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We investigate manifestations of field-induced splitting in the spectrum of a test field in the 
presence of a strong field resonant to an adjacent transition in a three-level system with states 
degenerate in the orientations of the angular momentum. We show that since the splitting effect is 
different for different M-transitions the spectrum of the test-field operation consists of a set of 
individual spectral components that can overlap at Js 1 and form a broad common spectrum. We 
note that the envelope of the integral spectrum includes narrow spectral structures that preserve 
information on the natural line width. We analyze the dependence of the shapes of the spectra on 
the types of transitions in a three-level system and on the polarization states of the test and strong 
fields. For linear and circular polarization of the strong field, the problem is solved by a rigorous 
quantum-mechanical approach. A classical description of the orientation of the angular momen- 
tum is used in the case of elliptic polarization of the strong field. 

PACS numbers: 03.65.Db, 3 1.50. + w, 32.60. + i 

1. INTRODUCTION 

Level splitting in the field of intense resonant radiation 
(sometimes called the dynamic Stark effect) is one of the fun- 
damental effects of nonlinear spectroscopy.'~2 It has been 
thoroughly studied within the framework of the model of 
nondegenerate states. Its strongest manifestation is the split- 
ting of the amplification (absorption) lines of test radiation. 

It is known at the same time, however, that real states of 
atoms and molecules are degenerate in the M-projections of 
the angular momentum. Since the matrix elements of the 
operator of the interaction with radiation are different for 
different M-transitions, analysis of field splitting of levels by 
using the model of nondegenerate states is inapplicable to 
real objects. In the particular cases of linear or circular po- 
larization of the strong radiation, it has been qualitatively 
understood that each M-transition produces its own split- 
ting effect; in the upshot, the spectrum of the absorption 
(amplification) of test radiation should contain a corre- 
sponding number of components that correspond to the in- 
dividual M-transitions. However, no concrete analysis of the 
relative positions of these components on the frequency scale 
and of their relative intensities has, to our knowledge, been 
carried out. 

Of special interest are transitions between levels with 
large angular momenta J. In this case the number of spectral 
components can be so large that they begin to overlap. This 
raises the question of the envelope of the spectrum, i.e., of the 
actual shape of the spectral line that should be observed in 
experiment. 

Finally, if the strong radiation has an arbitrary (elliptic) 
polarization, even a qualitative picture of the field splitting 
can be obtained on the basis of the previously developed 
premises. Moreover, a rigorous quantum-mechanical solu- 
tion of the corresponding problem is fraught with consider- 
able mathematical difficulties. These difficulties can, how- 

We investigate here the effect of field-induced splitting 
of levels predominantly under conditions when the lines of 
individual M-transitions overlap. The problem is treated in 
one of the traditional formulations: the absorption (amplifi- 
cation) spectrum of test radiation is analyzed in the presence 
of a strong field resonant with an adjacent transition. We 
consider the cases of circular and linear polarization of the 
strong field, when a rigorous quantum-mechanical solution 
can be obtained, as well as the case of elliptic polarization 
with a classical description of the orientation of J. 

We show that in a sufficiently intense field the spectrum 
has a doublet structure and the forms of the doublet compo- 
nents depend significantly on the polarizations of both the 
strong and test fields, as well as on the ratio of the angular 
momenta of the combining levels. One of the salient features 
of the spectrum is the possible existence of narrow structures 
and abrupt boundaries, that preserve the information on the 
natural (in the absence of the strong field) line width. 

The bulk of the present data on nonlinear spectroscopy 
(in particular, with respect to field splitting), was obtained 
for atomic objects. Nonlinear spectroscopy of molecules, 
which typically have large values of J,  is now undergoing 
intensive development. We hope that the results of the pres- 
ent paper can contribute to a correct interpretation of the 
experimental data of nonlinear-spectroscopy experiments 
on molecular objects. 

2. COMPONENTS OF THE SPECTRUM OF TEST RADIATION 
UNDER CONDITIONS OF STRONG FIELD SPLITTING 

We recall first the main feature of the field splitting 
effect in the nondegenerate-state model. Let the strong mon- 
ochromatic radiation be at resonance with the m-n transi- 
tion, and the test radiation with the m-1 transition (Fig. 1). In 
the case of homogeneous broadening, the work P,, of the test 
field is described by the expression235 

ever, be overcome in the case of large J by using a method3.1 P,=Zho,,l G,I Re 
[ rn l - i ( s t , -Q)  I (N,-pmm) -iGpnm 

based on the classical description of the orientation of the [r,,:--i(Q,,-Q) I [ I ' m , - i Q , ? + l ~ ~ 2 -  
angular momentum. 

1 (2.1) 
G=Edm,/2ft, G,=E,dml/2h, Q = o - o m , ,  Q,=o,-oml. 
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FIG. 1 .  Transitions in a three-level nondegenerate system. , 

Here E and w are the amplitude of the electric field and the 
frequency of the strong radiation. The subscriptp marks the 
corresponding characteristics of the test radiation; rii are 
relaxation constants that characterize the broadening of the 
spectral line in the i-j transitions; N, is the population of the 
level I in the absence of radiation. 

Expression (2.1) contains the populationp,, of the lev- 
el m and the off-diagonal elementp,, of the density matrix, 
due to the interaction with the strong field. They satisfy the 

wherer, and r, are the relaxation constants of the levels m 
and n. The quantity tt is the so-called saturation parameter. 

The dependence of P, on the test-radiation frequency 
(on L?, ) is separated in explicit form in (2.1). The field-split- 
ting effect is due entirely to the presence of the quantity I G 1 
in the denominator of (2.1). It manifests itself most strongly 
under the conditions IG l)r,,, IG l)I',,, and L?( lG I, i.e., 
when the strong field is intense enough. In this case it is 
convenient to rewrite (2.1) in the form 

I AfiNtrn-BiNnm AENIm-BzNnm P,=2fio,l G,1 Re + 
r - i  (52,-52,) r - i  (QP-Qz) 

It is distinctly seen here that the spectral line is a doublet 
whose components have a Lorentz shape with identical half- 
width and their spacing [ a 2  + 41G 12]'12 depends on the 
strong-field intensity. The ratio of the intensities of the com- 
ponents depends on a. In the important particular case 
a = 0 (or IG I2%L?, which means an even higher radiation 
intensity) we have 

i.e., the components of the doublets are of equal intensity and 
are symmetric about the frequency of the m-1 transition. The 
distance between them is governed entirely by the strong 
field (is proportional to its amplitude). 

FIG. 2. The same as Fig. 1 ,  but for degenerate states. 

We consider now a situation wherein the levels m, n, 
and 1 are degenerate in the projections J, , J,, and J, of the 
angular momenta. We assume for the sake of argument that 
the strong and test fields have the same linear polarization. 
Figure 2 shows schematically the optical transitions due to 
these fields. It is clearly seen from this figure that the overall 
system of levels and transitions breaks up into a set of three- 
level subsystems of the type shown in Fig. 1. Each of them 
can be described by the equations given above. The resultant 
work of the test field is given by the relation 

where P, (M)  pertains to an individual M-subsystem (M will 
hereafter be taken to mean the projection of the angular mo- 
mentum of the level m). The results (2.1)-(2.4) remain in 
force for P, (M ), provided the following substitutions are 
made: 

where dm, and dm, are the reduced dipole-moment matrix 
elements. 

It is easy to verify that subdivision into three-level sub- 
systems is possible also when the strong radiation is circular- 
ly polarized. In either case, 

f (M) =I/, (2Jm+1) (JmMJ,-M' 1 lo)', (2.7) 

where a is the polarization index (a = 0 corresponds to lin- 
ear polarization and a = + 1 to circular), (... I ...) is the vec- 
tor-addition coefficient. 

We shall analyze hereafter transitions with large level 
angular momenta ( J,,, ,J, ,J, ) 1). In accord with the asymp- 
totic values of the vector-addition  coefficient^,^ the expres- 
sions for f (M)  take on the form shown in Table I. If the test 
radiation is circularly polarized or has the same linear polar- 
ization as the strong radiation, the data in the table are valid 
for f,(M) (with allowance for the natural substitution 
J,+J,). If, however, the test field has an orthogonal linear 

TABLE I. Values off (M) for different types of transitions and polariza- 
tions at J,,, > 1 and J,  > 1 [ T  denotes linear polarization, + and - denote 
right- and left-hand circular polarizations]. 

- - -  
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polarization, f, (M) takes the following form: 

We proceed now to analyze the absorption (amplifica- 
tion) spectrum of the test radiation. We assume that most 
values of M satisfy the conditions of large field splitting, i.e., 
lG I ST,,, r,,, and that Eqs. (2.3) and (2.4) hold for the indi- 
vidual three-level M-subsystems. We consider first the sim- 
plest case0 = 0, to which Eq. (2.4) with the substitution (2.6) 
corresponds. Thus, the resultant spectrum is a superposition 
of individual line pairs with different intensity and position 
in the frequency scale. According to (2.4), the distribution of 
the intensity among the lines is governed entirely by the 
function f, (M ), i.e., it depends on the polarization of the test 
radiation and on the ratio of the angular momenta of the 
levels m and 1. The positions of the lines on the frequency 
scale relative to the point 0, = 0 are set by the value of 
IG Im, i.e., they are connected with the polarization 
and intensity of the strong field and with the ratio of J,  and 
Jn . 

The lines are distributed in the interval between the val- 
ues 0, = 0 and 10, I < I G I or else In, I < I G //a depending 
on the polarization of the strong field and on the type of the 
m-n transition. For linear polarization and for A,, 
dm - J, = 0, as well as for circular polarization and A,, 
= - + 1, the quantity \if0 depends linearly on M (see Ta- 

ble I); the lines are therefore equidistant. 
In those cases when f (M ) a (1 - M ')/J '), the lines be- 

come strongly condensed on the edges of the spectral inter- 
val ((0, ( = (G (/fi). This case is shown in Fig. 3. 

The relative intensity of the spectral components is un- 
evenly distributed in all cases. In accordance with the differ- 
ent f, (M) for the different polarization states of the test field 
and different types of the m-l transition, a greater weight is 
possessed either by components located closer to the line 
center (see Fig. 3a) or by those farthest from it (Fig. 3b). 

At 0 #O the spectrum components described by (2.3) 
become asymmetric about the point f2, = 0. Their intensi- 
ties are now determined not only by f,(M) but also by the 
function f (M) connected with the strong field. The positions 
of the components on the frequency scale are governed as 
before only by the characteristics of the strong field and of 

the m-n transition. The qualitative results for 0, = 0 re- 
main in force also for 0 #O. Their main consequence is that 
both the distribution of the components over the spectrum 
and their relative intensities have an exceedingly strong de- 
pendence on the field polarizations and on the relations 
between J,, J, , and J,. As a consequence, the form of the 
resultant spectrum undergoes appreciable modifications. 

3. SHAPE OF THE PRINCIPAL PART OF THE SPECTRUM 
ENVELOPE 

We assume that the natural width of the radiation line 
ensures overlap of the individual M-components of the spec- 
trum. Then, in analogy with the known inhomogeneous- 
broadening situation, the resultant spectrum is described by 
a relatively smooth envelope. If the number of components is 
large enough ( J, , J, , J, > I), the summation over M in (25) 
can be replaced by integration. In the case of strong field 
splitting an integrand of the form (2.3) contains a "peaked" 
function of M with smoothly varying parameters. Taking 
this circumstance into account and putting formally r 4  
we can obtain the integration results in the form 

Here N,, and N,, are the total population differences of the 
corresponding levels in the absence of radiation. The sum- 
mation in (3.1) is over those values ofy, for which the inequa- 
lity 

] G(yo)  I 2=Qw(Q,-Q)=~ (3.2) 

is satisfied. This relation specifies, in particular, the spectral- 
region boundaries in which P, differs substantially from 
zero. There are two such regions: 

I/, {Q- [Q2+41G (yo) I , ~ I ' ~ )  GR,GO, 
(3.3) 

Q ~ Q , , G ~ / ~ { Q + [ Q ~ + ~ I G ( Y , )  1:,1'"). 
Thus the envelope of the spectrum is also a doublet, but its 
components are to a certain degree "inhomogeneously" 
broadened. 

FIG. 3. Distribution in frequency and relative intensity of the spectral components at J ,  = 10, J,, = 1 1 ,  J, = 10, a n d 0  = 0; a) 11 (parallel polari- 
zations of the strong and test fields); b) 1 (perpendicular polarizations of the fields). 
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We present for P,, a summary of the formulas, which 
corresponds to expression (3.1) under different polarization 
conditions and for different types of transitions. 

for A,, = 0 and A,, = 0 we have 

(3.4) 
for A,, = 0 and A,, = * 1 

and for A,, = 1 and A,, = & 1 

We have used here the symbol u = O,,(O,, - O ). The + 
sign corresponds to circular polarization of the strong field. 
In all cases, with exception of the transitions lAmnl 
= Id,, I = 1, the value of P,, does not depend on the polar- 

ization of the test field. 
Typical forms of the spectrum at O = 0 are shown in 

Fig. 4. The spectrum is symmetrical about the point O,, = 0 
and has in many cases a doublet structure. The latter is ab- 
sent in four cases, when the function e5, in (3.4)-(3.7) is pro- 
portional to u-'I2 (see also Figs. 4c and 4h). The spectrum 
boundaries correspond to the maximum splitting effect for 
individual M-components and is located at In,, I = I G I or at 
1.0, I = IG //dl. Figures 4e and 4f show that the field split- 
ting effect can be quite pronounced even in the envelope of 
the spectrum, provided definite polarization conditions are 
satisfied. In this case P,, is proportional to (1 - 2u/ 
IG I2)-'l2 = (1 - 2O,, 'IG 12)-112, which indicates a rapid 
growth of P,, when IO,, I approaches the edges of the con- 
tour, or even a divergence. The increase of the intensity on 
the edges of the contour is due to condensation of the M- 
components of the spectrum (see Fig. 3 and its discussion). 
Divergence, on the other hand, sets in when r is neglected. 
The behavior of the spectrum at the edges of the spectrum 
will be detailed below. 

We note that in all cases the area of the contours on Fig. 
4 is the same. The reason is that the area of the contour of 
each individual M component (the integral of expression 

FIG. 4. Spectraat D = 0 in the scale (dip lG, IZ/IG I )  [N,, - N,,T,/(I;, 
+T,)]:a)A,, =0,Am,=O,11;b)A,, =O,A, ,= l , l ; c )Am,  =O,A,, 
=O,l;A,, =O,A,, =l,II;d)A,, = l,A,, =O,II;e)A,, =A, ,=  ],[I; 

A," =1,A,,=0,1;A,,  =A,,=O, +;f)A,,  = A , , = l , l ; A , ,  =o,  
A, ,=1,  + ; g ) A , , = l , A , , = O ,  + ; h ) A , , = A , , = l ,  +;thesolid 
and dashed lines show the contours for coinciding and orthogonal polari- 
zations of the test field, respectively. 

(2.4) for P,, (M) with respect to 0, ) is determined only by the 
value of I G,, (M ) 12. Therefore the area of the integral contour 
depends in turn, by virtue of the properties of the Clebsch- 
Gordon coefficients, only on IG, 12, i.e., on the intensity but 
not on the polarization state of the test field. 

We consider now the more general case O # 0. We note 
that at O #O the terms proportional to N,, and N,, have 
substantially different frequency dependences and they must 
be considered separately. We agree to assign a plus sign to 
the first term (N, >0) and a minus sign to the second 
(N,, > 0). The corresponding spectra calculated from Eqs. 

FIG. 5. Spectra at D # O  in the scale dm, IG"12/IG I; P, > 0 pertains to 
the case N,, = 1, N,, = 0, while P, < 0 to the case N,, = 0, N,, = 1; a) 
A,, =A,, =O,II;b)A,, =A,, =Q,l;A,, =O,A,, = l,II;c)A,, = 0 ,  
A , , = 1 , l ; d ) A , , = 1 , A , , = 0 , ~ ~ ; e ) A , ,  = l ,A , ,=O, l ;A , ,  =A,, 
=o,  +;f)A,,  =A, ,=1 ,1 ;A , ,=0 ,A , ,=1 ,  + ; g ) A m , = 1 , A m ,  
= 0, + ; h) A,, = A,, = 1, + ; the solid and dashed lines show the 

contours for coinciding the orthogonal polarizations of the test field. 
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(3.4)-(3.7) are shown in Fig. 5. As can be seen from the figure, 
the absorption (amplification) spectrum of the test field al- 
ways has the form of a doublet at R $0. The spectral inter- 
vals are set by the conditions (3.3). The doublet components 
differ not only in intensity but can also have entirely differ- 
ent shapes. Just as at R = 0, in some cases the edges of the 
lines take the form of sharp peaks. Their presence is also due 
to condensation of the M components. 

4. BOUNDARY REGIONS AND LINE WINGS 

Equations (3.4)-(3.7), which are based on the approxi- 
mation (3. I), describe sufficiently well only the internal part 
of the doublet line. They no longer hold near the edges (we 
have already seen that they lead even to divergences). It is 
typical that the inner and outer edges (0 $0) should be de- 
scribed differently. Indeed, the contributions to the inner 
edges (0, zO,O, z R  ) come from M-transitions with small 
values of I G (M ) I  [see condition (3.2)], and the approximate 
formula (2.3) must be made more precise here. For the outer 
edges, Eq. (2.3) remains valid, it is only necessary to use a 
correct value of r .  In both cases, the amplitudes of the M- 
components at the contour edges are important. If they dif- 
fer from zero, the transition from the main part of the con- 
tour to its wings is effected in the following manner. 

In those cases when a divergence appears in Eqs. (3.4)- 
(3.7), i.e., in the expressions containing u-'I2 and (1 - 2u/ 
IG 12)-'I2, the following substitutions must be made in the 
vicinity of the singular points: 

To simplify matters we have put here T,,,, = T,,, = r ;  the 
frequency 0, is the position of the singular point (the corre- 
sponding end point of the spectral line). In the first case 
0,' = 0, i.e., the singular point can be only at 0, = 0 (see 
Fig. 5). In the second case there are two such points, RP0 
= j[R + (a2 + 21G 12)1'2]. 

If the quantity P, calculated from Eqs. (3.4)-(3.7) has 
on the line boundary a finite nonzero value Pi, the corrected 
behavior of P, near the bounday (a,') is described by the 
equations 

where 

h (AQ,) ='/z+n-' arctg (AQ,lr). 

The characteristic scale of the variation of the functions 
g(x) and h (x) is the natural line widthr.  Since we assume r to 
be small compared with the total width of each of the doublet 
components, the line shape is completely described by these 
functions in the vicinity of the boundaries. 

At AO, = 0 we have g(0) = IG ( ( 2 r  12Rp0 - R [)-'I2. 

This quantity is finite, in contrast to the results of the preced- 

ing description, but its value is larger the smaller r. For 
h(AR, ) at the point 0, = R,' we have h (0) = 1. This means 
that P, (0,') = PP0/2, or half the limiting value obtained 
from the corresponding formulas (3.4)-(3.7). 

The asymptotic values of g(x) and h (x) at Ix I ~r are 

g(x)=/GI (xl252,0-Q1)-'", h (x)=l  (x>O), 
(4.3) 

g (x) ='/,I' 1 G I 1 x 1 -" I 29,0-Q 1 -'", h (x) =n-'I'll x 1 ( x ~ o )  : 
It is easy to verify on the basis of this result that follow- 

ing a shift within the spectral line (x  > 0) Eqs. (4.1) and (4.2) 
are correctly "matched" to the corresponding Eqs. (3.1)- 
(3.7). Corresponding to the opposite asymptotic behavior 
(x < 0) are the line wings. The function g(x) ensures more 
rapidly decreasing wings a IAR, than does the func- 
tion h (x ) ,  where the wings a IAR, I - ' .  This is understanda- 
ble, for in the former case the M-components of the spectra 
condense near the boundary. It is they which make the main 
contribution to the wings. 

The edges of the lines near which P, calculated from 
Eqs. (3.4)-(3.7) vanishes are described by rather unwieldy 
expressions which will not be given here. We note only that 
these spectral intervals receive comparable contributions 
from all the M-components of the corresponding doublet 
component. For this reason the line wing also decreases 
quite slowly (slower than IAR, I - I ) .  

If R = 0 and there is no doublet splitting of the line 
(Figs. 4b, 4c, 4h), the region of 0, = 0 calls for a special 
analysis. Indeed, this spectral region is formed by M-compo- 
nents for which the field splitting is small ( 1  G (M)  I is smaller 
than or comparable with the relaxation constants). Conse- 
quently the approximate formula (2.3) is not applicable here. 
On the other hand, it is known2 that at relatively small (G I 
the absorption (amplification) line of the test field depends 
significantly on the ratio of the relaxation constants. The 
behavior of the spectrum envelope of the spectrum in the 
vicinity of 0, = 0 with interval JR, J a?' (where ?' is the 
effective relaxation constant) is thus expected to differ from 
the limiting values obtained from (3.4)-(3.7). Indeed, a com- 
puter calculation has shown that singularities in the form of 
a peak or of a dip can indeed be observed in the vicinity of R, 
= 0 (see Fig. 6).  The widths of these structures are of the 
order of the natural line widths, i.e., of the order of T. 

FIG. 6 
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5. ELLIPTIC POLARIZATION OF STRONG FIELD 

The rigorous quantum-mechanical solution of the 
problem becomes exceedingly more complicated if the 
strong field is elliptically polarized. At large value of the 
quantum numbers J ,  , J,, ,m and J, ,  however, a classical de- 
scription of the orientation of the angular momenta is found 
to be effe~tive.~.~ In other words, one introduces the ele- 
ments of the density matrix pU(s) (i, j = m,n,l ), where s is a 
unit vector in the angular-momentum direction. As shown 
in Ref. 4, pq(s) satisfies exactly the same equations as the 
elements pq in the model of nondegenerate states. The only 
formal difference lies in the additional (parametric) depen- 
dence ofp, on s. This dependence is due to the G (s) and G, (s) 
dependences, for which the following equations are valid4 

Here E, and E: are the circular components of the electric 
vectors of the fields; p and 0 are the aximuthal and polar 
angles of the vector s, and D,  ' is the Wigner rotation ma- 
trix. 

The work of the test field is given by the natural expres- 
sion 

where Eq. (2.1) remains valid for P, (s), recognizing that now 
G and G, depend on s in accordance with (5.1). 

The summation over the discrete variable in (2.5) is re- 
placed in (5.2) by integration. This means that the line con- 
tour described by (5.2) is directly a smooth envelope. It is 
clear therefore that from the viewpoint of the problem con- 
sidered the classical description of the angular-momentum 
orientation contains automatically the assumption that 
neighboring elements of the spectrum components overlap. 
If it is assumed that P, (s) does not depend on the angle 8 and 
it is recognized that cos 8 = M / J ,  then Eq. (5.2) is a transi- 
tion from summation in (2.5) to integration. 

We shall assume that the condition I G (s) 1 )r,,, T,, is 
satisfied in the entire range of variation of 0 and p. It is then 
possible to use the approximation (2.3) and, in addition, inte- 
grate explicitly in (5.2) with respect to one of the variables 
(say, 8 ). We then obtain (cf. (3.1)) 

where the summation is over values ofy, satisfying the equa- 
tion 

1 G(y0, .cp) 12=Q.(Q.-Q). (5.4) 

The factor D is described by Eq. (3.1) as before. 
Subject to the conditions under which the problem was 

solved in the preceding sections, we can choose a coordinate 

frame in which the functions G, (y,p ) and G ( y,p ) do not 
depend on p. In this case, as should be the case, Eq. (5.3) 
coincides with (3.1). 

It will be more convenient in the analysis that follows to 
integrate in (5.2) first with respect to the angle p. In the 
coordinate system where the propagation directions of the 
strong and test waves coincides with the z axis we obtain 

G+i"(0) +G-,"(0) f cos 2 (4'-$) 

@ and $ are the orientation angles of the polarization el- 
lipses of the test and strong fields. 

In the particular cases when the strong field is linearly 
or circularly polarized, we easily obtain from (5.5), taking 
the limits IG-, I-IG, , (  and IG-, 1-0 the previously de- 
rived expressions (3.4)-(3.7) for the work of the test field. If 
the strong field is elliptically polarized, the integral (5.5) can- 
not be evaluated in terms of elementary functions, and it is 
necessary to resort to numerical methods. A very simple 
analysis shows nevertheless that at certain values of u the 
integral (5.5) diverges logarithmically. The singular values 
u0 are determined from the conditions 

R (cos 0) =0, dR/d cos 0=0, d2R/d cosZ 0 0 ,  

where R is the radicand in the integral (5.5). It follows hence 
that sharp peaks can appear at the singular points of the 
spectrum u0 = i ( (G+,  I - (G- , for the J ,  = J ,  transition 
and u0 = IG- , I for J ,  = J ,  f 1 (we put for the sake of ar- 
gument I G+ I I > I G- , 1). These peaks can appear or vanish, 
depending on the type of the m-1 transition and on the polar- 
ization of the test field. For example, at any polarization of 
the test field these peaks are always present in the spectrum 
of a three-level system for the transitions \A,, 1 = 1 and 
/A, ,  I = 1, and are always absent for Id,, ( = 1 and A,, = 0. 
If the test field is chosen to have a linear polarization orient- 
ed along the major axis of the strong-field polarization el- 

FIG. 7. Spectrum for A,, = 0, A,, = 1, and test-field linear polarization 
oriented along the major axis of the strong-field polarization ellipse. 
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lipse, a sharp maximum will be observed within the line 
doublets at Dm, = 0 and [A, ,  1 = 1, and will be absent for 
the kansitions A,, = 0 and A,, = 0. The situation is re- 
versed if the test field has a polarization perpendicular to the 
strong-field polarization-ellipse orientation. Figure 7 shows 
the line contour for the transitions A,, = 0 and / A m ,  I = 1 
when the test-field linear polarization is oriented along the 
strong-field polarization-ellipse major axis. In contrast to 
the cases of linear and circular polarizations of the strong 
field (see Figs. 5b and 5?, an abrupt increase of the intensity 
is observed here not at the ends of the lines, but in the inter- 
nal regions. Consequently, when the strong-field polariza- 
tion is smoothly varied from linear to circular, a smooth 
displacement of the sharp peak should be observed from one 
edge of the doublet component to the other. 

6. CONCLUSION 

The analysis in the present paper shows that in systems 
with large rotational quantum numbers the field splitting of 
the levels manifests itself quite unusually. First, the compo- 
nents of the known doublet are subject to a strong "inhomo- 
geneous" broadening. Sometimes the doublet structure dis- 
appears completely. In the cases when it is preserved, each of 
the components is represented by an envelope that occupies 
a spectral region that exceeds considerably the natural line 
width. 

The shape of the doublet components depends very 
strongly on the polarization conditions and on the type of 
transition. In some cases the intensity increases sharply on 
the edges or in the internal parts of the lines. The characteris- 
tic scale of the corresponding peaks is governed by the value 
of r. 

Despite the large broadening of the components, the 
spectrum retains information on the natural width. Besides 
the already noted peak width, this information is contained 
in the abrupt edges of the lines. In addition, in some cases (at 
0 = 0) in the vicinity of the spectral line (0, = 0) additional 
peaks or dips can arise having a natural width and amplitude 
that depends on the ratio of the relaxation constants. 

To be able to observe the considered effects in experi- 
ment, for example in vibrational-rotational transitions of 
molecules, the following conditions must be satisfied. First, 
the absorption line must be sufficiently isolated, i.e., the dis- 
tance to the other lines should exceed substantially the natu- 
ral (in most cases, Doppler) width. Second, the resonant- 
radiation intensity must be high enough to cause field 
splitting on individual M-components; the splitting must ex- 
ceed the Doppler width, but not be high enough to excite 
higher vibrational states. These conditions can be satisfied 
for a large class of relatively simple molecules, at least for 
almost all diatomic molecules. To be specific, we present the 
following estimates for HF, a typical working gas in chemi- 
cal lasers. The rotational constant for HF is -6X 10" Hz, 
and the line shift due to anharmonicity is - 3 X loL2 Hz (Ref. 
7). Recognizing that the Doppler width for the vibrational 
transitions of HF is - lo8 Hz, we verify that the absorption 
spectrum of HF is very sparse. Using the data of Ref. 8 on the 
value of the Einstein coefficient A for an individual vibra- 
tional-rotational transition of HF (A - 2 ~  lo2 sec-'), we 
find that the field splitting exceeds by 10 times the Doppler 
width at a radiation intensity - 10' w/cm2. This by far not 
the record value of the HF laser radiation intensity. 
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