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Pinning of a charge density wave is considered in the discrete Peierls model. Pinning is achieved 
by adding to the Hamiltonian of the previously considered Peierls model [S. A. Brazovskii, I. E. 
Dzyaloshinskii, and I. M. Krichever, Sov. Phys. JETP 56, 212 (1982)l terms that violate the 
integrability. Analysis shows that, depending on the numberp of electrons per ion and on the 
strength of the integrability-violating perturbation, two situations are possible, the so-called 
"devil's staircase" and stochastic extremals. 

PACS numbers: 7 1.45.Gm 

1. INTRODUCTION 
f - f o  2a(T) n 

Commensurability effects and thermodynamic transi- %sing - , = -  
ln ( f - f o )  f o  2 (1.4) 

tions between a commensurate phase and an incommensu- 
rate one were first considered by one of the authors' in his 
theory of magnetic helical structures or spin density waves 
(SDW). The analysis was carried out for the three-dimen- 
sional case, i.e., for a SDW that depends on one coordinate in 
three-dimensional space. In the molecular-field approxima- 
tion, allowance for commensurability denoted in essence the 
influence of the anisotropy on the SDW. To describe SDW 
not far from the transition point it suffices to know only the 
angle q, of spin rotation in the helix. The effective free energy 
("Hamiltonian") in relative units takes the universal form' 

at f > fo and 2?,,,,, = 0 atf <fo. 
It was also indicated in Ref. 1 that the a description with 

the aid of (1.1) of the action of the anisotropy on the SDW is a 
simplified one. Arguments were presented to show that 2? 
as a function off has singularities much more nontrivial than 
(1.4); 2f( f )  is in fact a function that is discontinuous at all 
points. Namely, its values at f with rational Miller indices 
f = 2np/r ( p and r are relatively prime integers) differ by a 
finite amount from an arbitrarily close irrational f /2r.  The 
size of the spike (the pinning energy) is' 

I dcp = dcp 
% ( f l = J d ~ { ~ ( - ~ )  -1--asin2t dx a p i n n  - (T) T,-T "' 

where a ( T )  is the temperature-dependent anisotropy and f is 
the SDW wave vector at a = 0. Of course, f itself is also a 
function of temperature; it makes sense, however, to regard 
the energy (1.1) as a function of temperature [via a ( T  )] and of 
the parameterf. An energy in the form (1.1) was considered 
first by Frank and Van der Merwe2 in their theory of disloca- 
tions in a one-dimensional elastic chain of atoms on a crys- 
talline substrate at absolute zero temperature. 

The variational problem (1.1) is by now universally 
known. The ground states of the system are determined by 
the value of the parameter x: = 2a/J At x0 < n/2 (in parti- 
cular, h a )  the ground state is close to a simple helicoidal 
SDW with generally speaking irrational (in units of atomic 
spacing) period. This is the incommensurate phase. At 
x0)77/2 the states q, are in the main independent of the co- 
ordinates (q, = ?r/2); this is the commensurate phase. The 
transition between the commensurate and incommensurate 
phases takes place in the region n/2 - x0(r/2. The SDW 
then degenerates into a lattice of solitons (dislocations in the 
terminology of Frank and Van der Merwe) with a periodls2 

The solitons interact in accord with the exponential 

VInt-exp ( - ' / & x f L ) .  (1.3) 

The free energy has a rather weak singularity in x,  (or i n k  
Ref. 1): 

at larger. By virtue of (1.5) the function 2?( f ), being discon- 
tinuous everywhere, has a continuous derivative at all irra- 
tionalf. (This situation was subsequently named the "devil's 
staircase"). 

It was also noted in Ref. 1 that since the pinning energy 
(1.5) is extremely small at large r, individual sections of the 
total devil's staircase can be in fact smoothed out. This situa- 
tion is called the "harmless staircase." 

The arguments in favor of the "diabolic character" of 
SDW were subsequently applied by one of us3 to the charge- 
density waves produced in quasi-one-dimensional metals 
when acted upon by the Peierls-Frohlich mechanism as a 
result of umklapp processes. 

Far from transition point, a CDW is described approxi- 
mately (in the three-dimensional case!) by the same Hamil- 
tonian (1.1). Near the transition point, within the framework 
of the molecular-field theory, we must take into account, 
besides the coordinate dependence of the phase of the CDW 
also the inhomogeneity of its amplitude. This was first done 
by McMillan via numerical  calculation^.^ 

In the one-dimensional case, there is no molecular-field 
approximation for CDW and SDW. Therefore (1.1) loses the 
meaning of free energy and becomes the Hamiltonian (at 
T = 0) of the CDW and SDW. The thermodynamics is deter- 
mined by functional integration of the Gibbs distribution 
exp( - 2?(p)/T 1 .  Such calculations were first made by Bra- 
zovskii and one of us5 (see also Ref. 6). No phase transition 
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exists in a one-dimensional system, as should be the case. At 
xo < n-/2 the correlation radius R, behaves at all tempera- 
tures as in the X Y  model: 

Re-1/T, (1.6) 
thus indicating the absence of pinning (the CDW is a pha- 
son). At xo > n-/2 R, behaves in two ways. At T >  Tp  (T, is 
the characteristic pinning temperature) R, retains the be- 
havior of the X Y  model (1.6). With decreasing temperature, 
the X Y  regime gives way to the Ising regime at T- T,:' 

R,-exp (const/T), (1.7) 

and the phason acquires mass. The crossover is in fact the 
manifestation of the transition between the commensurate 
and incommensurate phases in the three-dimensional case. 

The next decisive step in the study of commensurability 
effects (anisotropy for SDW, umklapp for CDW, substrate 
potential for elastic one-dimensional chains, etc.) was 
Aubry's discovery (a good review of Aubry's own results and 
of those by others is contained in his lecture7), who showed 
that Ro( f )  has besides the devil's-staircase regime also sto- 
chastic regimes in which pinning occurs also for irrational 
values of 2n-f. 

Aubry used mainly the known model of Frenkel' and 
Kontorovi~h.~ Another model that admits of both regimes, 
the stochastic and the devil's staircase, is the three-dimen- 
sional anisotropic Ising model with allowance for nearest- 
neighbor interaction (called the ANNNI model). A good 
survey of the results obtained with this model is contained in 
Bak's a r t i ~ l e . ~  

We show below that both the devil's-staircase and the 
stochastic regimes occur in the exactly integrable discrete 
Peierls model, recently considered by Brazovskii and us,'' if 
a perturbation, no matter how small, is turned on and de- 
stroys the exact integrability. Of course, no pinning of a sta- 
tionary CDW or of a soliton lattice is produced at all in the 
exactly integrable case, regardless of the parameter values. 

2. THREE DIMENSIONAL GROUND STATE 

We recall the formulation of an exactly solvable dis- 
crete Peierls model." The electron spectrum is determined 
by the discrete Schrodinger equation 

cn$n+i+cn-,$n-I=E$n, (2.1) 
where n = O,1, ..., N - 1 numbers N ions with periodic 
boundary conditions $, + , = $, . The hop-over integral c, 
(of course, again we have c, +, = c,) is expressed in the 
terms of the ion coordinates by the physically reasonable 
formula 

cn=exp (xn-xn+i ) .  (2.2) 

It is advantageous to introduce also the displacement of the 
n-th ion relative to its average coordinate nu: 

x,=u,+na. (2.3) 
Where possible, we always imply hereafter transition to 

the limit as N - +  W .  In this case, accurate to 0 ( l /N)  

wherep is the quasimomentum. The equilibrium values of 
c, are obtained by variation of the total energy R of the 
electrons and ions per ion. It is technically more convenient 
in this case to vary not at a fixed length of the string Nu, but 
at a fixed pressure P: 

In the case of interest to us, W (c, ) is a linear combination of 
integrals I ,  ( c ,  j of the Toda chain1' (see also Ref. 11): 

We have 

In this section we consider the case when only one in- 
variant I, is retained in the sum in (2.6) 

At absolute zero the integration in (2.7) is over the allowed 
bands up to the chemical potentialp of the electrons. 

Equation (2.7) was exactly integrated in Ref. 10 and the 
energy Zo of the ground state was obtained. The results 
depend on the number p of electrons per ion. At p = 1 the 
electron spectrum consists of two allowed bands that are 
symmetric about zero energy,' see Fig. 1. It can be shown1° 
that in integrable cases the chemical potential lies in the for- 
bidden band for any number of invariants in (2.6). The lower 
band in Fig. 1 is therefore doubly filled: 

The displacements u, are in fact constant; there is only 
a classical Peierls shift of the odd ions relative to the even. 

At p#O there are three allowed bands in the ground 
state, see Fig. 2. Moreover, it has been shown" that the ex- 
tremals of (2.6) are potentials c, with not more than 41 - 1 
bands. At p < 1 the lower band is filled and the middle and 
upper one empty (2.8), while a t p  > 1 only the upper band is 
empty: 

FIG. 1. 
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There is no need to explain that in the exactly integrable 
cases there is no pinning (neither at p = 1 nor at p # 1). This 
statement is obviously valid at any number of invariants in 
(2.6). The ground state energy X o ( p )  is a continuous func- 
tion of all p, both rational and irrational. In Ref. 10 were 
analytically obtained the level density dp/dE, the displace- 
ments u,, the wave functions $, , and the electron charge 
density in the ground state. We note that the band widths are 
determined by the quantity Em -exp( - a), where a is the 
average distance between ions. 

Writing the elastic energy in the form 12(xn - x, + , ) 
implies a strongly correlated anharmonicity: 

The correlation can be broken by introducing, e.g., a nonin- 
tegrable term of the form 

n 

If p is not too close to unity and A 4  (a criterion fol- 
lows) the nonintegrable increment (2.10) can be regarded as a 
small perturbation. This makes it easy to obtain the electron 
spectrum, u, , $, , and the increment A X o ( p )  to the ground- 
state energy in first order3 in A. In particular, it can be found, 
using the c, previously obtained1' for A = 0, that the plot of 
A X o ( p )  vs the electron density p is a devil's staircase. At 
irrationalp the sum over n in (2.10) is replaced by an integral 
and remains a continuous function ofp (with only irrational 
points taken into account). At any rationalp we have 

p and rare relatively prime integers, and a finite spike exists 
for A R o .  Its amplitude at large r is exponentially small: 

A%,-he-r.const (2.11) 

just as in Sec. 1 at finite temperatures. A proof of (2.11) is 
given in the Appendix. 

Thus, the CDW is pinned at all rationalp and is free at 
irrational ones (a zero mode exists). What is usually fixed, 
however, is not the number p of the electrons, but their 
chemical potential p. The devil's staircase (2.1 I), just as the 
staircase in the Introduction, is differentiable at all the irra- 
tional points. We must therefore determine the standard 
chemical potential at irrational p: 

At rational p the chemical potential p, is simply the energy 
per particle: 

For a rational point p/r with large r the distance from the 

"nearest" irrational point Ap - l/r2, therefore the difference 

is a smooth function ofp at large r. This means that a devil's 
staircase that is differentiable with respect top  is found to be 
a harmless staircase as a function of the chemical potential, 
with all the ensuing simple and well known physical conse- 
quences. 

The situation changes radically when the central band 
in Fig. 2 becomes narrow. This takes place as p-tl. The 
number of states in this band tends to zero like Ip - 1 I, and 
the band width is" 

2E--exp {-const/ I p-I 1 ). (2.14) 

In the ensuing situation (see Ref. 10 for details) we have the 
discrete version described in the Introduction with a lattice 
of sparse solitons spaced L - l / (p  - 1 I apart and with the 
exponential interaction (1.3). 

We consider the most interesting case 

e-'<<h<<l/L. (2.15) 

The action of the nonintegrable perturbation on the broad 
band can be separated separately from the action on the nar- 
row one. Moreover, if we are not interested in a continuous 
dependence on p (more accurately on Ip - 1 I), the former 
can be neglected, the state withp = 1 can be chosen to be the 
unperturbed one, and the results of increasing Ip - 1 I at 
fixed A can be examined. To this end it suffices to know the 
solitons against the background of the picture of Fig. 1. This 
problem was solved in the continual variant by Braz~vskii '~  
and by Su et al.I3 Appearance of each soliton decreases the 
number of delocalized states in the allowed bands of Fig. 1 by 
unity. A localized electronic state on a soliton appears in- 
stead. It was shown in the preceding paper1' that the same 
picture is observed also in the discrete case, wherein the soli- 
tons are the standard solitons of the Toda chain (see Ref. 1 I), 
on each of which one or two electrons can be localized. 

The energy of a soliton in the discrete version" at an 
effective weak coupling, say, is 

E,,1=16n-' exp (-a-nxe-"), nxe-">I. 

Therefore the increment to the ground state energy a tp  = 1, 
due to the appearance of the free Ip - 1 I soliton, is 

~ o ( ~ ) = ~ o ( I ) + E ~ , , I p - l l .  (2.16) 

Under the conditions (2.15) the interaction between the soli- 
tons can be neglected in the first-order approximation. The 
nonintegrable perturbation (2.10) becomes a periodic poten- 
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tial, with a period 2a, for the soliton (with center coordinate 
x,l: 
Zn ,+hUPer (so), Up, ,  (xo+2a) = ( J p e r  ( x ~ ) .  (2.17) 

The function U,, can be calculated by using the equations 
from Ref. 10. [For the potential (2.10) this is done in the 
Appendix.] 

At small Ip - 1 14 l/a the number of solitons is small 
compared with the number of wells in the periodic potential 
(2.17). In the ground state all the solitons are then randomly 
distributed over the bottoms Urnin and (2.16) goes over into 

%o ( p )  =%o ( 4 )  + (Emif hUn,in) 1 p-11. (2.18) 

Finally, since the curvature of potential wells Up,,, 
which is proportional to Urn,, /a2, is very large, the electron 
levels localized on the solitons broaden into bands not on 
account of the displacement of the solitons from the posi- 
tions Urn,, , but on account of interactions between the soli- 
tons, or else, equivalently, by the electrons of type (1.3) 
which are localized on them and are randomly dispersed 
over the minima of the potential (2.15). 

The central regular band in Fig. 2 is thus transformed 
into a chaotic band of the impurity type. 

The distribution in the energy E under E,,, + A Urn,, in 
this band is given by a Poisson distribution of the solitons 
over the distances L: 

I I . ( ~ , )  =esp {-r,Ip-l I ) .  (2.19) 

Recognizing that 

L=-C ln (E',,,+?vU ,,,, -E) (2.20) 

(C is a constant) we obtain ultimately 

W ( E )  = (EsOl+hUm,,-E) -'+Clp-L'. (2.21) 

The obtained filled chaotic band in the ground state and 
the random distribution (2.19) of the solitons correspond to 
the Aubry extremals7 mentioned in the Introduction. 

Just as in Aubry's work, in the stochastic regime there is 
no essential difference between rational and irrationalp. In 
the rational case one selects out of the entire chaotic set of 
"points", i.e., of the levels in (2.21), a finite periodically pass- 
able set. Pinning takes place in both cases, as is evident from 
the fact that all thesolitons together with the electrons local- 
ized on them land in the minima of U,, . 

In the approximation linear in A an unperturbed extre- 
ma1 remains, without significant change, an extremal also 
when the parameters p and A correspond to the stochastic 
regime. The only difference is that in the stochastic regime 
such an extremal is known not to correspond to the absolute 
energy minimum but, as can be shown, is a local minimum. 
The last circumstance determines also the character of the 
conductivity in the stochastic regime. Obviously, standard 
Anderson localization exists in the stochastic impurity band 
and is preserved, in the one-dimensional case, also at all fin- 
ite temperatures.4 Conduction can set in therefore only on 
account of states that lie above the stochastic band. Such is 
precisely the already mentioned metastable state, which al- 
ways exists at a fixed chemical potential. These states consti- 
tute an unpinned mode. The conductivity is determined 
mainly by the energy gap t(Urn,, - Urn,, ): 

3. MULTIBAND GROUND STATES 

As already mentioned, when not only the invariant I,, 
but several higher invariants I,,I,, ... I,, are retained in the 
exactly integrable Hamiltonian, the extremals (2.6) become 
multiband. Moreover, it was rigorously proved (see Appen- 
dix 2 of Ref 10) that at a finite number of invariants in (2.6) all 
(!) the extremals belong to the class of finite-band pbtentials. 
The maximum number of the allowed bands at a given I is 
equal to 41 - 1. Of course,1° all the states with smaller num- 
ber of allowed bands remain extremal. 

There are grounds for assuming, although we have no 
proof, that the absolute minimum of the functional (2.6) cor- 
responds to an extremal with a maximum number of forbid- 
den bands. When the number of such bands is large, and the 
combined width, proportional to Em -exp( - a), of all the 
bands is fixed, a noticeable number of bands becomes nar- 
row. If the number Y of states in such a narrow band is so 
small that its width becomes exponential, -exp( - l/v), it is 
transformed, as in the three-band case, into a sparse soliton 
lattice with period L - l/v and with exponential attraction 
-exp( - L ) between the solitons. If the nonintegrable per- 
turbation is not too small 

a stochastic regime sets in already in first order in A, just as in 
Sec. 2. To find the ground state we must again "collapse" all 
the bands that satisfy the condition (3.1) and consider the 
solitons corresponding to them against the background of 
the remaining several broad bands. Clearly, the procedure of 
finding the ground state will be an obvious generalization of 
the procedure described above for the three-band case. 

Moreover, the corresponding periodic potential A U,, 
for the solitons can be again obtained analytically. The rea- 
son is that equations for $J, and c, are known also in the 
multiband case14 (see also Ref. 11). They are expressed in 
terms of the so-called multidimensional Riemann 8 func- 
tions. Information on the latter can be found in the detailed 
review by DubrovinI5 as well, in a more concise exposition, 
in Ref. 11. 

We can finally consider also a converging infinite series 
in the invariants in (2.6). The number of allowed bands in the 
ground state becomes infinite. Moreover, since the com- 
bined width -exp( - a)  is fixed, as already mentioned, the 
conditions (3.1) will be satisfied by an infinite number of 
bands at any fixed A. Therefore, even in the approximation 
linear in A we shall always have a stochastic regime. To ob- 
tain analytic expressions it is necessary to retain only a finite 
number of broad bands that do not satisfy the conditions 
(4.1), find all (!) the solitons against the background of the 
finite-band potential that remains after the collapse of the 
finite-band potential, calculate the corresponding periodic 
potential A Up,, , etc. The exponential character of the con- 
ductivity is also conserved. 
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4. CONCLUSION We expand the periodic function F (2) in a Fourier series 

We have thus determined the ground state of the dis- 
crete Peierls model" with weak integrable perturbation.5 
There is no doubt that if the nonintegrable perturbation is 
not small, the number of allowed bands will be infinite in the 
ground state [with a total width -exp( - a)]. The result is 
therefore the onset of qualitatively the same type of stochas- 
tic regime as described at the end of the preceding section for 
the case of an infinite number of invariants. 

What happens with a three-band integrable state if ac- 
count is taken of the nonintegrable perturbation (2.10) in an 
arbitrary order in A in the case when il does not satisfy the 
condition (3.1) for any of the bands? One can hardly doubt 
that even at A<exp( - l/v) the number of bands in the 
ground state will be infinite. However, the number of states 
in the additional bands and the widths of the gaps that can 
appear in the old broad bands will be proportional to high 
powers of A or will be exponentially small [-exp( - 1//2 )I. 
In this situation the entire thermodynamics will be deter- 
mined by the first order inA [by Eq. (2.1 I)], i.e., by the devil's 
staircase. On the other hand in the electronic spectrum and 
in the distribution of solitons corresponding to narrow bands 
there are preserved definite albeit numerically very small 
stochasticity elements described at the end of Sec. 3. There- 
fore pinning, although extremely weak, will take place also 
for an irrational number p of electrons. 

APPENDIX 

Let us prove (2.11). According to Ref. 10 the values of c, 
with even n are given by 

~ , = e - ~ [ O ~ ( v  (n-no-I) ) Os(u (n-no) ) 
/0,  ( v  (n-no+l)  ) Os (u  (n-no+2) ) ]  '". (A.1) 

Here 8, and 8, are standard t?-f~nctions,'~ 

no is an arbitrary (noninteger!) constant-the coordinate of 
the soliton lattice. At odd n the values of c, are given by (A. 1) 
with the permutation O3*O4. 

I fp is rational, 

the sum (2.10) reduces to two sums of the type 

k=O 

with F in  the form 

where z,, ..., 2, are real constants that are not equal to one 
another. 

The entire functions 8,(z) and 04(z) are periodic with a 
period 1 and quasiperiodic with period 7, where 7- is the com- 
plex modulus' of the 8 function. The modulus of T in our 
problem is pure imaginary, T = il7-1, and is expressed in 
termsp, a, and x in Ref. 10. Finally 8,(z) and B4(z) each have 
one zero in the parallelogram of the periods, at the respective 
points 

' / Z + ' / ~ T ,  1 / 2 ~ .  (-4.6) 

- m 

and substitute this series in (A.4) 

The sum over k in the right-hand side of (A 7) is 

 where^^ (k = 0, ..., r - 1) are ther-throots ofunity; we there- 
fore have for (A.4) 

Equation (A.8) solves the problem, with Fo the smooth part 
of A T o .  The spikes A T r  at large r are determined by the 
asymptotes of the Fourier coefficients 

i 
PI = - J drF ( z )  eZnizr. 

2n 0 

Since F(z) of (A.5) is analytic on the real axis, the asymptotic 
form is exponential. The argument of the exponential is de- 
termined by the singular points of F (z) in the complex plane, 
i.e., by the zeros of 8,(2) and 8,(~).  The imaginary part of 
these zeros are all equal to 1~1/2, therefore 

p 7 - e ~ ~  (-n I T 1 r ) ,  FlP- (-II 1 T 1 ~ r ) ,  (A. 10) 

which agrees with Eq. (2.1 1) in the text. 
Actually, (A. 10) contains besides the exponential part 

also oscillating factors of the cos r type. To find them, the 
integrals in (A.9) must be calculated accurate to r-th power. 
Equations (2.11) with larger r, however, are of no physical 
interest inasmuch as in fact, as already indicated, the devil's 
staircase is incomplete and pinning takes place only at small 
r, where A2Yr  must be calculated directly from Eqs. (A. I), 
(A.2), (A.4), and (A.5). 

We calculate now the soliton potential Up,, from (2.17). 
To this end we must find the modulus T of the 8 function as 
Ip - 11-0. It follows from Eq. (2.4) of Ref. 10 that asp-tl  
the parameter also vanishes but the ratio 6 = 21~l/lp - 1 I 
remains finite: it is the width of the soliton.'' Using the 
imaginary Jacobi transformation,I7 we can rewrite Eq. (2.4) 
of Ref. 10 in the form 

(A. 11) 

where K is a complete elliptic integral. '' In the case of weak 
coupling, g( 1, the soliton width S is large'': 

fj=l/,e"g (A. 12) 

in the case of strong coupling, g 2  1, the soliton becomes 
narrower 

6= 1/1n ng, g-rn . (A.13) 

Asp-1, we obtain with the aid of the same imaginary 
Jacobi transformation for (A. 1) 
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for even n. For odd n we have 

c =e-" ch ( (n-no+1)/6) 
ch( (n-no-?)/6) 

The periodic potential for the soliton is 

Its period is obviously equal to 2. 
At S S 1 (strong or intermediate coupling) the series in 

(A. 14) converges rapidly. On the contrary, in the physically 
more realistic weak-coupling case the soliton width is large 
and Eq. (A.4) is not convenient. The potential Up,, must now 
be expanded in a Fourier series: 

I=--- 

For Up,, we obtain from (A. 14) 

The integral in (A. 15) is calculated with by shifting the 
contour into the complex plane. Its value is determined by 
thesingular points ofF(z),i.e., by the points with Im z = iS?r/ 
2: 

U,-exp (- i 1 6nZ/2). 

It is clear that it suffices to retain in the Fourier series only 
the first two terms: 

Up,, (no) -'/, (U,,+U,i,) +'I, (Urn.,-Urnin) sin fino. (A. 16) 

Umos=U,i,-xe-a/6, U,,-Un,in-y.e-fle-bx'lZ (A. 17) 

with 6 from (A. 12). 

"We use the opportunity the note that R, was calculated in the Ising 
model in Refs. 5 and 6 with exponential accuracy. 

2'We recall (cf. Ref. TO) that the spectrum (2.1) is even. 
"See Sec. 4 concerning the actual possibility of expanding in powers ofA. 
4'We disregard the finite conductivity due to inelastic scattering. 
"We have recently learned that Sinai16 has succeeded in finding a stochas- 
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