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An exact solution is obtained of the problem of diffraction of surface electromagnetic waves by an 
impedance step in the presence of spatial dispersion and additional surface polaritons (SP). It is 
shown that allowance for spatial dispersion leads to the formation of a novel type of states (one- 
dimensional edge modes) localized in the region of the impedance step. The SP energy conversion 
coefficients are calculated and their frequency dependence in the region of SP resonances with 
oscillations in a transition layer (a thin semiconducting film on the surface of a metal) is studied. It 
is shown that the edge modes lead to the appearance of additional resonance singularities in the 
conversion coefficients. 
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1. INTRODUCTION 

Surface electromagnetic waves in the optical band have 
recently attracted the attention of many researchers, both 
theoreticians and experimenters. This interest is due princi- 
pally to the fact that the characteristics of surface polaritons 
(SP) are quite sensitive to the state of the surface, and there- 
fore SP turn out to be in many cases an effective tool for the 
investigation of the properties of surfaces and thin films.' 
The considerable progress in experimental methods of sur- 
face spectroscopy with the aid of SP makes it timely, in parti- 
cular, to consider the fundamental problems of linear crystal 
optics of surfaces. Foremost among such problems if that of 
calculating the coefficients of conversion of the SP energy on 
the line that separates surfaces with different properties. 
This problem is the analog of the known Fresnel problem in 
bulk crystal optics. 

We recall that in the case of bulk crystal optics this 
problem presupposes the presence of an interface between 
the media and consists of calculating the amplitudes of the 
transmitted and reflected bulk waves. When the analogous 
problem is posed in surface crystal optics, it is necessary to 
assume that the surface along which a surface wave excited 
by some external source propagates has an impedance step 
(i.e., a line that separates surfaces with different impe- 
dances). The presence of an impedance step leads to the onset 
of a reflected surface wave, a transmitted surface wave, and 
also volume radiation. Volume radiation is the result of dif- 
fraction of the surface waves by the surface boundary, and it 
is this which causes the substantial complications in the 
mathematical description of the phenomenon. 

The passage of surface radio waves through a line that 
separates surfaces of two metals with different impedances 
was considered quite long ago (see, e.g., Ref. 2). In that case, 
however, the impedance was assumed to be independent of 
the SP wave vector, which is equivalent to neglecting spatial 
dispersion effects. This approximation is indeed justified at 
low (e.g., radio) frequencies far from all the natural frequen- 
cies of the medium. 

The situation may turn out to be qualitatively different, 

however, in the optical band. To explain the foregoing, we 
assume that a thin macroscopic film [with dielectric con- 
stant e , ( ~ ) ]  is coated on the surface of a metal having an 
impedance Z, that is independent of the wave vector k. The 
presence of such a film produces in the impedance of the 
surface a change that is particularly large in the region of the 
resonances and zeros of ~ ~ ( 0 ) .  AS shown in Refs. 3-5, under 
these conditions one can no longer neglect the dependence of 
the impedance on the wave vector, since this dependence, 
just as the spatial dispersion in bulk crystal optics, leads to 
the appearance of an additional (in this case, surface) normal 
wave. The spatial dispersion in the impedance of the surface 
is due in this case to the appearance of terms of the order of 
kd (d is the film thickness) and takes place thus even when 
the dielectric constant of the film &,(a) is independent of k. 

The Fresnel problem for this case, i.e., at E, =&,(a),  
under conditions when the separation line is the edge of a 
thin film coated on the surface of the metal, was first solved 
in Refs. 4 and 5. It was shown in them, in particular, that if 
the impedance boundary conditions are consistently de- 
rived, a linear current concentrated in the region of the step 
is produced. It is known that when solving the Fresnel prob- 
lem for bulk waves in a region where additional waves exist it 
becomes necessary to use the so-called supplementary 
boundary conditions on the interfaces between the media.6 
In crystal optics of surfaces, the correct choice of the linear 
current plays the same role as the choice of the supplemen- 
tary boundary conditions for bulk waves. 

A next natural generalization of the theory developed in 
Refs. 4 and 5 is allowance for the spatial dispersion in the 
film, i.e, allowing for the ~ , ( k  ) dependence. This is precisely 
the question dealt with in the present article. 

It will be shown that even in the simplest variant the 
spatial dispersion in a film leads to the possible existence of 
not two but four surface waves of equal frequency. In the 
impedance boundary conditions there appear in this case 
supplementary linear currents that attenuate over the char- 
acteristic length of the spatial dispersion with increasing dis- 
tance from the edge of the film. 

We obtain in this paper an expression for the impedance 

60 Sov. Phys. JETP 57 (I), January 1983 0038-5646/83/010060-09$04.00 @ 1983 American Institute of Physics 60 



of a thin film with dielectric constant ~ , ( w , k  ), deposited on 
the surface of a metal, and solve the Fresnel problem by a 
method similar to that developed in Refs. 4 and 5. 

We show that all the coefficients of conversion of the SP 
energy have resonant peaks of dips at definite frequencies Gll 
and i3,. These frequencies, however, do not coincide with 
the frequencies w,, and w, that satisfy the equations 
~ , ( o ~ ,  ,O) = 0 and E, '(w,,O) = 0, as when spatial dispersion 
in the film is not taken into account. Since the film is as- 
sumed microscopic in this paper, in the calculation of the 
impedance of the surface on both surfaces of the films we 
have used the supplementary boundary conditions of bulk 
crystal optics. It is important that the form of the supple- 
mentary boundary conditions for the case of a thin film 
( d d i ) ,  where /Zi is the SP wavelength) determines only the 
values of the resonant frequencies and does not influence the 
character of the obtained frequency dependences. 

An important and interesting prediction of the theory 
developed below is the possible existence of quasilocal oscil- 
lations of exciton polarization near the edge of the film. 
These edge modes exist only when account is taken of the 
spatial dispersion and have a radiative width connected with 
the possibility of their decay into short-wave SP. 

We solve in this paper also the problem of SP diffraction 
with allowance for the edge modes and obtain the frequency 
dependences of the energy-conversion coefficients. We show 
that near the frequencies corresponding to these modes addi- 
tional peaks or dips should be observed in the frequency de- 
pendence of the SP reflection and transmission coefficients. 
It was found, in contrast to the results of Refs. 4 and 5, that 
when account is taken of spatial dispersion in the film, the SP 
energy conversion coefficients generally speaking depend 
not only on the film thickness and on its dielectric constant, 
but also on the shape of the transition region at its edge. This 
dependence is due to the fact that the frequencies of the edge 
modes are quite sensitive to the character of the change of 
the thickness of the film in the transition region. 

The equations obtained for the energy conversion coef- 
ficients for the SP make it possible to separate the contribu- 
tion of the edge modes to the frequency dependence. This 
may be useful in the interpretation of the experimental data. 

2. IMPEDANCE OF THIN FILM 

Let a thin macroscopic film with dielectric constant 
E , ( w , ~  ) border on a vacuum along the surface z = f (x) and 
with the substrate along the surface z = 0. 

We shall assume that f (x) = df (x/p), where d is the film 
 thickness,^ is the width of the transition region in which< (x) 
changes from zero tod. We assume also that f (x) is a smooth- 
ly varying function, i.e.,p>d. The limiting transition to the 
abrupt boundary of the film will be understood in the sense 
that d$p(Ai, where Ai  are the SP wavelengths. The film 
thickness d is assumed to be small enough, namely d<Ri,  so 
that we can confine ourselves to the terms linear in d in the 
expansion when calculating the change of the fields in the 
film along z. The condition p ~ d  means that the unit vector 
normal to the surface z = f (x) can be chosen to be the vector 
with coordinates n = ( - < ',0,1) and only terms linear in the 

derivative f ' = df /dx need likewise be retained. 
Taking the foregoing assumptions into account, it fol- 

lows from Maxwell's equations and from the conditions for 
continuity of E,, H, and D, on the film boundaries that the 
vacuum fields Ex and H,, (z)O) at z)0 are connected by the 
relation 

In(1) we have introduced the exciton polarization vector P in 
the film in accordance with the equation D = E, E + h P ,  
and also the substrate impedance Zo. We shall neglect below 
the spatial dispersion effects in the substrate, assuming the 
dielectric constant of the substrate ~ ( w )  to be high enough: 
l~1#(/1//1,)~, where A = 2rc/w. In this case Z,=(ic/ 
o)xo = il~l -'I2. 

In the effective-mass approximation, the equations of 
motion for the exciton polarization take the form6 

corresponding to 

The constant M is connected with the effective mass of the 
exciton m by the relation M = m / h , .  The index 1 in (2) and 
(3) labels the field components in the film. 

Regarding the film as macroscopic, we assume that its 
thickness d>ro, where ro is the radius of the excitonic state. 
Under these conditions, according to the usual bulk crystal- 
optics ~ c h e m e , ~  it is necessary to impose on P supplementary 
boundary conditions on the boundaries z = f (x) and z = 0. 
We choose for them a supplementary boundary condition of 
general form 

We must stipulate here, however, that ad(1, which is the 
necessary condition that the variation of the polarization 
along z be slow. 

We note that although P changes little over the film 
thickness, the terms a 2 P / ~ z 2  in (2) and (3) cannot be neglect- 
ed. In fact, upon integration with respect to z from 0 to f (x), 
these terms produce in the derivativesa P/az jumps, that can 
be represented with the aid of (4) in the form 

aP/azI ,=,-a~/az ~ , = o = - ( ~ l + ~ 2 ) ~ ( ~ ,  ~ = o ) + f ~ d ~ / a ~ l , , , ,  

( 5 )  
where a,  corresponds to the boundary with the vacuum, and 
a, corresponds to the boundary with the substrate. 

Recognizing that in the zeroth order in < and f ' we can 
Put 

D:" =E,= ( i c l o )  aH,/dx, E~"=E,. 
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We have after integrating (2) and (3) with respect to z and 
using (5) 

L,,P, ( x )  = ( c q L Z / 4 n i o )  aH,/Ox, (6) 
LLPx ( x )  =- ( & , / 4 n )  qLZEz, (7) 

where 

~ L ~ = M ( ~ I I ~ - ~ L ~ )  1 

x l : ( l ) = ~ ( * I : ( l , - 0 ~ ) ,  ~llfl)=~ll: l)$.(ai+az)l~d, 

1 5 ~ ~ ( ~ , = d l / d x ~ +  (5'15) dldx-xl~,,-I-  ( a l + a z )  (d-'-f-') . 

The Green's function G (x j ' )  of an equation of the type 
(6), (7) can be easily expressed in terms of the Green's func- 
tion (x,xl) of a Schrodinger equation with a potential 

V ( x )  ='IZ~"lf-'14 (5'15) " ( ~ i + a z )  (b-'-d-') 

and energy E = - xf,,, . The indicated relation is of the form 

f ( 5 )  G ( x ,  xr ) = [ G  (5 )  g (2') ] "9. 
The asymptotic form of the function Y (x j ' )  at x, xf>p is 
well known: 

X Eexp (-x,1,,, I I-x'l +~II ( , )  exp (--xll(l ,  I x+x'I ) I ,  
(8) 

where R e x  > 0, and r is the reflection coefficient corre- 
sponding to the energy E and to the potential V(x). At E < 0 
the asymptotic form of the wave function, which decreases 
as x-t - a, takes at large x-t + oo the form 

a [em+re-"1 . 
We call attention to the fact that Y (xj ' ) ,  meaning also 

P(x), contains a resonant denominator x. Thus, as w-tLIl the 
smallness off (x) in (1) can be offset by a resonant increase of 
P,, just as the product cPx turns out to be not small when - 
w-w*.  

Retaining in (1) only the resonant terms and the terms 
that do not contain the film thickness d, we have, taking (6)- 
(8) into account, as w G I 1 ,  the following boundary condi- 
tions for the field in a vacuum at z = 0: 

where 

F ( x ,  x') = i l z v ~ x , 1 0  ( x )  0  ( s f )  [exp ( - x i ,  I x-x' I ) 

- 
Analogously, near w = a, ,  the connection between Ex 

and H, at z = 0 is given by the expression 

where 

V 0 X l  K ( x ,  x') =ZO -;;- 

In (10) and (12) we have replaced (x)f (x')] 'I2 by dB (x)8 (x'), 
inasmuch as at p(A, the transition region makes a small 
contribution to the integrals in (9) and (1 1). 

We shall consider below in detail the frequency region - - 
near o = oil . The resonant effects at o zw,  can be investi- 
gated similarly. We note first of all that the impedance 
boundary condition (9) contains terms localized near the se- 
paration line x = 0 and have the meaning of linear currents. 
When account is taken of the spatial dispersion in the film, 
there appear besides the 6-like linear currents (see Refs. 4 
and 5) also linear currents of the form rll 8 (x)exp( - xllx),  
which determine essentially the character of the solution. 

To find the reflection coefficient rll in the limit as - 
w--mll, we note that the potential V(x) takes the form of a 
potential barrier of height -p-2 at x < 0, and at x > 0 it is a 
potential well of width -p and depth -pP2. Thus, at 
p( lxII 1 -' the energy IE I is much less than the characteristic 
scale of the potential V(x). It is known (see, e.g., Ref. 7) that 
under the indicated conditions we have rll + 1 - xl lpE & 'I2, 

where Eo is the energy of the highest discrete level in the 
dimensionless potential p2V(x). (In the absence of bound 
states it is necessary to put E, = 1 in the potential V(x).) This 
estimate shows that if the potential V(x) contains a finite 
number of bound states, the limiting value of the coefficient 
is rll (ZII ) = - 1. The result has a simple physical meaning: it 
means that the polarization P,(x) satisfies the boundary con- 
dition P, = 0 on the line x = 0 independently of the form of 
the additional boundary condition on the film boundaries. 

It must be noted, however, that in those cases when the 
potential V(x) has shallow levels, the coefficient rll depends 
strongly on the frequency w and can differ substantially from 
- 1. In particular, at frequencies wZ, = gi; - (En I/Mp2, 

which correspond to equality of the "energy" E = - xi; to 
the energy of the discrete level Enp2 in the potential V(x), the 
coefficient rll becomes infinite. The frequencies wn , as can be 
easily understood, correspond to local oscillations of the po- 
larization, or to the so-called edge modes. Analysis shows 
that interaction with an electromagnetic fields leads to a 
considerable radiative width of these modes, due to possibil- 
ity of their decay into short-wave SP. The frequencies a, are 
also noticeably shifted in this case. 

3. SOLUTION OFTHE FRESNEL PROBLEM FOR THE CASE OF 
NORMAL INCIDENCE 

Assume that a surface wave is incident on the interface 
x = 0 and its magnetic field in vacuum is given by 

H= ( 0 ,  H ,  0 )  , H=Ho exp ( i k x - x z )  . 
At k = w2/c2 + x2 we have in this case Im k > 0 if the SP is 
incident from the side of the pure surface (x < 0), and 
Im k < 0 is the incident surface wave propagates along the 
surfacex > 0 covered by the film. Just as in the Refs. 4 and 5, 
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we shall seek the magnetic field in the vacuum in the form 
H = (O,H,O), where 

H +" dw - =exp ( ikr -xz)  + -eap[ - iwz-u(w)  z ]  
S ( w ,  k )  

HO 2ni v ( w ) - x , ,  ' 

Substituting (13) in the impedance boundary condition (9),  
taking the Fourier transform of the resultant expression, and 
introducing the function 

@ ( w ,  k )  =- (xI l2+k2)  ( p o ~ 1 1 2 ~ k ) - 1 Y ( ~ ,  k ) ,  

we have the following integral equation for this function: 

dw' 
@ ( w ,  k ) =  I%F(W, w') [ . p ( ~ ' ) - 1 1 @ ( w ' ,  k ) + F ( w , - k ) .  

(14) 
2 x l l T ( w f )  =xll ( I - r , , )  +iw' ( l + r l l ) ,  

F ( w ,  w')  = [ ( w - w f + i 8 )  - ' - T ( w ' ) l ( w + i x l l ) ] ,  
(15) 

$(w) = I + p o ~ I 1 2 ~ Z /  [ v ( w )  - X o ]  ( w Z f  X I I Z )  . (16) 

Equation (14) can be exactly solved by the factorization 
method (see, e.g., Ref. 2), and the general solution is of the 
form 

@ (w ,  k )  = P , ( w ) / ( w + k )  ( w + i x I l ) $ + ( w )  (Im k>O), (17) 

where $ + (w)  and $ _ (w)  are functions that are analytic, dif- 
fer from zero in the upper and lower half-planes of the com- 
plex variable w, respectively, and satisfy the relation 
$ + (w)$ - (w)  = $(w), while P, (w)  is a polynomial of nth de- 
gree, which assumes the following values at the point 
w =  - k a n d w =  -ix I /  : 

P,, ( - k )  = ( i x l l - k ) / $ -  ( - k ) ,  

P n ( - i x l l )  =A( ix l l - k ) / $ -  ( - i x l l ) .  (18) 

The coefficient A is obtained from the condition 

Relations ( 1  8) determine completely the polynomial of de- 
gree n = 1. However, even at n = 1 the integrals in (14) and 
(19) diverge logarithmically at large w.  The reason for this 
divergence is that in the derivation of the boundary condi- 
tion (9)  we took the limit a s p 4  and neglected the nonreson- 
ant terms in ( 1 ) .  It can be shown (see the Appendix) that when 
account is taken of the nonresonant terms in ( 1 )  the integral 
equation for the function @ (w,k ) is free of - the indicated di- 
vergence even in the limit a s p a .  As w - + w l l ,  the solution of 
this equation, which satisfies the Meixner condition,' is 
unique and takes the form ( 1  7 )  with a polynomial P, (w)  of the 
first degree. The coefficients of the polynomial P,(w) coin- 
cides with those obtained from relations (18) and (19), pro- 
vided the integration in (19) is restricted to the values 

I w 1 <ell-'(m) -ed-$8, (& , - I ) - ' .  

Obviously, at a finite size of the transition regionp<R,, 
the function @ (w,k )also takes the form (17) with the polyno- 
mial 

P,,(w) = (w+ ix l l )  [ $ - ( - k ) ]  - '-A (w+kj  [$- ( - i x l l ) ] - ' ,  

but the logarithmically diverging integral (19) must be cut off 

at w>Q=min( p - ' ; ep - ' ( a ) ] .  
Substituting (17) in (19) we obtain an equation for A .  The 

resultant integrals can in this case be easily calculated by 
using the analytic properties of the functions II,, (w)  and 
II, - (w).  AS a result we have 

The integration in (21) is carried out along the circle 
z = Qei'P(O<(p<2~) with a large radius Q%Jk 1. 

Taking ( 1  7 ) ,  ( 1  8), (20), and (2 1 )  into account, we easily 
obtain the following expression for the function 3 ( w , k  ) at 
Im k > 0 :  

It can be similarly shown that at Im k < 0 it is necessary to 
replace$- ( - k ) i n ( 2 2 ) b y  [$+ ( - k ) ] - ' .  Wenotethatin 
(24) it is assumed that $- ( c o )  = $+ ( c o )  = 1 .  

Before we proceed to calculate the SP energy conver- 
sion coefficients, we investigate the features of the spectra of 
the surface waves propagating along the surface covered by 
the film. The SP spectrum is determix~ed~.~ by the zeros of the 
function $(w), namely $(k (a)) = 0 .  

Typical form of the dispersion curve of the SP in the 
region of frequencies close to G I I  is shown in Fig. 1 .  It can be 
seen that at w <GI, there can exist three different surface 
waves on one and the same frequency. The use of the exact 
expression ( 1 )  for the impedance of the thin film leads to the 
appearance of one more branch of SP. 

FIG. 1 .  Dispersion law for SP near w = oJ,. The ZnSe filp on aluminum 
has the following characteristics: d = 50 A, E _  = 8.7, ffw - 2803.75 U - meV, fi(wlI - w,)  = 1.45 meV,x,c(o) = 0.126, McZ = 2.10- (the box in the 
upper figure is shown enlarged in the lower figure). 
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Near the resonance w G l l  the wavelength correspond- 
ing to this branch is much shorter than the wavelengths cor- 
responding to the remaining solutions - of the dispersion 
equation. In fact, near the resonance o z wll we have k4 z q ,  
and k3zd&; 'q:,  so that at sufficiently small d we obtain 
k4>k3 (see Fig. 1). Also small is the probability of exciting 
this - short-wave SP, and this probability can be neglected as 

The amplitudes of the surface waves were determined 
by the pole contributions to the integral (33). Substituting 
(22) in (13) we easily obtain expressions for the ratio of the 
amplitudes of the incident surface waves H, and the ampli- 
tudes of the reflected and transmitted surface waves Hj in 
the form 

Equation (25) describes the relative amplitudes of the trans- 
formed surface waves in the case when both the incident and 
the transformed surface waves propagate along the surface 
of the metal covered by the film. In this case the indices 
i, j,m,n ( j#m #n) take on the values 1,2, and 3. At i = 0 (the 
incident surface wave propagates along the clean metal sur- 
face) it is necessary to replace $+ ( - k,) in (25) by 
[$- ( - ko)]-'. On the other hand, when the transformed 
surface wave propagates along a clean metal surface ( j  = O), 
it is necessary to make in (25) the substitutions 

- (k) + [ +  ( k ) ,  (ixll-kl) (~j-~m)-'(~j-~n)-'+ (~.AII+ ko)-'. 

The expression for the SP energy flux, with allowance 
for the spatial dispersion in the film, can be obtained by a 
method similar to that used in Ref. 4. Near the resonance 
w z G l l  it takes the form 

where Ly is the width of the SP excitation region. H, is the 
amplitude of the magnetic field as z = 0 and corresponds to 
thejth surface wave. Obtaining the value of Hy from (25) and 
substituting it in (26), we can obtain the energy-flux conver- 
sion coefficients W,/ W,,. We note first of all that just as in 
Refs. 4 and 5, the energy-conversion coefficient matrix is 
symmetric: 

Neglecting the damping of the surface waves, the mo- 
duli of the functions $, (k,) can be relatively simply ex- 
pressed in terms of the parameters k, and xi, using the well- 
known factorization procedure.2 The expressions for 
I$, (k,)l have different functional forms in different fre- 
quency intervals, depending on the number of solutions of 
the dispersion equation $(k ) = 0. We present below equa- 
tions for the energy conversion coefficients of a SP incident 
from the side of the clean surface, for the frequency region 
where three different SP can propagate along the surface 
covered by the film: 

w , -= k,' 
4xox1-; 

Wo o ko 

X (IkzI+lkol)'(lkzl-lk,1) (xs-xo) (Iksl-lkol) I1+R(lkll-lkOl)lz 
(x~+xz)"%+xl)~(xo+xs) (Ik1l+lk2l)'(l ksl-lkll) 

(27) 

W z  - 4k02x, ( I k z l - l k ~ l )  (lksl-Ikzl) I l - ~ ( l k ~ l + ! k ~ l )  l 2  --- 
Woo x z  (IklI+IkoI) ( I k ~ I - ~ k ~ ~ ) ~ ( l k ~ l + l k ~ ~ )  ' 

(28) 
Wo p0~~~~k0~~,2(Ikzl+lk~I)~l-2Rlk~l1~ 
-= 
Woo ~1kz1-'1ko1)'(1k~l+lk,1)2(lk~l+lk~l)~' (29) 

The coefficient W3/ W, is obtained from W,/ W, by mak- 
ing the substitution I k, 1-1 k31. Interest attaches also to the 
values of W3/ W, and W d  W, in the frequency region that 
corresponded to the gap in the SP spectrum with allowance 
for the spatial dispersion in the film.4.5 Calculation for the 
case of exact resonance o = GII leads to the expressions 

w* 
-= 

4 x 0 ~ 3  
II+R(lksI-IkoI) 12, 

Woo ( K o f ~ s ) ~  

The angular dependence of the intensity of the volume 
radiation W("'(0) (see (13) with r = (x2 + ~~)"~- - t co ) ,  which 
appears as a result of diffraction, can also be easily deter- 
mined from (13) and (12). To this end it suffices to calculate 
the integral (13) by the saddle-point method (see also Ref. 4). 
It  can be easily seen that the saddle point is w, = (w/ 
c)sin 0 =k, (tan 0 = - x/z) .  As a result we have 
W'"' (0) 
woo 

where 
C(0) 

=2~0k~~~,2~11'(Ik~I+IkoI)l(lkil+lkol)(IkzI-lk0I)~(lk~I+lkol). 

We shall now clarify the physical meaning of the coeffi- 
cient R and determine its value. As already noted, when the 
frequencies of the local oscillations of the polarization - are 
located far from the investigated region w z w l l ,  the coeffi- 
cient rl, + 1, and with it also R, is negligibly small. Thus, the 
value R = 0 corresponds to exclusion of effects connected 
with edge modes from consideration. 

Let now rll # - 1. Since a ,  as can be seen from (24), is 
determined by the asymptotic form of the function II ,  - (w) as 
I w I - ~ c c ,  we can express a ,  as well as $ - (w), in terms of the 
parameters of the surface waves k, and xi.  However, the 
form of the functional dependence of a(ki ,xi) depends on the 
numberp surface waves that can propagate on the film-coat- 
ed surface at the given frequency. We present below results 
for the frequency region in which p = 3, neglecting the 
damping of the surface waves. In this case we have 
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Substituting in (23) a = - (1/2)y + iIm a ,  where y and 
Im a are given by (33), we obtain the following expression for 
R : 

\ ,  
A ( a )  =2 ( I f  r, ,)  Im o-4xl l .  

The dimensionless function A (w) has the property 
2Re A = - [A 1 2 ,  so that when account is taken of the edge 
modes, one more parameter IR l 2  appears in the equations for 
the energy-conversion coefficients (27)-(3 1) in addition to ki 
and xi. As seen from (34), A (a) contains a resonant denomi- 
nator. At frequencies close to the edge-mode frequency w, 
that satisfies the equation A (w,) = 0, the function A (w) takes 
the Lorentz form 

In this case /A I 2  has a characteristic maximum at the fre- 
quency a,, with a width" 

r=L ( i + r I l )  y ( a )  [ d A I d a  1 u-ool 
It follows from (27)-(31) that the conversion-coefficient 
spectrum should also reveal resonant peaks or dips of width 
r near the frequency w,. We note that r does not depend 
explicitly on rll . In fact, as already noted, 1 + rll = BxII, 
where B does not depend on the frequency. We therefore 
have 

from which we obtain for r (w) the following simple expres- 
sion: 

Re o  ( a )  r=  
d  Im o / d o  I .,,, ' 

Equations (33)-(36) determine completely the quantity 
R (o ,~ , ) ,  in which the frequency of the edge mode w, enters 
as a parameter. 

4. DISCUSSION OF RESULTS 

To explain the mechanism whereby the edge modes are 
formed, we derive an equation of motion for the exciton po- 
larization P with allowance for only the longitudinal field. 
Since the dimension I of the localized state is of the order of 
the characteristic length of the spatial dispersion at its fre- 
quency, i.e., 1- [M(o, - wll ) ]  - ' I 2 ,  in real cases it is small 
compared withA = 21~c/w. Under these conditions, analysis 
of the transverse field leads to relatively small corrections 
and does not change the qualitative results. 

As w G I I ,  taking only the resonant part of (1) into ac- 
count, we have 

Expression (6) can be rewritten in the following manner: 

where E,(x) is the z-component of the electric field in vacu- 
um at z = 0, and we have assumed for simplicity 
a, = a, = 0. It is easy to verify that the Fourier components 

of the longitudinal field E (x) satisfy the relation 

i k E s ( k ) = l k l E , ( k ) .  (39) 

Eliminating the fields Ex and E, with the aid of (37)-(39) we 
obtain the following equation for polarization: 

=qlZe , ,  [ ) ( a d  ( x - x )  'p ( x ) ,  (40) 
- ca 

where 

,d (5-x') = ( ~ - x ' + i 6 ) - ~ +  (x-5'-i6) -', 

cp ( x )  =p""x) P . (x ) .  

At a sufficient film thickness g (x) = d = const the ei- 
genfunctions (40) constitute surface waves with dispersion 

-x,,i=kz-q I zd ~ , - ' l k l .  (41) 

We note that the interaction of the exciton polarization with 
the longitudinal electric field has led to the appearance of a 
term linear in I k I in the SP dispersion law (this question has a 
long history, see, e.g., Refs. 9 and 10). 

Let now g (x) # const. At sufficiently small d we can neg- 
lect the right-hand side of (40). Then (40) takes the form of a 
Schrodinger equation with a potential V(x). The region of the 
continuous spectrum in this equation corresponds to x i  < 0. 
The discrete levels corresponding to local vibrations of the 
polarization are located in the region x i  > 0. With increasing. 
d, as can be seen from (41), the boundary of the continuous 
spectrum shifts towards lower frequencies, so that the dis- 
crete levels land in the region of the continuous spectrum. In 
this case, as is well known, quasilocal states are produced 
and lead to the appearance of resonant peaks in the SP scat- 
tering amplitude. The width of these peaks is proportional to 
the probability of the decay of the local mode into surface 
waves, and their position, generally speaking, does not coin- 
cide with the position of the discrete levels. 

The dependence of the width r of the resonant peak on 
the frequency o, of the edge mode is given by Eq. (36), in 
which all the edge-mode decay processes are taken into ac- 
count. Estimates in accord with (33) and (36) show that at 
w, 5 omin (omin corresponds to the minimum in the disper- 
sion dependence shown in Fig. 1) the width of the resonance 
peak is 

which is much less than the characteristic scale of wll - w,. 
Thus, at o, < w,, there should be observed in the spectrum 
of the conversion coefficients sharp resonant peaks or dips at 
the frequency w,. At w, > w,, a new channel appears for the 
decay of the edge mode into short-wave SP. This leads to an 
abrupt increase of r (0) at w > w,, , so that even at a small 
deviation w, - w,, -r, the resonant singularities in the 
conversion coefficient, which are connected with the edge 
mode, become smeared out. 

We call attention to a characteristic feature of the radia- 
tive width of the edge modes at w, < a m i n .  In this case, as 
already noted, the decay of the edge mode is due to its inter- 
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FIG. 2. Transmission coefficient W,/ W,. 

action with the transverse electromagnetic field. From the 
estimate shown above for r1 it follows that r1 a C-I. Since 
the radiative width of the atomic terms ro a c - ~ ,  the result 
obtained can be represented in the form rl ~ r , , ( o a / c ) - ~ ,  
where a is a quantity of atomic scale. The parameter (wa/ 
~ ) - ~ - 1 0 ~ - 1 0 - ~ ,  SO that the radiative width of the edge 
mode turns out, in a certain sense, to be gigantic, as is the 
case for one-dimensional excitons." We emphasize, how- 
ever, that in the case considered by us the enhancement ef- 
fect is much more considerable than for one-dimensional 
excitons in vacuum, where r = r,(wa/c)-I. The reason is 
that the quantity r1 is determined mainly by decay pro- 
cesses into a surface wave, and not into volume radiation as 
in Ref. 1 1. 

Figures 2-5 show the frequency dependences of the 
conversion coefficient for the case R = 0, when there are no 
edge modes (curves I) and when account is taken of the edge 
modes with frequency wozomin (curves 111). We note that at 
0, 2 omin the quantity IA (w)l does not have a characteristic 
Lorentz peak at the frequency w,, owing to the strong depen- 
dence of r on the frequency at w, 2 omin. Nonetheless, as 
seen from Figs. 2-7, the conversion coefficients contain reso- 
nant singularities near w,, , which are due to the abrupt 
decrease of the quantity y(w) [see (33)] as o+wmin. 

FIG. 3. Reflection coefficient Wd W,. 

FIG. 4. Coefficient W,/ W, of short-wave surface-polariton excitation. 

We wish to note that the formulas obtained above for 
the conversion coefficients are apparently quite general, 
since they contain only the characteristics ki and xi of the 
surface waves and the function IA I (a),  which can be approxi- 
mated within the framework of the phenomenological ap- 
proach by Eq. (35) of the Lorentz type. 

It can be shown that the energy conservation law 

is satisfied identically for any function A (w) that satisfies the 
condition IA 1' = - 2ReA, thus indicating once more that 
the expressions obtained above for conversion coefficients 
are quite general. 

In conclusion, we emphasize once more the connection 
between the presence of linear currents in the impedance 
boundary conditions and the uniqueness of the determina- 
tion of the power of the polynomial P,, . For an infinite film, 
the impedance boundary condition analogous to (9) is of the 
form 

+ m d 2 H ,  
E,=Z,Huf J F (x-XI)-- dx', 

dx" - co 

F (x-x') =1/2p0x,1 exp [-xi, I x-x'I I . 
The impedance boundary condition without allowance 

for linear currents, for a bounded film, is obtained with the 
aid of the simple substitution f (x - x1)+8 (x)F(x - x')B (x'). 

Wmin Wmax 

FIG. 5. Integral power W'"'/ W, of the volume radiation. 
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In this case the equation of the type (14) will be satisfied not 
by the function Q> (w,k ) a wF'F(w,k ), but by the function 
F(w,k  ). Then, as I wl-co, the function F (w ,k  ) will be pro- 
portional to w" - 2, where n is the degree of the polynomial 
P,, in (17), whereas when the linear currents are taken into 
account we have F (w ,k  ) a w" - '. Near the impedance step 
r = (x2 + Z~)"~+O, the quantity that diverges most strongly 
is the electric field E. It can be easily found from (13) that 
[El2 a r-2(m+'), where m is determined by the asymptotic 
function F at large I wl : F(w,k  ) a wm. 

It follows from the foregoing that the degree of singu- 
larity of the energy density of the electromagnetic field as 
r 4  depends only on whether or not account is taken of the 
linear current in the impedance boundary condition. In the 
former case the field energy is finite at n( 1, and in the latter 
at n(2. The condition for finite energy of the electromagnet- 
ic field near the geometric singularities (edge, tip, etc.) are 
widely used in the theory of diffraction and is called the 
Meixner condi t i~n .~  As already noted, this condition leads 
to a different number of undetermined constants (coeffi- 
cients of the polynomial P,), depending on whether or not 
the contribution of the linear currents is taken into account. 
Introduction of a linear current in the impedance boundary 
conditions decreases by unity the number of undetermined 
constants in the general solution (17), and this is sufficient to 
make the solution fully determinate. This is precisely why 
we can state that a correct choice of the linear current is 
equivalent to a certain supplementary boundary condition 
which, generally speaking, does not reduce to any simple 
supplementary boundary condition such as the vanishing of 
a linear combination of fields and of their first derivatives at 
x = z = o .  

The authors are grateful to L. I. Vainshtein for interest 
in the work and helpful discussions and to N. I. Gapot- 
chenko for the numerical calculations. 

APPENDIX 

Substituting (13) in (1) we have the following integral 
equations for the functions Q> (w,k ) = - F(w,k  )(wk ) -  ': 

(All 
where 

The factorization methods (see Ref. 2) makes it possible to 
obtain the exact solution of Eq. (Al), which takes the form 

where * (w)  are functions that are analytic, differ from zero 
in the upper and lower half-planes of the complex variable w, 

respectively, and satisfy the condition 

$ + ( I L ' ) ~ - ( w ) = 7 $ ( w ) = I t  [ ~ ~ p ( w ) - - % ~ u ( ~ ) ~ ( w ) ] / [ ~ ( w ) - - ~ 0 J ;  

(A41 
pn (w) is a polynomial of degree n, which takes on given val- 
ues at the points 0, - ixl l ,  - ix,, and - k. We do not pres- 
ent these values, in order not to clutter up the exposition 
with excessive formulas. We note only that they are integrals 
of the function in analogy with (19). 

Thus, there are four conditions for the coefficients of 
the polynomial ?i, (w), therefore its degree is n)3. 

A substantial difference between Eq. (Al)  and Eq. (14) is 
the fact that as I w l - + ~  the function $(w)- w, whereas 
$(w)-+l.  It follows from this that $ + (w) -& as I w 1-00, 
and this explains the convergence of the integral in the right- 
hand side of (Al) at n = 3. It is important, however, that at 
n > 3 the indicated integral diverges at large w, so that (A3) is 
not a solution of (Al)  at n > 3. We note that the Meixner 
condition also requires that n < 3, since I E 1 - rS - 2" at small 
distances r from the impedance step. 

It follows from the foregoing that the Meixner condi- 
tion determines uniquely the degree of the polynomial p,, (w), 
n = 3, which is fully specified by its value at the points 0, 
- ixll ,  - ix,, and - k. 

As a result we obtain from (A3) the following expression 
for the function F(w,k  ): 

(A51 
where the coefficients a,B, and yare obtained from the equa- 
tions 

ao( ix , )  +bo(ixL) +ya(O) + o ( k )  =0, 

cx ( ix , , )  +Px(ixL) +yx ( 0 )  +x (k) =0, (A61 
a h ( i x l l )  +ph(ixl)  +yh(O) + h ( k )  =O. 

The functions dw),  x (x), and h (w) are defined as follows: 

x ( w ) = C  ~ o ( % I I ' + ~ ? )  { u q i )  T(r19 qi) + $- ( -q i )T(r l ,  -qt) 
, aQ/awzl,=,, w+q, w-qi 1 7  

where 

Q ( w 7  = [w2p  ( w )  --xo2v ( w )  ] ( I U ~ + ~ ~ ~ ~ )  (w2+xL2) .  

The quantities q,(i = 1,2,3) satisfy the equation Q (q,) = 0 
(Im q, < 0), which is equivalent to 

E, (0 ,  q3)=1; q:,z+xo2ei (a, 41,2)=0. 

Using (A6)-(A9), it can be shown that at w-+$,~ the coeffi- 
cientsp- lxll /x1 l 3  and y - JxII  /xl l 2  are small, and the coef- 
ficient a is given by 
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Thus, in the limit as X ~ ~ / X , ~  expression (AS) coin- 
cides with (22) if the quantity a defined in (24) is replaced by 
6 from (A10). Calculations show that as w - + ~ I I  the quantity 
5 is described by (33) in which q = ep-'( m). 

In the second limiting case, u s , ,  the small coefficient 
is a - I x1 /xII 1, and the coefficients 0 and y are connected by 
the relation 1 + + y = 0. As a result, the function F(w,k  ) 
as a s l  takes the form 

v o x ~ ~ 1 2  l-R,(w+ko) 
F ( w ,  ko)= 

(k,+ix,) $- ( -ko)  I$+ ( w )  (w+ix,) ( w + k o )  ' 

We call attention to the fact that according to (A1 1) we 
have - X(O,ko)#O as u s , ,  whereas F(O,ko) = 0 near 
w = wll [see (22)l. This leads to a substantial difference in the 
angular distribution of the intensity of the volume radiation 
W(v'(8), namely, W("'(0) = 0 as u s l l ,  whereas as w s ,  
an appreciable fraction of the energy is radiated in a direc- 
tion close to normal to the surface ( 8 ~ 0 ) .  

- 
')At o <GII the coefficient rll is real, and lrll I = 1 at w > oil (see the expla- 

nation of Eq. (8) and Ref. 7). 
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