ) have 
minima, and y < y, they have maxima. As y-+r/2 and not 
too close to y = y, we obtain from (3.17) and (3.18) an 
asymptotic solution of the equation for dy/d8 in the form 

tg y cos 8=const. (3.22) 

It follows therefore that y-+?r/2 as 8+(k + 1 / 2 ) ~ .  The 
phase curve that starts out from one such point either ter- 
minates at a neighboring point where y = r/2, or goes over 
into an oscillating trajectory with gradually decreasing y. 
The curves of the first kind correspond to a system consist- 
ing of soliton and an uncoupled antisoliton, which at 
t = + w are at infinite distance from each other. Trajector- 
ies of the second type [they lie between lines (1) and (2)] corre- 
spond to a system that consisted at t = - w of a soliton 
infinitely far from an antisoliton; as the two come closer to- 
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FIG. 1. 

gether, they go over into a bound state, i.e., into a bion whose 
amplitude gradually attenuates because of dissipation. 

As a-0 curves (1) and (2) merge and are transformed 
into a single separatrix that passes through all the singular 
points defined in (3.19) and (3.20). In this case all the trajec- 
tories lie above this separatrix represent uncoupled soliton- 
antisoliton systems, and those below the separatrix represent 
coupled ones, i.e., bions. 

Let us investigate in greater detail the phase trajectories 
at a = 0. In this case the system (3.17),(3.18) is a Hamilton 
system with a Hamiltonian 

H(y, 8) =sin 7-nf arsh (tg 7 cos 0) (4 sin I)-', (3.23) 

so that the phase curves are described by the equations 
H (y,O ) = const. At tan y) 1 we get from this, in particular, 
(3.22) (which, however, is valid also at a #O). The equation of 
the separatrix can be written in the form H ( y,8 ) = H, where 
obtained from (3.23) at 8 = 0 and y = y,, where H, is ob- 
tained from (3.23) at 8 = 0 and y = y,. At small f we have 

H p l -  (nf/8) [In (16/nf) +I],  (3.24) 

where we have used (3.21). In the same case, for the curves 
representing bions, we have y - 7 = 0 ( f )  where 

n 

7 = ( M n )  I (0) d0 (3.25) 
-n 

is the mean value. Thus, at a = 0 a time-constant extraneous 
current f causes only periodic variations of the bion ampli- 
tude, of the order off, which generally speaking are of little 
significance. However, a monotonic increase off leads, as we 
shall presently show, to a decay of the bion iff exceeds a 
certain critical value f,, that depends on the initial values of 
the amplitude y"' = y, and of the phase 8 (0) = 8,. 

To verify this, we consider first the case of a "instantan- 
eous" increase ofan extraneous current from zero at t < 0 to f 
at t > 0. Then y and 8 have no time to change, and H changes 
from H = sin yo,to the value given by (3.23), where y = y, 
and 8 = 8,. At t <O the separatrix was the straight line 
y = r/2. At t > 0 it drops lower and its equation becomes 
H = H, . All the phase-plane points that turn out to be above 
the separatrix correspond to uncoupled "decay products" of 
the bion. Consequently the equation that determinesf,, as a 

function of the initial state of the bion is obtained from (3.23) 
at f =A,, y = yo, 8 = 6, and H = H, . At smallf,, it can be 
assumed that yo is close to r/2, i.e., sin yo= 1 - (1/2)cot2yo. 
As a result we obtain from (3.23) and (3.24) the equation 

nf,, arsh (tg 70 cos 0,) (2 sin 7,) -'+ctgz 70 

= (nfc,/4) [In (16/nf,,) +I] . (3.26) 

We consider now several typical cases. At 8, = 2kv an 
approximate solution of (3.26) is 

At 8, = (k + 1/2)77 we arrive at the equation 

This equation is equivalent to Eq. (21) of Ref. 12. In the same 
reference is given a plot of f,,(cot2yo) that follows from 
(3.28). It can be verified that the values off,, are in this case 
always smaller than (3.27). Finally, the smallest value off,, 
at fixed yo is obtained if 8, = (2k + 1)r.  

We consider now another limiting case, when the ex- 
traneous current is turned on adiabatically. In this case, the 
adiabatic invariant, which according to (3.25) coincides with 
7, shoud be conserved. Thus, in adiabatic switching y = y,. 
The condition of the bion decay is obtained approximately 
by putting FZ ( y), , where ( y), is the average value of y on 
the separatrix. From the equation for the separatrix we find 
that cot2( y), ~ ( n - f  /4)[ln(16/rf) + 11. Putting here 
( f), = yo and f =f,,, we again arrive at (3.28). Thus, when 
the extraneous current is turned on adiabatically,f,, agrees 
approximately with the value off,, for instantaneous switch- 
ing at the same yo and 8, = (k + 1/2)r. 

These results agree well with the bion-decay criteria ob- 
tained in Ref. 12 on the basis of a quasiparticle model; this 
can be regarded as a verification of the latter from a more 
rigorous point of view. (In comparisons with Ref. 12 it must 
be borne in mind that 2 cot2 yo = - Eo, where E, is the sum 
of the kinetic and potential energies of the solitons that make 
up the bion at f = 0.) Notice should also be taken of the good 
quantitative agreement between the described experiment 
and the numerical experiment. Thus, a direct numerical so- 
lution of (1. l )  under conditions corresponding to instantan- 
eous switching on off and at a = 0, cot2yo = 0.0785, and 
8, = 3v/2 yieldsf,, ~ 0 . 0 1 3 6  (Ref. 21), as againstf,, ~ 0 . 0 1 5  
obtained from (3.28). 

At a > 0 the value off,, should be larger than at a = 0, 
inasmuch as it follows from the averaged system (3.17) and 
(3.18) that f,, (a) is a monotonically increasing function. In 
addition, at a > 0 there arises a substantially new effect: A 
soliton and antisoliton moving towards each other from 
x = + oo can form a bound state even at constantf; for this 
prupose it is necessary that the phase trajectory of the system 
lie between curves 1 and 2 in the figure. It can be seen from 
the same figure that the produced bion attenuates in time 
because of dissipation. 

We consider now in greater detail the dynamics of the 
bion in the general case when f 5 0 ,  a +O, and V $0. Noting 
that the right-hand sides of (3.7)-(3.10) are periodic func- 
tions of 8, with dy/dt-dV/dt-a, we can assume for a 
bound state that is not too close the separatrix (i.e., where it 
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is meaningful to separate the slow dependence on 6 from the 
rapid variations with period 2 4 :  

where the functions pi and $i are to be determined. Equa- 
tions (3.29)-(3.31) correspond to the first approximation of 
the Krylov-Bogolyubov method. It is implied in them that y 
and 7 are slow variables, and 8 is a renormalized fast vari- 
able. Substituting (3.29) in (3.7H3.10) we solve the obtained 
equations ---  under the following condition: The functions 
pi ( y, V,6 ) should be periodic in 8 with a period 2n. As a 
result we obtain 

Pa-aV(1-V2) (l-v ctg v), lo=v. 
It is useful to note that because of the periodicity condition 
pi (8 ) the right-hand side of (3.32) turns out to be automati- 
cally the average, over 8, of Eqs. (3.7), (3.8), and (3.10), pro- 
vided the substitutions y+y, v+7,8+8 are made in the lat- 
ter. This is a consequence of the general properties of the 
lowest approximation of the Krylov-Bogolyubov method 
(see, e.g., Ref. 22). We note also that in (3.32) there are no 
terms withf, since the terms in I, and I,, which containf, 
vanish after averaging over 6. Thus, a constant extraneous 
current exerts no influence on the averaged parameters of 
the bion (provided, of course, that f < f,,; in the opposite case 
the bion decays in accordance with the theory expounded 
above). 

For lack of space we shall not present here the rather 
long expressions for p, (i = 1,2,3,4). which are obtained im- 
mediately once we find E$, and E$, which coincide with the 
right-hand sides of (3.32). We indicate only that p, are auto- 
matically periodic in 8, as required. Therefore at t 5 1 / ~  we 
have IY-vI-IV-71-~, lI9-81-&, i.e., the terms ~ p , ,  
after substitution of (3.29) in (3.1). lead in the expression for v 
to terms of order E that can be unified with the term Sv; it is 
therefore meaningful to discuss them only together with Sv 
as a combined correction of order E to the form of the bion. 
The latter, however, is not considered in the present paper. 

In connection with the foregoing we shall discuss Ref. 
16, where a study was made of the action of the perturbation 
(1.2) on a bion, using a different approach, and where a much 
more complicated system than (3.7)-(3.15) was obtained and 
then solved numerically at V = 0. Our analysis has shown 
that the equations of Ref. 16 contain many errors. After 
eliminating these errors and solving the obtained system we 
have arrived again at (3.32), but obtained for p, expressions 
different from those that follow from (3.7) and (3.8). Thus, - - - 
the small oscillating additions to y, V, 6, and 2, are not 
uniquely determined. This ambiguity is offset by a suitable 
change of Sv. As for the phase trajectories at y > y, , for f< 1 

we obtain from the corrected equations of Ref. 16 the same 
results as from ours. 

We return now to the system (3.32). Its solution is 

v=y(O) exp (-4, (3.33) 
i-p(O) rZ(O) sin2 7 (t) I-" 

V ( 0 )  sin2 y(0) qZ(t) (3.34) 

Equation (3.33) was obtained earlier in Ref. 15 at y(t )(l. It 
follows from our reasoning that this formula is valid not only 
at small y(0) but at all 3 0 )  not too close to the values of y, 
defined in (3.21). 

We turn next to (3.34). We can see from it that 
P(m)=V(O) siny(0) {V(O) sin2 y(O)+[l--'Ve(0)]y2(O))-". 

(3.35) 

Thus, in contrast to the amplitude y(t ), the bion velocity 7 (t ) 
does not vanish if V(0) # 0. In this case V ( oo )/ V (0), while less 
than unity, is generally speaking not very small. It must, 
however, be noted that as t+oo, when the amplitude is 
small, perturbation theory is no longer valid, since both 
terms in (3.1) become comparable. In addition, the quantita- 
tive applicability of (3.33) and (3.34) is strictly speaking, li- 
mited, since at ~t - 1 it is necessary, as already mentioned, to 
take into account terms of order E' in dy/dt and dV/dt, in 
order to obain 19 (t ) accurate to terms of order E at ~t - 1. This, 
however, is not very important for the qualitative aspect of 
the situation, since t in  (3.33) and (3.34) can be regarded as a 
certain parameter that increases monotonically together 
with the true time and has the same order of magnitude. [It 
would be possible to get along without introducing t at all, 
and solve the equations for dy/d6 and d V/d6 which follow 
from (3.7)-(3.9). Since I9 (t ) is a monotonic function and 
6 (00)  = co, all the quantitative results described above re- 
main in force.] 

We have thus shown that the action of the perturbation 
(1.2) at constant (or at sufficiently slowly varying in time) f 
consists in the following. Iff exceeds the critical valuef,, 
[see (3.26)], the bion decays into a soliton and an uncoupled 
antisoliton. Iff <f,, , then f has practically no influence on 
the average bion parameters y(t ) and F ( t  ), which decrease 
according to (3.33) and (3.34). In this case,if V(O)#O, then - 
V(co)/V(O), while less than unity, is nevertheless not very 
small. These results can be experimentally verified in princi- 
ple by studying the emission spectra of long Josephson junc- 
tions in analogy with Ref. 4. 

We have assumed above that the Josephson line is infi- 
nitely long. A bion reflected from the end of the junction is 
preserved, so that the influence of the boundaries reduces to 
losses to radiation, so long as f < f,, . At f >f,, the bion de- 
cays, and reflection of individual solitons reverses their po- 
larization. This circumstance is important, since it can make 
the produced solitons equally polarized within a certain 
time. In this case they can, according to Refs. 10 and 11, 
form a bunched system. As a result, at f > f , ,  the bion is 
transformed in final analysis into a bunched pair of silitons 
with identical p~larization.'~ This effect was observed in nu- 
merical experiments1* that simulated the conditions in real 
Josephson junctions. From the results of Refs. 10,11, and 21 
it can be seen in this case that the bunched pair is completely 
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restored after reflection. The foregoing explains also the for- 
mation of like-polarized bunched pairs out of the initially 
differently polarized solitons in laboratory experiments4 

"In the English literature such a formation is most frequently called 
"breather." 

2'It must be kept in mind here that Ref. 18 has as the independent variables 
6 = - x and r = t, and contains a misprint: On p. 104 in Eq. (14) the last 
matrix should be preceded by a plus sign. 
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