
Fluctuations and scattering of light in nematic liquid crystals 
A. Yu. Val'kov and V. P. Romanov 

Leningrad State University 
(Submitted 17 May 1982) 
Zh. Eksp. Teor. Fiz. 82, 1777-1787 (November 1982) 

We investigate longitudinal and transverse uniaxial and biaxial fluctuations in nematic liquid 
crystals. We show that the director fluctuations make a singular contribution not only to the 
longitudinal but also to the biaxial fluctuations. A general expression is constructed in the Gaus- 
sian approximation for the fluctuating contribution of the tensor order parameter to the thermo- 
dynamic potential of the liquid crystal. When account is taken of the spatial dispersion in the 
approximation quadratic in the wave vector, this expression contains twelve independent coeffi- 
cients. In particular, for the difference K,, - K,, of the Frank moduli it predicts a cubic depen- 
dence on the order parameter. The correlation function of the orientation fluctuation is calculated 
for both the nematic and the isotropic phase. A general analysis is presented of the conditions for 
the observation longitudinal and biaxial fluctuations in the usual light-scattering experimental 
geometry. 

PACS numbers: 6 1.30.Gd, 6 1.30.C~ 

One of the characteristic features of nematic liquid 
crystals (NLC) is the existence of strongly developed fluctu- 
ations of the director orientation. These fluctuations have in 
the absence of an external field the character of critical opal- 
escence, and it is they which cause the strong light scattering 
in NLC.' At the same time, two other types of fluctuation 
should appear in nematics, namely, biaxial due to local dis- 
turbances of the uniaxiality of the NLC, and longitudinal 
due to changes in the degree of ordering of the system. The 
change of the ordering can take place spontaneously ("classi- 
cal fluctuations") or on account of director fluctuations. The 
latter contribution to the longitudinal fluctuations is a prop- 
erty of all system with continuous symmetry, by virtue of the 
"modulus-conservation principle."2 A simultaneous de- 
scription of all three types of fluctuation was offered by Stra- 
ton~vich ,~  who used the thermodynamic Maier-Saupe po- 
tential, and by ~okrovskg and Kats4 for a more general 
model of the potential." In the solution of this problem the 
ordering in the NLC was described by a tensor order param- 
eter SaS(r), and the thermodynamic-potential terms that 
took into account the spatial dispersion were taken to be the 
invariants (dSaS/dx,)2 and (dSaS/d~S)2. 

The fluctuation investigations in the cited papers, how- 
ever, cannot be regarded as complete, since the terms with 
spatial dispersion were taken into account in the thermodyn- 
amic-potential expansion in Refs. 3 and 4 were taken into 
acount only in the lowest order in the degree of ordering. In 
particular, the two invariants cited above give only two inde- 
pendent orientational elastic moduli rather than the three 
obtained in the Oseen-Frank theory of NLC and actually 
observed in  experiment.'^^ 

We derive here in a quadratic approximation a general 
expression for the fluctuation part of the free energy. This 
expression yields, when the fluctuations are described by the 
method of Ref. 4, an exact expression that generalizes the 
results of Refs. 3 and 4 for the correlation matrix in the 
Gaussian approximation. A unified description is presented 
for the fluctuations in both the nematic (N) and isotropic (I ) 

plases of the NLQ. In the nematic phase are considered the 
classic and singular contributions to the longitudinal and 
biaxial fluctuations. The results are used to calculate the 
scattered-light intensity and to find the general conditions 
for observing the longitudinal and biaxial fluctuations. 

1. TYPES OF FLUCTUATIONS IN NLC 

The order parameter in NLC is a generally biaxial sec- 
ond-rank symmetric tensor SaB(r) with zero trace.' Its equi- 
librium value in a uniaxial NLC is of the form 

S~BO=S (naOn~~-~Ia6~~) , (1 
where no is the equilibrium value of the director, S is a con- 
stant having the meaning of the degree of ordering of the 
long axes of the molecules along no (S = 0 in the isotropic 
phase). The fluctuations of the order parameter 

( r )  =S=B (r) (2) 
are a symmetric tensor with zero trace. A general tensor of 
this type can be parametrized in the orthogonal coordinate 
frame e,, e,, no in the form4 

L(1) L ( 2 )  II 
qas (r) =qaa (r) +qua (r) +%a (r) (3) 

where 

Here 11,  5,, g3, 14, and o are new variables. Each of the 
quantities q, $', cp and q, LB admits of a simple interpre- 
tation as a change of the equilibrium tensor SzS following a 
definite transformation of the axes (el,  e,, no) -t 
1619 6295)- 

The fluctuations q, 2;) are determined by the transfor- 
mation - Ei  - Ez  - El E z  el=ei - -no, ez=e2 - -no, n=no + -el + - ez. 

S S S S 
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This transformation is an infinitely small rotation; the unit 
vector of the axis and the rotation angle are given by 

(k21 ( E I 2 + E Z 2 )  'l', -El/ (EI2+EZ2) '/', 0) 9 

6= (E,'+E,2) li21S. 

The fluctuations q, $' are determined by the transfor- 
mations of the axes - 

el= (el sin g+e2 cos 9 )  (I+f) ,  - - 
ez= (el cos $-ez sin lp) (I-f) ,  n=no, 

where 

which constitutes dilatations in a plane perpendicular to no 
along the 8, and 82 directions, with respective coefficients 
1 + f and 1 - 5, i.e., it is a biaxial transverse fluctuation. 

Corresponding to the fluctuations p, $ is the transfor- 
mation of the axes - - - 

el=el (l+o/2S), ez=e2 (l+o/2S), n=no (l+o/2S), 

which determines the change of SzD under a homogeneous 
scale transformation. This transformation corresponds in 
fact to a change of the coefficient Sin ( I ) ,  i.e., it is a longitudi- 
nal fluctuation. 

The local oscillations of the director can contribute to 
the longitudinal4 and biaxial fluctuations. To demonstrate 
this it suffices to consider the change of the tensor SzD upon 
rotation of the vector no, taking into account the conserva- 
tion of its length 

n=n0+6n=n0+6nllno+ (Ells) el+ (Ez/S) el. 

Writing down the condition n2 = no2 = 1 in the form 

26nl,+6n,12+ (Ells) '+ (Ezls) "0, 

we find that the fluctuations of the order parameter are of the 
form 

1(f) 
%p=S (nan~-'/3Sap) -Sa:=qap ( 1+6nl,) +i3 (elaezg+e,pePa) 

where 

i.e., in second order in {, and { ,  the director oscillation gen- 
erate longitudinal (5) and biaxial(8, and E4) fluctuation. We 
neglect hereafter the term q, $)Sn, , ,  which of fourth order of 
smallness in {,,*. These fluctuations correspond to rotation 
of the coordinate system and do not change the independent 
invariants of the tensor SUB. The equations given above for 
E 3 ,  14, and 5 can be obtained also from the vanishing of the 
variations of all the independent invariants of the order pa- 
rameter. Such an approach was discussed in general form in 
Ref. 2. The onset of longitudinal fluctuations of this type is 
connected actually with the fact that the local deviations of 
the director decrease the degree of ordering of the system 

along no, while the appearance of biaxial fluctuations can be 
easily understood with theuniaxial ellipsoid as the example: 
when its axis deviates from no the cross section in the plane 
perpendicular to no is no longer a circle. 

The fluctuation tensor q, &(r) in the isotropic phase, 
where there is no preferred direction no, can be constructed 
in analogy with (3) and (4 )  by transforming to the spatial 
Fourier spectrum pMgq and be using for each Fourier com- 
ponent m = q/q as the preferred vector: 

2. ENERGY OF DISTORTION OF HOMOGENEOUS NLC 

The thermodynamic potential of an NLC is a functional 
of the order parameter Sd. Since the potential must be in- 
variant to homogenous rotations, it is a function of only the 
independent invariants of the tensor SaD. Following Refs. 2 
and 4 we choose the invariants to be 

i.e., @ = @ (x,  y ) .  The condition S,, = 0 imposes4 on x and y 
the restriction x3>6y2, which is obvious from the identity 

x3-6y2=2 (si-~z) ( ~ z - s s ) ~  (SJ-st) ', 
where s,, s,, and s, are the eigenvalues of the matrix saD. It 
can be seen from this that the equation x3 = 6y2 is equivalent 
to the condition that SaD be a uniaxial tensor. In this case x 
and y are expressed in terms of S as follows: x = 2S2/3, 
y = 2S3/9.  

The condition for the extremum of the function @ (x,  y) 
at x3 = 6y2 is4 

~ S ~ Q / ~ X + S ~ ~ Q I ~ ~ = O .  (6) 

The solution S = 0 corresponds to the isotropic phase. It is 
assumed here that the biaxial solution 

a@/ax=O, acD/dy=O, 

which gives the unconditional extremum of @ (x ,  y) is not 
realized physically. 

To check whether the second variation is positive, we 
expand @ (x ,  y) in the vicinity of the equilibrium point in a 
Taylor series accurate to terms of second order in 6x and Sy: 

azcD + ( 2 s ~  - + 2sS - 
dxa (naOneOrpaP) 2. (7) dxdy 2 dyZ 

We have used here Eq. (6 )  and the equalities 

which are valid accurate to terms of order &2. 
For the nematic phase we obtain from (4 )  and (7) 

~ @ N = ' / Z  [Ai (E32+E12) +A2021, (8) 
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where 

with all the derivatives calculated under the condition 
x3 = 6y2. The coefficient A ,  was obtained in Ref. 4. 

Since SEp = 0 in the isotropic phase, Sx = papppa and 
Sy = 0. We then have from (5) 

where A = 430 /ax at the point x = y = 0. 
The conditions for the stability of the nematic phase are 

Al>O, Az>O. (11) 

The inequality A > 0 corresponds to the condition for the 
stability of the isotropic phase. 

The temperature T, of the first-order phase transition 
I ct N is determined by the equality of the thermodynamic 
potentials and by the conditions for the stability of both 
phases 

@ (x, y, P, Tc) Ix1=6yz=@ (0, 0, PI Te) 7 

(12) 

Here P is the pressure. 
The temperature T, at which the isotropic phase loses 

its stability is determined from the condition A (TI) = 0, and 
that for the nematic phase is determined from (1 1) in which 
at least one of the coefficients A, orA, vanishes. If the deriva- 
tives 

have no singularities,"A, and A, can vanish in the following 
cases. 

1. a@/ay#O. Substituting (6) in (9) we see readily that 
A, always vanishes earlier than A, -a@ /ax. In this case the 
relations A ,  -d@ /ax, are satisfied at the stability-loss point 
T,, and the degree of ordering S ( T )  differs from zero in ac- 
cord with (6). 

2. a@/ay = 0 at T = T,. It  follows from (6) that in this 
case A ,(T,) = 0. IfSalso tends to zero in this case, A, vanish- 
es according to (9) together with A,, i.e., T3 = T, = T, = T, , 
which corresponds to the tricritical point of the isotropic, 
nematic, and biaxial p h a ~ e s . ~  If, however S{T,)#O, then ei- 
ther A ,  vanishes before A, (this case corresponds to a second- 
order transition into the biaxial phase6) or a@ /ax and the 
sum of the terms containing S vanish in (9) simultaneously, 
i.e., A, = A ,  = 0, giving a tricritical point., 

When the vicinity of the It, N phase transition is de- 
scribed within the framework of the Landau-de Gennes 
model (see, e.g., Ref. 7), 0 (x, y, P,T) takes the form 

where a = a l (T  - T *), a' > 0, c > 0, b > 0; the last coefficient 
is assumed small. In this model 

Such a theory corresponds to our case 1. The first-order 
transition temperature is determined in it by the equality 
T, = T * + b '/27afc, and the temperatures T, and T, corre- 
spond to T * and T ** = T * + b 2/24a'c, which are seeming- 
ly the critical temperatures of the second-order phase transi- 
tions for the metastable isotropic and nematic phases. In this 
case S ( T  **) = b /4c > 0. The temperature dependences of 
the coefficients A, A ,, and A, near the points T * and T ** are 
given by (cf. Ref. 3) 

3. FLUCTUATING CONTRIBUTION TO THE 
THERMODYNAMIC POTENTIAL 

Whereas the order parameter is a function of a point, 
the thermodynamic potential depends not only on the values 
of the order parameter itself, but also on its gradients. As- 
suming the inhomogeneities to be smooth enough, we shall 
take into account spatial derivatives of order not higher than 
the second. The expansion of the thermodynamic potential 
includes terms of the form Sao...S, and 
Sap ... Sy6 V p  S*,, Ve SPd, contracted with respect to all pairs 
of indices. There are no terms linear in the gradients by vir- 
tue of the symmetry of nematics.' In the derivation of the 
general expression for the fluctuating part of the potential 
we confine ourselves to terms quadratic in pap. They ex- 
clude from consideration different terms that differ by the 
value of the surface energy, it is convenient to transform to 
the spatial Fourier spectrum paBVq. (To simplify the notation 
we shall omit the subscript q hereafter.) The general expres- 
sion for the fluctuation contribution to the potential will 
consist then of all the possible invariants obtainable by con- 
tracting the two tensors pap, an even number of vectors q, 
and the tensors Szp. Taking into account the form of the 
tensor SEp [see (I)], we can construct these invariants by 
contracting the two tensors pap, an even number of vectors q 
(0 or 2), as well as an even number of vectors no. There are 14 
such invariants: 

(PaeTea, (Pa~(P6aqlqlr qafi%3rqaq~, (14) 
( p a ~ ( ~ ~ + a ~ n t ,  (pa~(PTanaOnp.~n:n:, (Pa~(pgaqr~antnaO, 

(pafi(~6T~b~~naOnt~ C P ~ B ( P P ~ P ~ ~ J ~ T O ~ ~ O ,  

( P ~ B ( P T ~ Q ~ Q B ~ T ~ ~ ~ ~ ,  (pae(Pr~~a~~ns~na~, 

( P a ~ ( ~ ~ r ~ b q P n a O n T ~ n 6 0 n ~ ~  ~agpTap~p~ncn~~n60n~, 
(15) 

(pa~(PTaqPqPna~ne~nT~na~, (pas(p~aq~qfl~Oncn~n60n,On,O. 

In the isotropic phase, where there is no preferred direction 
no, the first three invariants of (14) remain. We note that the 
invariants (14) and (15) stem from terms of different order of 
smallness in S. Thus, only 3 invariants (14) are preserved in 
second order in S, 9 invariants in the third, 13 in the fourth, 
and all 14 in the fifth. The expression for the thermodynamic 
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potential should contain apriori all invariants with arbitrary 
coefficients that depend on S. It can be seen from (7),  how- 
ever, that the coefficients of pepBo and n:nip,,pyp are 
actually dependent-their ratio is equal to - 2. The reason 
for this connection is that the expansion (7)  is carried at an 
extremum point of @ (x, y), something not taken into account 
in the general derivation of the invariants. 

For the calculations that follow it is convenient to 
choose 

e 2 = [ n o ~ q ] / q  sin 0, e l - - [ e Z x n o ]  

where B is the angle between the vectors no and q (Ref. 1). 
Using these unit vectors in Eqs. (4) and summing the invar- 
iants (14) and (15) with 13 arbitrary coefficients, we obtain 

6 Q N = ' / z [ K , ~ , " + K ~ ~ z 2 + C t  ( E 3 ' + t r 2 )  

+C202+2D ( ~ , ~ ~ + t Z t ~ )  + ~ H E ~ ~ + ~ F E I ( J I  9 (16) 

where 

Ki=q2[ Ks+ (Ks3-K,,) cos2 01 /S2,  

C,=A,+q2 (b,+c, cos2 0 ) ,  i= l ,  2; 
(17) 

D=q2d sin 20, H=q2h sin 20, 

F=q2f sin2 0.  

Here A ,,, , b,,, , c,, ,  , d,f, h, Kii, i = 1,2,3 are independent 
coefficients. We point out that the modes 6 ,  and 6, have not 
four but three independent coefficients, corresponding to the 
number of Frank elastic moduli in NLC [this decreases the 
total number of coefficients in (17) to 121. We note that 
1/2(K,{ : + K$ :) in the r-representation takes the form of 
the usual NLC energy 

l/ZKli (div n) 2+'/2K2z ( n 5 o t  n)Z+i12K33 [no x rot n]  Z ,  

where n = no + ( f , / S ) e ,  + ({, /S)e, .  
It can be seen from the foregoing construction that all 

these coefficients are made up of terms of different order in 
S. In particular, the Frank moduli can be represented in the 
form 

K,,=k,Szf  g,S3+. . . , K22=kzS2+gzS3+.. . , 

where k , ,  and g , , , ,  are independent constants. It follows 
from this, in particular that K l l  - K,, --S ,, a fact that lends 
itself to experimental verification. 

Using (5) and (14) we obtain a similar equation for the 
fluctuation contribution to the thermodynamic potential in 
the isotropic phase 

6Q1='/z[A+q~(Lt+'/2Lz) I (EI'~+EZ'~) 

+'/2(A+q2Lt) (Es'V+g,'" ++'I~[A+q2(Li+21sLz)] u", (19) 

where L, and L2 are certain constants. 
The condition that the quadratic form (16) be positive- 

definite are 

Kl>O, K2>0, KICI-D2>0, K2C,-D2>0, 
(20) 

(K,Cl-D2) (KtCz-Hz) > (FKl-DH)'. 

From this it follows, in particular, that C ,  > 0 and C2 > 0. 
The analogous conditions for (19) are written as 

A>O, L,>O, L,+2/3L2>0. (21) 

4. CORRELATION FUNCTION OF THE ORIENTATION 
FLUCTUATIONS IN NLC 

From Eqs. (4) and (4a), using the identity 

and the equality 

e l=  ( m - n k o s  0) /sin 8, m=q/q,  

we obtain for the chosen system of unit vectors the correla- 
tion function of the orientation fluctuations 

f ( t z 2 )  (naon:BBb+naon~Bm+n~On:Bab+n{nbOBa,) 

+GS2> (Aa7~ea+AaaBe7+As7Baa+ A B ~ ~ T )  

+ ( j h 2 )  (&a-Baa) (-4ra-B~a) 

f ( v 2 ) D a B  ( n o )  DTa ( n o )  + ( ~ a t 3 )  ( ~ a T ~ p a +  Babc~a+B~~Caa+B~b~ar~) 

t ( ~ , j ~ >  [Cab (Arb-Bra) +C7b (Aae-Baa) I (22) 

+(Eta> [ D ~ ~  (no)  C,bf ( n o )  

+(z'a> [Dae (no)  (ATb-BTb) (no)  (A=@-Bae) 1 9 

where 

To calculate the mean squared fluctuations in the ne- 
matic phase it suffices to invert the matrix of the quadratic 
form (16).' The problem is greatly simplified because this 
form is a sum of two independent forms of the variables 
f ,, 6, and l, ,  14, u. Inverting the matrices of these quadratic 
forms we have 

<E19=T(C,C2-F2)/Az, (Ez2>=TCt/At, 

<E32>=TKz/A,, <~,z>=T(KtC2-H2)lA2r 

where 

If the terms containing q in (23) are assumed small, we can 
write accurate to terms of order q2 
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where 

We point out that the fluctuations (f  ) and (< : ) in (25) 
coincide in this approximation with de Gennes' known re- 
sults. ' 

All the nonzero correlators of the nonclassical quanti- 
ties g,, i4, and 5 can be represented with the aid of (4a) and 
(25) in the Gaussian approximation in the form 

where - I ZL 

0 - t o  

f* (x,) =u [4uZzt4up+1+ ( ~ ~ - 1 )  (2uv*cos 0 )  2 1  -,, 
p=v cos e+ (1-v2)'" sin 0 cos W, xj=K,3IKjj, 

One of the inner integrals (with respect to u or w )  can be 
easily calculated here. 

All the cross correlators in (22), made up of classical and 
nonclassical quantities, are zero in the Gaussian approxima- 
tion. 

In the isotropic phase we have from (5) and (19) 

where 

EaE:a (m) =6aTmsma+6abm,ms+ Gprm,mb 

Equation (27) agrees with the result of Straton~vich.~ 

5. CONDITIONS FOR OBSERVING LIGHT SCATTERING BY 
BlAXlAL AND LONGITUDINAL FLUCTUATIONS 

When light scattering in NLC is considered it is usually 
assumed' that the light propagates just as in an isotropic 

medium. In this case the intensity of the light scattering by 
the dielectric-tensor fluctuations Sen@ can be written in the 
form9 

l a 5  (q) -Tor (k,) TB~'  (kp) ( 6 ~ m ,  q%+, -q)E&**, (29) 
where q = k,, - k,, , k,, and k, are the wave vectors and a 
and f l  are the polarization vectors of the incident and scat- 
tered light, and E = aE,, where Eo is the amplitude of the 
incident light and 

T,, ( k )  =ti,-k,k,/k2. (30) 
The Greek subscripts in the right-hand side of (29) are the 
unit vectors of the orthogonal coordinate system, one of 
which coincides with P, and there is no summation over P in 
(29). 

In the light-scattering problem it is most convenient to 
use as the order parameter the anisotropic part of the dielec- 
tric tensor 

S,, ( r )  =M ( r )  -'/a~ae&rr ('1 1 7 

where M is a normalization constant. In this case 

( G ~ a g .  q 6 ~ ~ a ,  -q)aGasra(~). (31) 

If we do not specify the order~arameter ,~ the connection 
between ( S E , ~ , ~ S E ~ ~ ,  - q )  and GaB,, (q) differs from (3 1) in 
that the tensors q, i$),q, LD of (3) are multiplied by ines- 
sential numerical coefficients. 

In the nematic phase, the main contribution to the scat- 
tering is connected with the fluctuations of the director, i.e., 
with the modes (6 : ) and (6 : ). Therefore the biaxial and 
longitudinal fluctuations are easiest to observe in experi- 
mental geometries in which the director fluctuations make 
no contribution. 

The condition for the absence of these contributions is 
the satisfaction of the equation 

for any elno, p = k, /k, . 
This condition can be easily obtained by substituting (4) 

in (29) and (39) and taking into account the statistical inde- 
pendence of the modes {, and f,. Recognizing that the scat- 
tered wave is transverse, (p - P ) = 0, we have from (32) 

Since this equation should be satisfied for any elno, it is equi- 
valent to the relation 

a (@no) +@ (an0)  =Ino, (33) 
where 1 = I (a, 8 ,  no) is a scalar function. 

Considering the cases I = 0, I #O; a = 8 ,  a fa, we find 
that (33) is satisfied only in the following cases: 

(an" )=@no) =0, no= (a*p) / [ 2  ( I *  (up)  ) ] ". (34) 
In the usual experimental geometry on light scattering9 

it is assumed that the incident light is directed along the x 
axis of the laboratory frame ( x ,  y ,  z j, and the scattering is in 
the xy plane, the polarization a of the incident light taking 
on values z or y ,  and f3 of the scattered light is either z or lies 
in the xy plane. 

Analyzing the conditions (34) in this coordinate system, 
we easily obtain experimental geometries in which there are 
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TABLE I. Light-scattering experimental geometries in which the director fluctuations 
make no contribution. 

no contributions to the scattering from the modes (6 : ) and 
(c $ ). These geometries are listed in Table I. (In the table, a 
is the polarization of the incident light, f l  the polarization of 
the scattered light, and no the director direction.) In all the 
geometries, the scattering angle is p, for which 
cos p = (x k,,)/k, is arbitrary. The geometries 1, 2, and 8 
were cited earlier in Refs. 2 and 4, and the first condition of 
(34) in Ref. 3. 

From Eqs. (22) and (3 1) we easily obtain the scattering 
intensities that correspond to these geometries: 

1: I,z-4/,<e2>, 2: I,'-< lF4+1/3a]2>, 3.5: I,;=I,~-(P>, 

2 sin2 cp 1-3 cos cp - 
4.6: I,,'=IZV - 

3-cos cp (3- GOS (P)' 

The proportionality coefficient is the same in all these equa- 
tions. The sign plus or minus in (35) for geometry 7 depends 
on whether the director is aligned with the vector a + P or 
a - p. We point out that it follows from (17) and (24) that 
(6 :)q2, and in the case of dispersion this cross correlator in 
(35) can be neglected. The classical and nonclassical contri- 
butions to (35) can be separated since they have different 
angular and temperature dependences. 

For arbitrary polarization vectors a and P satisfying 
only the condition of transversality of the electromagnetic 
waves, we can reconstruct from (34), using the values of a 
and 8 ,  the director orientations at which the modes (6: ) 
and (6 $ ) make no contribution to the light scattering. It is 

interesting to note that at a# P there exist three such direc- 
tions of no, which make up an orthogonal triad: 

If the optical anisotropy is taken into account in the 
light scattering (see, e.g., Ref. lo), then Eqs. (29) and (30) 
cannot be used. It can be shown, however, that in the geome- 
tries 1-3,5, and 8 the fluctuations of n make no contribution 
to the scattering even in the presence of optical anisotropy. 

In conclusion, the author thanks L. Ts. Adzhemyan for 
interest in the work and for valuable advice, and E. I. Kats 
for a helpful discussion. 

"We note that the longitudinal fluctuations investigated in the cited pa- 
pers differ in character, viz., classical fluctuations in Ref. 3 and those 
generated by the director fluctuations in Ref. 4. 

2~Actuallyitsufficesthatthequantitiesd 'Qr /axZ,SaZ@ /dxdy,andS 2#@ / 
ayZ have no singularities. 
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