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The quantum inverse-scattering method problem is used to show that the Dicke quasi-one-dimen- 
sional model of superradiance theory is completely integrable. Commutation relations are ob- 
tained for the action-angle variables, and the eigenstates and eigenvalues of the commuting inte- 
grals of motion of the model are found. It is shown that the eigenstates of the system include, 
besides "continuous" spectrum states corresponding to usual spontaneous emission, also bound 
complexes of quasiparticles (quantum solitons) that correspond to the Dicke superradiance. 

PACS numbers: 42.50. + q 

51. INTRODUCTION 

Dicke' predicted in 1954 collective spontaneous emis- 
sion from a system of two-level atoms that interact via a 
transverse electromagnetic field-the Dicke superradiance 
(SR). Whereas in the case of ordinary spontaneous radiation 
the individual atoms decay independently of one another 
with a characteristic decay time T I ,  in the case of the Dicke 
effect the time rC required for the system of excited atoms to 
reach the ground state is inversely proportional to their 
number No, i.e., 7, cc No- ' , and consequently the SR intensi- 
ty is proportional to the square of the number of emitters, 
N i .  

Interest in the investigation of the Dicke effect in- 
creased strongly after the first observation of SR in the opti- 
cal band,' and by now several methods of describing the 
phenomenon have been published. We shall not present here 
the results in any detail, since the present status of the experi- 
mental and theoretical research into this problem is treated 
in a rather exhausting re vie^.^ We note only that in contrast 
to our present paper, the approaches used up to now are 
approximate, since all involve some method of decoupling 
the correlators in the averaging of the Heisenberg equations 
of motion. At the same time, as shown in earlier brief com- 
munication~,~.~ the quasi-one-dimensional quantum model 
of SR theory, a detailed description of which is given in the 
second section of this paper, belongs to the class of complete- 
ly integrable models of quantum field theory (see Refs. 6 and 
7). We use here the method of the quantum inverse problem 
of scattering, developed in Refs. 6-9 for a number of exactly 
solvable field-theory models. 

The quantum inverse-problem method makes it possi- 
ble to transform from a description of a system in terms of 
local fields to a description in terms of variables such as ac- 
tion and angle, which are the scattering data for a certain 
auxiliary quantum spectral problem (see Cj 3 of the present 
paper). The transition to the description of the system in 
terms of variables such as action and angle, and the simple 
commutation relations for these variables, make it possible 
in turn to determine the eigenstates and the eigenvalues of 
the commuting integrals of motion of the investigated mod- 
el. It was found that the eigenstates of the system include, 
besides the single-particle states of the "continuous" spec- 

trum that correspond to the ordinary spontaneous radiation, 
also bound states of m basic quasiparticles of the system. 

These bound m-particle complexes, which in analogy 
with the classical inverse-problem method" can be called 
quantum solitions, have a spatial dimension ro inversely pro- 
portional to the number of particles contained in them, 
ro cc m- I .  It is therefore just these eigenstates of the model 
that should be set in correspondence with the Dicke SR 
pulses. 

52. DESCRIPTION OF MODEL AND BASIC EQUATIONS 

A gas of two-level atoms that interact with a transverse 
electromagnetic field is described in the dipole approxima- 
tion by the Hamiltonian 

-d J d3r [E+ ( r )  P (r) +P+ (r) E (r) 1,  (1) 

where w, ,  is the frequency and d the dipole moment of the 
transition of the two-level atom. The operators P (r) and n(r), 
which satisfy the commutation relations 

[P+ (r)  , P (r') ] = n  (r) 6 (r-r') , 
[P (r) , n (r') ] =2P (r) 6 (r-r') , (2) 

[ n  ( r )  , P+ (r') ] =2P+ (r) 6 (r-r') , 

are the operators of the polarization and population per unit 
volume of the medium and are connected with the popula- 
tion and polarization operators ni andp, of a single atom by 
the relations 

A'* No 

P(*) = x pi6 (r-ri), n (r) = x nj6 (r-r,), (3) 

where No is the total number of atoms in the system. The 
electric-field intensity atom can be written in the form of an 
expansion in the photon operators 

E (r) = i  (2no.W) '*o,eiqr, (4) 
q 

where w, = clql is the photon frequency and Vis the volume 
of the system. 
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Equation (1) is based on a number of assumptions. First, 
we assume that the transition w,, of a two-level atom is the 
same for all atoms that make up the gas. It will be shown 
below ($5) that this simplification is of no principal signifi- 
cance and the inhomogeneous width of the transition line 
can be taken into account within the formalism used in this 
paper. 

Second, we have left out of the interaction of the atoms 
with the electric field terms of the type E +P + + H.c., which 
describe simultaneous creation (annihilation) of a photon 
and excitation in the atom. This approximation is widely 
used to describe resonant interaction of radiation with mat- 
ter, and is frequently called the rotating-wave approxima- 
tion. Its physical justification is the prominent role of the 
photons whose frequency is close to the transition frequency 
o,, of the two-level system. This circumstance allows us to 
retain in the expansion of the operator E (r) (4) only the con- 
tribution of the resonant photons: 

where lqol = w12/c, and k = q - q,. 
Expression (5) is the quantum analog of the transition to 

"slow" variables, which is used in the description of reso- 
nant interaction of a classical electromagnetic field with 
matter. In the quantum case, and important consequence of 
the changeover to the slow variables z (r) and 2 +(r) is that 
these variables are the canonical variables of the system: 

[B(r), E+ (r') ] =2nmI2S (r-r') . (6) 

Separation of the rapidly oscillating part must be car- 
ried out also in the polarization operator P (r,t ): 

P(r ,  t )  =p  (r, t )  e ' (q~ ' -~~z t ) .  

The commutation relations (2) do not change form in 
this case. 

In the Hamiltonian (1) we take into account interaction 
with one of the two possible polarizations of the transverse 
field. Strictly speaking, this is justified either in the case of an 
oriented gas of anisotropic two-level systems, or in the case 
of an isotropic transition under the assumption that the ini- 
tial state of the system is specially prepared. For example, if 
the excited state of the two-level atom corresponds to a total 
angular momentum J = 1, and the ground state to J = 0, it 
can be assumed that all the atoms have in the initial estate 
state identical projections of the total angular momentum on 
the quantization axis. Allowance for interaction with the 
second possible polarization makes it necessary to go outside 
the framework of the two-level approximation and is un- 
doubtedly vital. 

It is known (see, e.g., Ref. 3) that an important role is 
played in the Dicke effect by the geometry of the volume 
filled with the atoms. We shall assume here that the sample 
length 1 greatly exceeds its transverse dimension fl, i.e., 
l$fl, where Sis the cross-section area. In addition, we con- 
fine ourselves here to the geometry of a sample with large 
Fresnel numbersF = S/Aol)  1, where A, is the characteristic 
wavelength of the radiation. All this allows us to take into 
account the interaction of the atoms with only those photons 

whose wave vector is directed along the principal axis of the 
sample, thex axis, and also expand, as in Eq. (4), the electric- 
field operator in plane waves. The independence of the oper- 
ators i? ( x) and 2 +(  x) in the Hamiltonian (1) of the trans- 
verse coordinates enables us to integrate with respect to 
these coordinates in (1) and thus make the problem one-di- 
mensional. Integration over the transverse coordinate can be 
carried out also in the commutation relations (2) and (6) 
without altering their form. 

We shall operate hereafter in the system of units 
f i  = c = I /No = 1. In dimensionless units, with account tak- 
en of the remarks made, the Hamiltonian of the quasi-one- 
dimensional quantum model of the Dicke superradiance 
takes then the form 

00 0 

H=-i J dxe'(r)d.e(x)-Y;! dx(e+(x)p(x)-tp+(x)~(s)], 
- Co -OD 

(7) 
where the interaction constant ?t = 2m1,d ' /S ,  and the di- 
mensionless field operators E( x),p( x), and n( x) satisfy the 
commutation relations 

The first term in (7), corresponding to the photon kine- 
tic energy leads to the spectral dependence w = k in lieu of 
the initial spectral dependence w = I k I. Such an approxima- 
tion was already used by Wiegmann in an exact solution of 
the Kondo problem." In our case, just as in Ref. 11, this 
circumstance is of no importance, since the applicability of 
the model is restricted to a parallelogram with sides Ao(w ,, 
and Akgq, = w,,/c, and with a center at the point of inter- 
section of the spectra of the free fields o = ck and w = o,,. 

We have left out from the Hamiltonian (7) a term 

which commutes with the Hamiltonian, since such an oper- 
ation is simply equivalent to a change of the energy and mo- 
mentum reference points. Namely, the origin of the (w,k ) 
coordinate system is now located at the point of the intersec- 
tion of the spectra of the free fields. 

When (7) and (8) are used, the Heisenberg equations for 
the operators E( x ) ,  p( x), and n( x) take on the form of the 
Bloch-Maxwell equations: 

~ ( E ~ + E , )  =-~"'p, ipt=3t11*en, 

The classical analog of the system (10) is extensively 
used in the theory of effects of resonant coherent interaction 
of radiation with matter, such as self-induced transparency, 
photon echo, and others. In these problems, the individual 
radiators are also in phase and the radiation intensity is also 
proportional to N:, but this phasing is due to the external 
coherent field. As applied to the SR problem, where 
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allowance for quantum effects plays a principal role, the 
classical analog of Eqs. (10) was used in a number of papers 
(see Ref. 3 and the literature cited there), with a fluctuation 
source ep added into the equation for the function p( x,t ). 
Such a model was therefore named in the SR theory "quasi- 
classical," while by "quantum model" is meant one in which 
the uncoupled correlators are not binary but ternary. 

The inverse quantum problem method makes it possible 
to analyze the Bloch-Maxwell equations in their operator 
from (lo), without the need for uncoupling the correlators in 
any way. It is therefore natural to define as the quasi-one- 
dimensional model of the Dicke SR the model with Hamil- 
tonian (7), commutation relations (8), and the ensuing evolu- 
tion equations (10). 

53. AUXILIARY QUANTUM SPECTRAL PROBLEM 

Lamb1* has shown that the classical analog of the sys- 
tem (10) admits of an exact solution of the Cauchy problem 
by the method of the inverse scattering problem.1° We show 
here that in the quantum case, too, this model is exactly 
integrable, and obtain the commutation relations for the 
transition-matrix elements of the model. 

We introduce a two-component field $,( x), v = 1,2, 
which satisfy the Fermi commutation relations 

and is connected with the operators p( x )  and n( x) by the 
relations 

n ( x )  =Q2+ ( x )  q 2 ( x  j -Qi' ( x ) Q h  (21,  P ( 2 )  =$I+ ( 2 )  $2 ( x ) .  

(12) 
If we impose on the operators $, the additional com- 

pleteness condition 

the operators p( x) and n( x) [Eq. (12)] satisfy, when (1 1) is 
taken into account, the commutation relations (8). In terms 
of the variables E( x) and $,( x) the operators N and H take 
the form 

.D 

N = S  ~ [ E + ( x ) ~ ( - T ) + * + ( x ) $ z ( x ) ] ,  

We consider the auxiliary quantum spectral problem on 
the finite interval - L<x<L: 

Dx(x, h )  = :Q(x ,  h)  (5, (x .  h) :, (1 5) 

where the matrix Q ( xJ ) is of the form 

and write the matrix of the solutions (1 5) in the form 

( 
q C 2 l  c p ( i ,  

cu (x, a) = 
- , @ I )  @ 2 )  ). 

The symbol :: denotes normal ordering of the operators 
in the spectral problem (15); in particular, the equations for 
p"' and p'2) are 

We define the matrix G ( x,A ) as a solution of (1 5) satisfy- 
ing the boundary condition G ( x = - L ) = I ,  where I is the 
unit matrix. The transition matrix on a finite interval is then 
defined as the value of G ( xJ ) at the point x = L, namely 
TL (A ) = G ( x = L,A ). Using the differential equation meth- 
od proposed by Sklyanin9 for the expanded solution 
G ( x,A ) e G ( x y )  wecan show that the elementsofthe transi- 
tion matrix TL (A ) satisfy the commutation relations (see the 
Appendix) 

R L ( ~ ,  C L )  TL ( A )  @TL(~)=TL(PCL) @TL ( ~ ) R L  ( A ,  p ) ,  (19) 

in which, as found in Refs. 4 and 5, the matrix R, (R,p) coin- 
cides fully with the matrix R, of the nonlinear Schrodinger 
equation (the NS model). "9 The algebra of the transition 
matrix remains the same in our model and in the NS model 
when a transition is made to the problem on an infinite inter- 
val - WJ < x < co . For this transition, the commutation rela- 
tions for the transition matrix on an infinite interval 

retain the form (19) with the matrix R ( R y )  for the infinite 
interval: 

We write down here the commutation relations for the 
operators A ( A ) and B ( A ), which we shall need later on: 

[ A ( h ) ,  A ( p ) l = [ B ( h ) ,  B(p)I  =O, 
h-y-ix (21) 

A ( h ) B ( p ) = - - B ( y ) A  (A).  
A-CL 

Using (1 8), the operatorsA ( /Z ) and B  ( A ) can be written 
in the form 
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OD OD 

X + i~; I dx cp (x, h) E (x) - - 1 dx (x) cp (x, h) $z(x), 
- m 

ch - m 

(224 

where we have introduced the symbol k = x/A - A, and the 
functionsg( x,A )and p( x,A ) are connected with pl( xJ ) and 
p2( x,A ) by the relations 

Expression (22a) and the system of differential equations for 
the functions p( x,A ) and g( x,A ), which can be easily ob- 
tained from (18) and (23), make it possible to find the expan- 
sion of the operator 1nA ( A )  in the reciprocal powers of the 
spectral parameter iA: 

- 
ln A (A) = a,, (ih)-". 

The coefficients a, in the expansion (24) are the com- 
muting integrals of motion of our model; in particular, the 
coefficient a, coincides with the operator N of the number of 
quasiparticles of the system, while a, coincides with the Ha- 
miltonian (14) of the model: 

In the derivation of (25) we used a shift, which we shall 
find useful later on, of the spectral parameter A in the opera- 
torA ( A ), namely A-il + k/2.  We note also that the formal 
justification for the expansion (24) are the results obtained in 
Ref. 13 for the NS model. 

We have thus changed over, with the aid of the auxiliary 
spectral problem (15), from a description of the model in 
terms of the local fields E(  x) and $, ( x) to a description in 
terms of variables A ( A ) and B ( A ) of the action-angle type. 
The expansion (24) of the operator 1nA generates an infinite 
set of commuting integrals of motion of the model, while the 
operator B ( A ) will be shown later to be the system quasipar- 
ticle creation operator. 

54. EIGENSTATES AND EIGENVALUES OF THE INTEGRALS 
OF MOTION 

We proceed now to describe the eigenstates of the Dicke 
model. We already know one eigenstate of the system, name- 
ly the state in which there are no photons and all the two- 
level atoms are in the ground state. We shall call this state 
"vacuum" and designate it by 10); its properties are 

E (x) I0)=0, $Z(X) 10)=0, $1 (x) IO)+O. (26) 

From this definition and from expression (22a) for the opera- 
tor A ( R ) it is clear that 10) is an eigenstate of the operator 
A ( A  ): 

A(h) 10>=/0). (27) 

We act on the vacuum with the operator B ( p):  

I (p))=B(p) 10). (28) 

Using the commutation relations for the operators A ( A ) and 
B ( p) [Eq. (21)], we can readily see that (28) is also an eigen- 
state of the operator A ( A ): 

with the eigenvalues of the particle-number operator N and 
of the Hamiltonian H determined from the expression 

The first expression in (30) means that (28) is a single-particle 
state of the model, and the second means that the spectral 
parameter - p is its energy. Retaining the operator B ( p) 
[Eq. (22b)l only the terms that yield a nonzero value when 
acting on a vacuum, we obtain the single-particle state of the 
system in terms of the local fields: 

- rn 

where k = tt/p - p plays the role of the quasiparticle mo- 
mentum. The spectrum of the single-particle state 
w = w(k )(w = - p)  consists, as expected, of two polariton 
branches (Fig. 1): 

(32) 
The multiparticle state of the system is constructed in 

analogy with the state (28), namely 

lY(pl,...,pm))=B(~i) ...B(pm)lO); (33) 
in which case 

N I Y ( p I  ,... , pm))=mlY(pi ,... ,pm)), 

FIG. 1. Curves 1 and 2-polariton branches of "continuous" spectrum, 
3-spectrum o = k of quantum soliton. 
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FIG. 2. 

If all the p, in (33) and (34) are real, the state (33) de- 
scribes m free quasiparticles of the model, and the connec- 
tion between the quasiparticle energy wl = - pl and its mo- 
mentum k, is determined by expressions (32), while the total 
energy per particle is given by 

1-1 

Just as in the NS model (see Refs. 6-8), m quasiparticles 
can form a bound m-particle state I P, ( p)) ,  in which pi are 
complex (Fig. 2): 

The eigenvalue of the operator A ( A ) on this state is given by 

and the energy w is connected with the momentum per parti- 
cle k = (l/m)Zk, by the expression 

The bound state of the quasiparticles (33) and (35) can be 
called, in analogy with the classical theory,lOa quantum soli- 
ton. The sum in (37) converges rapidly, so that for sufficient- 
ly large m) 1 the soliton spectrum is linear, w = k, with a 
small correction proportional to m- '. 

It can be easily seen that the wave function of a bound 
state is limited in the coordinates of all the constituent parti- 
cles, and the spatial dimension ro of the state is inversely 
proportional to number m of the particles it contains: 

55. INHOMOGENEOUSLY BROADENED SYSTEM 

We have investigated so far the quasi-one-dimensional 
quantum model of the Dicke SR under the assumption that 
the frequency w ,* is the same for all the atoms of the gas, and 
have thus neglected throughout the inhomogeneous reso- 

nant-transition line broadening always present in real sys- 
tems. As already mentioned at the beginning of the article, 
this simplification is of no importance in principle and the 
inhomogeneous broadening can be accounted for within the 
framework of the formalism developed in the present paper. 

The generalization of the classical Bloch-Maxwell 
equations to include the case of an inhomogeneously broad- 
ened system is sufficiently well known and is widely used in 
the literature. In the quantum case, besides the correspond- 
ing generalization of the evolution equations (lo), it is neces- 
sary also to examine the commutation relations for the local- 
field operations. We therefore derive here anew the basic 
equations for the case of inhomogeneously broadened sys- 
tems. 

The Hamiltonian of the system is 

where Ho is the Hamiltonian of the free electromagnetic 
field. In addition to the polarization operator P ( r )  and the 
population operator n(r) for a unit volume of the medium (3), 
we shall find it convenient to use the spectral density of these 
operators: 

m m 

p ( r ) = l  dox (o )P ( r , o ) ,  n ( r ) = I  dox (o )n ( r , e ) ,  
- m - m 

(40) 

wherex (w) is the atom distribution function in the transition 
frequency, with 

j do x 
- m 

The commutation relations for the operators P (r,w) and 
n(r,w) should be obtained from the condition that the com- 
mutation relations (2) hold for the operators P (r) and n(r). 
These relations are obviously of the form 

[pi (r, a ) ,  P (rr, or) ] = n(r, 6 (r-r') 6 (a-ol),  
x(o) 

2P+ (r, o )  
[ n  (r, o )  , P+ (r', a ' )  ] = 6 (r-r') 6 (a-of)  . 

x(o)  

After separating in the field and polarization operators the 
rapidly oscillating parts having the average transition fre- 
quency 

transforming to the one-dimensional problem, and corre- 
spondingly making the variables dimensionless, the quasi- 
particle-number operator N and the Hamiltonian become 

OI 

N =  dx{~+(x)~(x)+'/,[n(x)+l]). (43) 
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where we have introduced the symbol A = w - a,,. 
Just as in $3, we express the operators n(x ,A  ) and 

p( x,A ) in terms of the operators $,( x,A ) with Y = 1 and 2: 

n ( x ,  A )  = q 2 + ( x ,  A ) $ 2 ( ~ ,  A )  --$I+ (x, A101 ( x l  A ) ,  
(45) 

p ( x ,  A )  =Q1+(x ,  A)$Z(x ,  A ) ,  

where the operators $,( x,A ) satisfy the anticommutation 
relations 

and the additional completeness relation 

The Hamiltonian (44) and the commutation relations 
for the spectral density of the polarization and population 
operators determine the system of Bloch-Maxwell evolution 
equations for the case of an inhomogeneously broadened sys- 
tem: 

rn 

~ ( E , + E , )  =-YX dAx  ( A ) p  ( x ,  A )  =-zihp ( x ) ,  - S 
-m 

ip t  ( x ,  A )  = A p ( x ,  A )  + ? c ' " ~  ( x )  n  ( x ,  A ) ,  !48) 
in, ( x ,  A )  = 2 1 3 ~ +  ( X ) ~ ( X ,  A )  -p+ ( x ,  A )  e ( x ) ]  . 

The feasibility of solving exactly the Cauchy problem 
for the classical analog of the system (48) by the inverse- 
problem method was indicated in Ref. 14 (see also Ref. 15), 
and we shall use here, just as in $3, these results to construct 
the auxiliary quantum spectral problem. 

The spectral problem for an inhomogeneously broad- 
ened system assumes as before the form (15), but now the 
matrix Q ( x,A ) should be written in the form 

where 

if the spectral parameter /I is real, the integration contour 
circles around the singularity from below. This definition of 
the integration in (49) and (50) is necessary to preserve the 
possibility ofanalytically continuing the operatorA ( /2 )into 
the upper complex h half-plane. 

The remaining calculations are perfectly analogous to 
those of the preceding sections (see also the Appendix). It 
turns out here that the R matrix retains its form (20), and the 
coefficients a, and a, of the expansion of the operator 1nA ( A )  
in reciprocal powers of the spectral parameter i h are ex- 
pressed as before in terms of the quasiparticle-number oper- 
ator N(43) and the Hamiltonian of the system (44): 

We now continue the calculations for the particular 
case of a Lorentz contour of the transition line, i.e., we spe- 
cify the atom distribution function in the frequency x (A ) in 
the form 

In this case the spectrum of the single-particle state of 
the system (28) is determined from Eqs. (50) and (52): 

where w = - p and Im ,u = 0. The presence of an imaginary 
part of the momentum of the single-particle state 

does not make it possible to normalize the wave function of 
this state over the infinite interval - cc, < x  < co . The single- 
particle state, however, has a real physical meaning; for ex- 
ample, it can be excited by a photon incident on the interface 
of the system with the vacuum. We note also that the results 
obtained in the present paper for the single-particle state 
(28), but in the case of an unbroadened and in the case of an 
inhomogeneously broadened system, are not connected with 
the restrictions used in the construction of the model. These 
polariton states can be exactly obtained within the frame- 
work of linear electrodynamics. The damping of the polari- 
ton state in an inhomogeneously broadened system is due to 
dephasing of the electric-field intensity and to polarization 
of the medium (see, e.g., Ref. 16). It is interesting that the 
contributions of these processes to the momentum of the 
motion, as a whole, of the bound complex of quasiparticles 
I P,,, ( p ) )  (33), (35) cancel each other. In the general case of an 
m-particle bound state, when account is taken of (50) and 
(52), the momentum of the I-th particle is given by 

and consequently the momentum of the bound complex 

is a real quantity. 
Concluding thereby the discussion of the Dicke effect in 

inhomogeneously broadened systems, we note that the re- 
sults of the present section make it also possible to investi- 
gate the behavior of the system in interesting cases other 
than that of a Lorentz line (52). For example, choosingx ( A  ) 
to be a two-hump function with maxima at the points A = A ,  
and A = A,, we can investigate the SR effect in a mixture of 
two gases with different transition frequencies and study the 
dependence of the Dicke pulse parameters on the relative 
concentration of the gases. The last remark pertains to the 
theory of self-induced transparency, in which the classical 
analog of the system (48) is used. 
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6. CONCLUSION 

As shown in the present paper, the formalism of the 
method of the quantum inverse scattering problem provides 
perfectly adequate means for a quantum description of col- 
lective spontaneous emission in extended systems. Transfor- 
mation to action-angle variables has made it possible to de- 
termine the eigenfrequency and the spectrum of the 
quasiparticle-number operator and of the Hamiltonian of 
the system. 

The eigenstates of the system include both continuous- 
spectrum states corresponding to ordinary spontaneous 
emission,and bound m-particle complexes that can be set in 
correspondence to Dicke SR pulses. 

It is clear that the initial excited state of the system, 
usually taken to mean a state having only N excited (invert- 
ed) atoms and which can be readily seen not to be an eigen- 
state of the system Hamiltonian, decays in the course of time 
into a set of eigenstate of the Hamiltonian with a total num- 
ber of quasiparticles Nand with a total energy w, ,  N. In the 
limit as t-tm we should therefore obtain asymptotically, 
with a definite probability, a set of bound complexes having, 
generally speaking, different number of quasiparticles, as 
well as a certain number of continuous-spectrum quasiparti- 
cles. 

The foregoing reasoning is to some degree analogous to 
the known results on the exact solution of the Cauchy prob- 
lem in the classical inverse-problem method, lo where the ini- 
tial perturbation also breaks up in the course of time into 
states of a "continuous" spectrum and into soliton states of 
the system. In the case of a large ("quasiclassical") initial 
perturbation, the contribution of the "continuous" spec- 
trum in the final state is exponentially small compared with 
the soliton contribution. If we use this analogy for our quan- 
tum case, we can state that an almost completely inverted 
initial state of the system (as is the case in the reported ex- 
perimentsz,3) should have an overwhelming probability of 
decaying into a set of quantum solitons with a small admix- 
ture of states of the "continuous" spectrum. Thus, the SR 
pulses should contain an appreciable fraction of the energy 
intially stored in the atomic subsystem. 

We note also that the simultaneous existence of several 
complexes of quasiparticles that make up an eigenstate of the 
system explains fully the experimentally observed so-called 
oscillatory SR regime, and no additional arguments are nec- 
essary in this case (see Ref. 3). 

The author thanks V. M. Agranovich, I. V. Lerner, and 
V. I. Yudson for interest in the work and for useful discus- 
sions. 

APPENDIX 

We obtain the commutation relations (19) for the matrix 
element of the transition in the most general spectral prob- 
lem (1 5), (49). Using the integral form of the spectral problem 
for the matrix G ( xJ ), we can establish the following com- 
mutation relations: 

-ix 
[+2+ (x, A ) ,  G (x+O, h)  I = - 

I"+ 1 

where a' = 4 (d + iaY);d,aY, and d are Pauli matrices. 
The commutators 

[$ (x, A), G (x-0, I ) ]  = [ E  (x) , G(x-0: A)] =O. (A2) 
We introduce, by definition 

H,, (x) =G (~4-0,  r? , , )  @G (x-0, h2) =GI (x+O) @G, (x-Oj . 
Using (1 5) we have 

dH,, (x) ldx=:Qi (x+O) GI (x+O) : @Gz (x-0) 

+GI (x+O) @:Q2(x-O)Gp (x-0). (A31 

After reducing the right-hand side of (A3) to a normally or- 
dered form, we obtain with allowance form (Al)  and (A2) 

dH12 (x)  ldx=:r,Z (x) HlZ (I) :, 

where the matrix r,, is given by 

By a direct check with account taken of the completeness 
condition (47) we find that the matrix TI, satisfies the ine- 
quality 

~ ~ r ~ ~ = r ~ ~ ~ ~ ,  (A41 

where 

and coincides with the R ,  matrix of the NS model. The com- 
mutation relations (19) are a direct consequence of (A4). The 
transition to the problem on a infinite interval is by the stan- 
dard method.&' 
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