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A quasiclassical approximation is constructed of the quantum analog of the dispersion equation 
for a roton. With the concept of a two-dimensional roton (an elementary excitation localized in 
helium at the interface with a solid substrate) as the basis, the contribution of rotons to the surface 
normal component v is considered. It is shown that at T> 1 K the increment to v, due to the 
quasiclassical branches of two-dimensional rotons, is comparable with the contribution of the 
main branch. Allowance for this increment makes it possible to reconcile the results of neutron 
experiments with measurements of the density of the superfluid component in He I1 films. In 
addition, a dispersion law is obtained for a surface wave of the phonon type propagating along the 
interface between the He I1 and the substrate. The possibility of decay of a surface phonon is 
investigated and the phonon damping coefficient at T = 0 is found. It is proposed that the 
branches of the two-dimensional rotons are direct continuations of the phonon,section of the 
surface-excitation spectrum, a hypothesis whose experimental investigation would be of interest. 

PACS numbers: 67.40.Db, 68.45. - v 

INTRODUCTION 

The properties of few-dimensional systems (electrons 
over the surface of liquid helium, inversion layers in semi- 
conductors, and others) are under intense investigation at 
present. Particular interest attaches to surface phenomena 
in quantum liquids. As far back as in 1966, Andreev' has 
shown that for an incontrovertible interpretation of the ex- 
periments of Ref. 2 on the surface tension of weak superfluid 
solutions of He3 in He4 it is necessary to assume the existence 
of a discrete surface level of an inpurity quasiparticle. Later 
Andreev and Kompaneets3 introduced the concept of the 
surface normal component. Iguchi4 estimated the contribu- 
tion of "one-dimensional" rotons to the processes that deter- 
mine the mobility of charged particles captured by vortex 
filaments. 

Advances in experimental helium physics made it possi- 
be1 to attempt to investigate the singularities of the elemen- 
tary excitation spectrum of a liquid in contact with a solid. 
Recent experiments5 on inelastic scattering of slow neutrons 
in He I1 that fills a finely porous medium have revealed a 
scattering peak at an energy A0z0.54 meV, much lower 
than the energy A ~ 0 . 7 6  meV of a bulk roton. It was found 
that the low-energy maximum is connected with the pres- 
ence of higher helium density near the interface with a solid 
substrate, and that the corresponding excitation can be iden- 
tified with a two-dimensional roton. Similar conclusion were 
drawn by Chester et ~ l . ~ f r o m  measurements of the density of 
the superfluid component in He I1 films, but to reconcile 
satisfactorily the two-dimensional-roton model with the 
thermodynamic experimental data the gap of the two-di- 
mensional quasiparticle had to be chosen equal to 0.4 meV, 
much less than the value of A, given by the direct method.* 

I have sown in an earlier paper7 that at an interface with 
a solid helium has a set of discrete surface levels correspod- 
ing to two-dimensinoal rotons. The cause of such levels is 
that the condensed (by the Van der Waals interaction with 
the substrate) He I1 layer acts as a potential well for the 

roton. The form of the well is determined by the dependence 
of the roton parameters, mainly the gap A (p) ,  on the local 
helium density p = p, + Sp (Ref. 8): 

Only the term linear in the deviation of the density from the 
bulk valuep, is retained in (I),  the explicit form is used for 
the correction to the density9.10 when the distances from the 
plane boundary exceed a, and the notation 

ttm 
(2) 

is used, where c is the speed of sound in helium; it is also 
taken into account that (a I d  /a In p), < 0 (see Refs. 1 1 and 
12). The frequency G can be estimated from the formulaI3 

which contains the refractive indices n,, and n,,, of the heli- 
um and solid substrate, and the characteristic frequencies - 
w,, and Z,,, in the corresponding absorption spectra. As- 
suming nh, - 1 = 0.06, Z,, = 3.8.10'' sec-' (Ref. 13) and 
n:,, z 5 ,  KO, --, 1.5.10'6 sec-', and substituting the remian- 
ing numerical values,'%e obtain y3=: l.lAa3. The term 
U,  = - y,,z3 in (1) determines the energy of the roton at- 
traction to the substrate." 

In Sec. 1 we obtain in the quasiclassical approximation 
the wave functions and the level energies for the special case 
when the two-dimensional roton momentum coincides with 
the characteristic momentump, of the roton in the bulk. The 
next section is devoted to calculation of the increment to the 
surface normal density from the quasiclassical branches. At 
not too low temperatures this increment turns out to be com- 
parable with the contribution of the main branch, so that it 
becomes possible to reconcile the results of the experiments 
of Refs. 6 and 5 (Sec. 4). Finally, we obtain the surface-sound 
dispersion law and obtain an expression for its damping at 
T =  0. 
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1. QUASICLASSICAL APPROXIMATION 

It is convenient to start from the roton Hami l t~n ian '~ .~  

which follows from the alternate representation of the spec- 
trum of the Landau elementary excitations near the mini- 
mum; here U is the potential energy of the roton, p is the 
effective mass, and p = - ifiV. It can be easily seen that the 
momentum part of the classical analog of (3) corresponds in 
the region pzpO to the traditional Landau form (see, e.g., 
Ref. 1 I), but the latter, in contrast to (3), leads to the appear- 
ance ofan operator in the form -, which is nonanalytic 
in the coordinate representation. 

We consider a semi-infinite volume of He I1 bounded by 
a solid substrate (which we choose to be the xy plane). Inas- 
much as in this case U depends only on the distance to the 
substrate, the motion of the roton along the surface (free 
motion with momentumpll ) is separated from the transverse 
motion in the stationary Schrodinger equation for the roton 
wave function belonging to the eigenvalue E. Representing 
the wave function $(z) in the quasiclassical form15 

+(z) =exp [ i o  ( z )  / A ] ,  o  ( 2 )  =IS, ( z )  -ihoI ( 2 )  -I- . . . , 

we obtain (the primes denote derivatives with respect to z) 

The determination of the quasiclassical wave function 
of the roton and of the quantization rule is made complicated 
by the fact that the longitudinal momentum pi,  enters in (4) 
in a nontrivial manner. The situation is simplified in the spe- 
cial (but realistic) casepll = p,, when the calculations in the 
quasiclassical approximation can be carried through to con- 
clusion. Putting pll  = p, and assuming that U (z) < 0 and 
U (00) = 0, we can see that finite motion of the roton corre- 
sponds to E < A ,  and the classical turning points are ob- 
tained from the equation 

The left-hand turning point z, should be determined by the 
behavior of the potential at distances of the order of a from 
the boundary, where the macroscopic approximation ceases 
to hold, so that the deep levels of the two-dimensional rotons 
cannot be investigated within the framework of the ap- 
proach described. As for weakly bound states, the corre- 
sponding classically allowed regions will substantially ex- 
ceed the interatomic distance, and the exact form of the 
conditions imposed on the roton wave function at the inter- 
face with the substrate is in fact unimportant for the deter- 
mination of the energy spectrum. For the sake of argument, 
we simulate the boundary z = 2,-a by a rigid wall on 
which16 

9 b i )  =o, ( z , )  =o. ( 5 )  

At p,, = p, the roton wave function in the classically 
accessible region (z < z,), obtained from (4), is of the form 

1  
( z ) = ,  f { ~ p p ~ z [ E - - A - - U ( z )  ] ) " d r  (7) 

I t  

Analogously, in the classically inaccessible region (z > z,), 
where the solution should attenuate in the interior of the 
helium ( E  < A ), 

I-ti 
+(poi  2 )  = [ U ( z )  - E + A l - Y 8  { A ,  e r p [  ----=-g2(z) ] 

1/ 2  

1  " 
g z ( z )  = - J { 8 p P o 2 [ ~ ( z )  -E+AI}'QZ. (9) E, 

21 

Since the quasiclassical approximation is violated near 
z,, a direct transition from (8) to (6) is impossible. The solu- 
tions can be matched together by finding, as usual,15 the 
exact solution of the Schrodinger equation in the vicinity of 
z, and comparing next its asymptotic forms with (6) and (8). 
Assuming the potential U to vary slowly enough with the 
coordinate, we shall effect the matching in that vicinity of z, 
where U ( z )  can be regarded as linear. It can then be easily 
shown that in the region 

the quasiclassical approach is already applicable, and at the 
same time the potential still deviates little from linearity, the 
inequality (lo), where Q = [8ppi I U (z,)I ] and I is the dis- 
tance over which U(z) changes noticeably (with Q l~ f i ) ,  is 
written with account taken of the quasiclassical-behavior re- 
quirement Id (fi/aA)/dzJ4 1. For the potential U ,  the condi- 
tion ( 10) means 

In the vicinity ofz,, defined by inequalities ( 1  I), we have 
for $ in fact the equation 

ZO"~"+ ( z - z , )  $=O, so= [f i4z , l /24ppoZy3]  I'5, (12) 

which can besolved exactlyI5 (see Appendix I). Matching the 
solution of Eq. (12) with (6 )  and (8) we get 

C,=O, C,=A,&ni/B, C -Ale-3"'/a, A --A -nil4 
4 - 2 -  le . 

The remaining unknown constants A ,  and C, are determined 
by the boundary conditions ( 5 )  at the point z,, which lead to 
the homogeneous system 

C2 exp ( I g1 ( z l )  I ) + A I  {exp [ i  (- lg ,  ( z , )  I + n / 8 )  2 
+exp li ( 1 g, ( 2 , )  I - -3n/8)  I ) =0, 

113) 
-C2 exp ( Ig l ( z ,  j I ) +iAi {exp  [ i ( -  ( g ,  ( z l )  I + n / 8 ) ]  

-exp [ i  ( 1 gl  ( z , )  1 - 3 n / 8 ) ]  ) =O. 

From the condition that the system (13) have nontrivial solu- 
tions 

sin ( I gl ( 2 , )  I ) =0 
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follow the quantization rules7 

{8pp~[E-A-U(~)])"~dz=nRn, n is an integer. (14) 
I, 

Substituting in (14) U (z) = U,(z), we derive for n( 1 

where the argument En points clearly to the case pl,  =p,. 
Thus, at pl l  = p, the number of near-boundary discrete lev- 
els of the roton is infinite; the levels condense to the value 
E = A .  

Strictly speaking, at large distances (in the sense z >A,, 
see the Introduction) the attraction of the roton to the sub- 
strate is described by the potential U4(z) = - y4,z4. Despite 
the utterly negligible contribution of the roton states due to 
the interaction U4 to any thermodynamic quantity, it is use- 
ful to note that a tpl l  =p, the discrete spectrum of the two- 
dimensional rotons in the well U4(z) contains an infinite 
number of levels that condense to the value E = A in accord 
with the law 

En=A-y.h.-hxp {-2nh (2/ypo2y4) "'n). 

We have considered so far the special case pil  =po. In 
the general case the Schrodinger equation for transverse ro- 
ton motion is of the form 

h4$'"+ (pD'-pll" [2h2$"+ (po2-p,12) $1 =8ppO2 [E-A- U (z) ] $. 

(16) 
At values ofpll close top, it is possible to regard in (16) the 
terms containing ( p i  - p i )  as a perturbation. Proceeding in 
the usual mannerI5 we obtain, accurate to ( p t  - pi) ,  the 
energy of the n-th level 

where $, ( p,; z) is an eigenfunction of Eq. (16) atpll  = p, and 
belongs to the value E,(p,). It follows from (17) that 
(dEn/dpll )I,, > 0; the branches with different n (terms of the 
like symmetry) do not intersect.I5 We shall analyze the case 
of arbitrary n) 1. Since the spectrum En (pll ) cannot termi- 
nate at E >  A, it is clear that at a certain pl l  = p , ,  <po it 
should pass through a minimum. A simple investigation 
shows that p,, is given by7 

where $, (p,,;z) is the normalized wave function of the n-th 
level of the two-dimensional roton, and is a solution of Eq. 
(16) at pl l  =p,,. The result (18) can be formulated in the 
form of the following statement: lowering the number of de- 
grees of freedom of the roton leads to a decrease of the char- 
acteristic momentum of the roton compared with the bulk 
valuep,. We note that no information whatever on the fea- 
tures of the field acting on the roton, other than its one- 
dimensionality, were used in the derivation of (18). 

Assume that Eq.(16) is suitble for the description of 
deep levels, and let p,, be the momentum corresponding to 
the minimum of the main branch (in the sense of (18)). As- 
suming the eigenfunctions $, (p,,;z) and the eigenvalues 
E, ( p,,) of Eq. ( 16) to be known in the case pl ,  =p,,, we 
obtain in second-order perturbation theory in the operator 

the energy Eo(p l l  ) of the ground branch of the two-dimen- 
sional roton in the vicinity ofp,: 

where we put A, = Eo( p,,) and 

The effective mass of the ground branch of the two-dimen- 
sional roton 

turns out to be larger than the corresponding bulk value. We 
note, however, that whereas the conclusion (18) is perfectly 
rigorous (at least for weakly bound states), the conclusion 
(19) is based in fact on the assumption that Eq. (16) is valid 
for the description of the ground branch. 

We note also the following. From Eq. (4), written in the 
form 

it follows that at pi  <pi  we can obtain a solution $(z) that 
decreases at large z only if E < A .  Thus, in the regionpll <p, 
the spectrum of the two-dimensional rotons should lie below 
the line E = A .  In the casepi >pi,  as can be easily seen from 
(20), the solutions that decrease as z+ CZJ and correspond to 
rotons localized at the substrate boundary are possible if 

and the line that bounds the spectrum of the two-dimension- 
al rotons at pl l  >p, is given by the equation 

2. ROTON CONTRIBUTION TO THE SURFACE NORMAL 
DENSITY 

The quasiclassical method used above is justified for the 
investigation of weakly bound states of two-dimensional ro- 
tons, and owing to the rapid condensation of the levels with 
increasing n the sums over the discrete set in the thermodyn- 
amic functions can be replaced by appropriate integrals. As 
for the deep branches, they do not enter in the series (15), and 
their contribution must be calculated separately, choosing 
the required parameters by comparison with experiment. 

An important quantity that describes the boundary of a 
superfluid liquid is the surface normal density v introduced 
by Andreev and Kompaneets.' Generalizing their result to 
the case of the contribution of quasiclassical discrete levels 
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of two-dimensional rotons, we find the corresponding incre- 
ment v, to the normal density 

where n, is the Boltzmann distribution function that de- 
pends on the classical roton energy 

To calculate the integral (21) it is necessary to count the 
number of bound states of the roton in the auasiclassical 
approximation. Introducing the dimensionless variables 

and having V 2 g  1 from simple estimates with account taken 
of I U31 < A ,  we get from (22): 

We consider first the case E>A. From Eq. (4), repre- 
sented in the form 

follows the condition of localization of the roton at the 
boundary 

Here all the o: are imaginary, and we can choose a solution 
$(z) that decreases at infinity. From (24) and from the re- 
quirement E > A we obtain 

(the second of the obtained inequalities must be discarded, 
since it is incompatible with (26)). Eliminating E from (24) 
and (26) we arrive at the inequality 

whose solution is 

Finally from (26)-(28) we obtain the regions 

O,(q,2< [ ( i -q l12)2+v2]  "+I-q,,2, ql12>1+v, 
(29) 

corresponding to the quasiclassical energy levels of the two- 
dimensional rotons-to finite motion along the z axis with 
E>A. 

We turn now to the case E<A. A solution $(z) that de- 
creases as z -+  m can now be chosen for any sign of the square 
root in Eq. (25). Expanding the inequality that follows from 
(24) at E S A ,  we get 

from which we obtain the regions corresponding to quasi- 
classical localized state of the roton in the field U,(z) with 
E ,< A: 

l-q,,"v<q,2<1-qI12+v, o ~ q l 1 2 ~ l - v ,  

o < q , z ~ l - q l , z + V ,  1-v<ql12< 14-v. (30) 

FIG. 1. Region of integration over the momenta in (32) (schematic). 

Figure 1 shows the region of integration with respect to 
the momenta in (21). Transforming (21), we obtain 

where 

WZ= I U3 ( 2 )  1/T, 

G z )  = ac.dq11q11~ ~ X P  l -rO2(u,'+q12- 1) ' /8pT I (32) 
(d) 

and the symbol (d) denotes that the integration is over the 
region shaded in Fig. 1 and corresponding to discrete states. 

Taking the foregoing into account and separating the 
contribution to vo from the deep levels to the surface normal 
density separately, we obtain 

where Ai ,  poi ,  and pi are the parameters of the deep-lying 
branches of the two-dimensional rotons. 

Finally, the complete expression for v should contain a 
term corresponding to the excess (on account of the field 
u3(z)) number of rotons in the continuous spectrum. This 
term can be represented in the form 

where 

and the integration in (35) should be over the unshaded re- 
gion of Fig. 1, which corresponds to the continuous (c) spec- 
trum. 

Combining now (3 I), (33), and (34) and carrying out the 
calculation, we obtain at high temperatures, when y,/z: < T 
(see Appendix 11), 
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3. SURFACE WAVES 

It is known" that oscillations having an acoustic spec- 
trum can propagate over the interface between a liquid and a 
crystal. These oscillations have an acoustic spectrum and are 
damped in the interior of both the liquid and the solid. If the 
parameters of the liquid (the sound velocity c and the den- 
sity) are much smaller than the corresponding parameters of 
the crystal, the surface-wave velocity is close to c and the 
energy of such a wave is concentrated mainly in the liquid. 
The distinguishing feature of helium is that such oscillations 
(surface sound) exist also as T-+O and constitute elementary 
excitations that contribute to the thermodynamic quantities. 
Allowance for the capillary phenomenal8 make it possible to 
find also the dispersion of the surface sound. 

With in the volume of the solid (assumed for simplicity 
to be isotropic), the oscillations that led to the surface sound 
are described by the usual equations of elasticity theory19 

where p,,, is the density of the solid, u is the displacement 
vector of the medium, 

is the stress tensor expressed in terms of the strain tensor uik , 
and the velocities c, and c, of the longitudinal and transverse 
waves, connected in known manner with the hydrostatic 
compression and shear moduli, have been introduced. The 
oscillations of the helium in the volume satisfy the acoustic 
equation' 

and the pressure P is connected with the liquid velocity 
v = A p  expressed in terms of the potential p, and with the 
density po, by the relation 

Definite boundary conditions must be satisfied in the heli- 
um-solid interface. The general case of the interface of two 
solids was considered recently by Andreev and Kosevich. '' 
On the boundary between a liquid and a solid we should 
have, in the linear approximation 

Here gio is the surface-stress tensor (see Ref. 18) and the 
Greek subscripts denote coordinates in the plane of the 
boundary; the origin, as before, is chosen on the unperturbed 
interface and the z axis is directed in the interior of the heli- 

um. Conditions (39) were written for the case when there is 
no surface mass (it can be made equal to zero by suitable 
choice of the interface). 

When account is taken of the surface stresses, as shown 
in Ref. 18, thez-component of the displacement vector is no 
longer continuous on the interface2' and the difference 
A, = v, - u, can be represented in the form 

where the matrix azo,, which is symmetric with respect to 
the last two indices, is defined by the derivatives" 

of the thermodynamic potential Z = a - u,,A,, which is ex- 
pressed in terms of the surface energy a, and the essentially 
positive constant 

bzr= (d2aldo,,du,.) 

is the only (ideal liquid) nonzero component of a matrix 
whose general form is given in Ref. 18; the subscript zero in 
the last expressions means that the derivatives are taken at 
uzz = UBY = 0. 

Recognizing 18 that gzB = 0 and gs, = g,, , expressing 
goy in terms of a,, and up,, and choosing the x axis in the 
wave propagation direction, we obtain ultimately the condi- 
tions on the boundary z = 0 in the form 

(c,Z-2ct2) ~ ~ + ~ 1 2 u ~ ~ - p r p ~ p S o 1  =O, 

2ct2u,,= [h,/psol - (c12-2ct2)a,] du,/dx-c~a,,du,,/dx, 

where the constant is 

h,= (d2aldu,du,) ,. 
Representing the solution as usual,'9 in the form u = u, + u, 
where 

div u,=O, rot ul=O, 

and substituting (w,  and w, are the amplitudes) 

u,,= w,k exp ( ikz+xl1'  z-iot) , 
( 1 )  & , = - ~ w ~ x ~  exp ( i k s f x f '  z-iot) , 

U, ,=IU,~C~;(~ '  exp (ikx+xr"'z-iot) , 
u,=-iw,k exp ( i k x f  x r '  z - - i d )  

in the acoustic equations (37), we obtain 
tl.,) - 

XI; - ( k 2 - 0 2 / c ~ t ) ' ~ a .  

Choosing in turn 

q=qo exp(ikx-xkz-iot),  

we have from (38) 

xr= (k2-02/c2) ' I 2 .  

The right-hand sides of (40) describe the dispersion of 
the surface wave, and we can put in them xf') = k and 
w = ck since, as will be shown below, the surface sound ve- 
locity is c, zc<c,,, .As k--tO one can leave out the terms that 
describe the dispersion. Putting w, (k ) = c, k and solving the 
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secular equation obtained from (40) by substituting the ex- 
plicit forms of u and p, we obtain, accurate to the principal 
terms," 

Taking into account the dispersion, we obtain 

it may turn out that B < 0, and in this case the branch w, (k ) in 
the region of small k is absolutely stable at T = 0. If, how- 
ever, B > 0 (we recall that b, > O), the spectrum (42) is 
damped at small k-the surface wave becomes unstable to 
decay into two quanta already at T = 0, and the situation is 
analogous in this case to that in the instability of a volume 
phonon.'O To take into account the corresponding three- 
phonon processes it is necessary to retain in the Hamiltonian 
the principal anharmonic terms. It can be easily seen that the 
most substantial contribution to the perturbation Hamilton- 
ian that describes the processes of interest to us, namely the 
decay of a surface phonon with k 4 ,  is made by the terms 

where r,, is the two-dimensional radius vector in the plane of 
the boundary. In the derivation of (43) it was recognized that 
practically the entire energy of the surface phonon is concen- 
trated in the liquid, and the nonlinear processes in the solid 
were neglected. The quantities in (43) have the following 
meaning: 

is the velocity-potential operator and 

is the operator of the helium-density perturbation. The oper- 
ators are normalized by the condition 

heresis the area of the interface; 2; and 2, are the operators 
for the creation and annihilation of surface-sound quanta, 
and wherever it cannot lead to misunderstanding we put 
cS = c and xk = 0. 

The differential probability of th'e'decay of a surface 
phonon with wave vector k into two phonons with wave vec- 
tors k,  and k, (Ref. 20) is 

It is expressed in terms of the transition matrix element 

1 V j i  1 =R3I26 (k-ki-liz) (3!/2) ( 2 ~ ) ~ h ~ ' ) ~ k k i k z ~ r ~ r , ~ ~ ~ / ~ o ) ' ~ ~  

~ ( ~ r + x k , + x k , ) - ~ { l + ( p ~ / 3 ~ ~ )  [ d ( ~ ~ / p ) / d p l ~ ) ,  

where 

Ei=Ao. (li) , E f = f i o ,  (k,) f fro, (k,) 

are the energies of the initial (Ei) and final (Ef) states with 
dispersion law (42). Upon integration of (4) the final answer 
is obtained precisely when (42) is used, whereas calculation 
with a linear dispersion law leads to divergence in the two- 
dimensional case (it is known that no such divergence occurs 
in the three-dimensional casez0). As a result we obtain for the 
surface-phonon damping coefficient at T = 0 in the case of 
small k 

4. DISCUSSION OF EXPERIMENTAL RESULTS 

In the experimental investigation of the temperature 
dependence of the surface normal density6 one introduces a 
length L ( T )  in accordance with the rule 

wherep, ( T )  is the bulk density of the superfluid component 
and Lo is a constant, so that L ( T )  - Lo is the so-called "heal- 
ing length."6 In the roton-temperature range, v(T) is given 
by (36). Since the resultant expression L ( T )  contains the un- 
known phenomenological constants poi, A i  , and p i ,  a com- 
plete quantitative comparison with experiment6 is impossi- 
ble. 

According to neutron experiments5 the depth, i.e., the 
binding energy, of the discrete level of a two-dimensional 
roton is z 2.5 K. In Ref. 6 the experimental L ( T )  - Lo de- 
pendence was fitted to a formula corresponding to a single 
term of the sum (33). This made it necessary to choose for the 
binding energy of the two-dimensional roton the value ~ 4 . 2  
K, which differs greatly from that in Ref. 5. 

Expression (36) obtained above for v(T) makes it possi- 
ble in principle to reconcile the experimental results of Refs. 
6 and 5. By way of estimates we confine ourselves to the 
assumptions that all the two-dimensional roton levels, with 
the sole exception of the ground one, are shallow. Although 
the quantitiesp,, andp, that characterize the ground branch 
of the two-dimensional roton are unknown, some informa- 
tion on the relation between them can be obtained by starting 
from the fact that in Ref. 5 are given the energies of the two- 
dimensional roton for two value of the wave vector. By suit- 
able reducing the experimental data of Ref. 5 and putting 
poo = p,, we obtain p, -- 1.2 p (the latter does not contradict 
the result (19)). 

Figure 2 shows a plot of L ( T )  obtained on the basis of 
Eq. (36), in which the contribution of the deep levels to v(T) is 
approximated by the single term 

[pao3po'"/2fi2 (2nT)'"I exp (-A,/T) , 

and we put Lo = 11 h;, y, = 1. Ida3, p&pA'2 = I. 1 p&u"2, 
and the gap of the main branch is taken to be A ,  = 6.15 K, 
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FIG. 2. L (T)plottedinaccord withEqs. (46)and(36)andcorrespondingto 
inclusion of one term in v,,. Points-experiment.' 

which is close to the experimental value.' The quantity z ,  
can be interpreted as the thickness of the frozen helium layer 
on the solid surface; in accord with the  estimate^,^ we as- 
sume z, z 2 a .  Estimates show that the contribution of the 
shallow levels to v ( T )  in the region of the "roton" tempera- 
tures is by far not small, and is predominant at T 2  1.4 K. 

Although with the aid of the employed approximation 
of v ( T )  it is possible to obtain satisfactory agreement with 
experiment at a reasonable choice of the two-dimensional 
roton parameters, the question ofwhether the ground level is 
the only deep one (with a binding energy of the order of the 
temperature in the interval 1.2 < T < 1.8 K investigated in 
Ref. 6) remains open. In the presence of other levels with 
relatively high binding energy it would be necessary to take 
into account the additional terms of p,, and for reconcili- 
ation with an experiment of the type in Ref. 6 this would 
necessitate a suitable correction of the numerical values of 
the parameters (in particular, a decrease of p & , / p r  in ac- 
cord with the result of Ref. 18). It seems unlikely, however, 
that there are many such levels. 

Finally, we call attention to the following. We have 
dealt so far with surface phonons and rotons as being two 
types of quasiparticle. One cannot exclude the possiblity that 
actually the surface roton branch (at least the ground one) is 
a direct continuation of the phonon part of the spectrum of 
the two-dimensional excitation (cf. the volume situation). It 
would be of interest to verify this in experiment. 

I am grateful to A. F. Andreev for interest in the work 
and for valuable remarks, and to I. A. Fomin for numerous 
helpful discussions. 

APPENDIX l 

At E < A the equation 

(fi4/8p.po2) 1$'--y,z-~9- (E-A)  $4 

take the form (2) in the vicinity of the classing turning point 
z, = [ y , / (A  - E )I"', where the potential can be regarded as 
linear. Solving (12) by the Laplace method (see Ref. 15) and 
changing to the dimensionless variable = (z - z,)/z,, we 
obtain 

where the ends of the contour C should go off into infinity in 
the shaded region of the 9 plane in Fig. 3, where Re(S5) < 0. 

The asymptotic form of (I. 1) at large I f  1 can be obtained 
by the saddle-point method. At f > 0 the extremum of the 
argument of the exponential in the integrand of (1.1) is 

b 

FIG. 3.  Integration contour in (1.1) as 15 1-m; a) <> 0, b) (<0. 

reached at the points 9 = + (1 +_ i)/f L'4/2112, and the con- 
tour C should pass through two of them: 9 " v 2 '  
= - (1 + i)g 1'42112 in the direction of the steepest descent 

at the respective angles + 3a/8 relative to the real axis (Fig. 
3a). Expanding the exponent near these extremal points we 
obtain 

3 n i  4 1-i 
Ip (i) *const {exp (g) erp (- -- 5"4-26" '~~)  d R  

5 YZ 

whence 
( 2 n  j '" 2% 2% 

$ ( b )  =i.const - 
gals enp (- 5'14) sin (5 5% + 8 

(If the two other extremal points were considered, we would 
obtain an expression that diverges at large 6.) 

At negative f with large absolute values the integral 
(I. 1) builds up mainly in the vicinity of the extremal points 
9(3.4) = f i/< ('I4, where the steepest-descent lines pass re- 
spectively at angles + 3 ~ / 4  to the real axis (Fig. 3b). Ex- 
panding again the argument of the exponential in terms of 
the deviation from the extremal point and integrating, we 
find 

(2n) " n $(c) =i.const- 
I p *  sin (; I ~ I " + - )  4 

We note that we have excluded from consideration the extre- 
ma1 point 9 = I f  Ill4, since its inclusion would lead to an 
increase of the solution as I f  1-W . On the other hand, the 
contribution made by the extremal point 8 = - I f  1 'I4 turns 
out to be exponentially small compared with (1.3). 

Comparing the asymptotic form of (1.3) with the solu- 
tion (6) we conclude that we can put with quasiclassical accu- 
racy 

C,=O, c,=-const ( ~ 1 2 ) ' ~  erp ( - i n / 4 ) ,  , 
C4=const (n/2) '"  exp (in14) ; 

(1.4) 

as for the constant C,, it is of course different from zero, but 
its value cannot be determined from the asymptotic expan- 
sions and must be determined by the boundary conditions 
(5). A simple analysis of the system (13) shows that 
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C2-const.exp(- Ig, (2,) I), 
so that in the region where the solution (6) is matched to (1.3) 
the contribution made by the term with C, is exponentially 
small compared with (1.3) to the extent that the inequality 
I g,(z,)1)4/5)6 I5l4 is satisfied. Comparison of (1.2) with (8) 
yields 

A,=-const (nlZ) '" exp (-3ni/8), 

Az=const(n/2)'" exp (3nil8), 
(1.5) 

after which we arrive at the system (13) and the quantization 
rules (14) given in the text. 

APPENDIX II 

The contribution of the quasiclassical levels to the ex- 
cess normal density v can be represented in the form (see 
(3 1)-(35)) 

The expression G (z) + H (z) does not depend on z and can be 
easily determined: 

where, as usual, we employed the inequality p :,2pT. 
Introducing the dimensionless variables 
7 5  (qlI2+q.2-1)/V, ~ = q , / v ' ~  

and taking the definitions of V and W into account (see (23) 
and (32)), we have 

(11.3) 
where the integration limits are 

s,(T) =('C+'l/V)"', S2('C) =[T-(T~-~)'~] '. 

At "high" temperatures T >  y,/z: =: 1 K we have W2 < 1 for 
all z > z, and carrying out in (11.3) the appropriate expansion 
we obtain, accurate to the principal terms3' 

Integrating now in (11.1) using (11.2) and (II.4), we arrive at 
Eq. (36) of the text. 

"Expressioa(l) is valid forz that are small compared with the wavelength 
A,,- 1000 A, which is typical of the helium absorption spectrum." If 
z>Ao, the energy of roton attraction to the substrate is determined by 
- y , ~ - ~ ,  where y4 > 0 is a c ~ n s t a n t . ~  

"We are investigating the case of an interface between a solid and an ideal 
liquid (helium at I = 0) so that no conditions need be imposed on the 
tangential components of the displacement. 

"See Ref. 21 for expressions of (11.3) in terms of special functions. 
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