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The distribution of the electric potential produced in a metal by a small point contact on the 
surface of the sample is investigated theoretically. It is shown that distance from the current- 
carrying junction smaller than or of the order of the carrier mean free path I, in a sgrong field H 
(where the characteristic radius of the electron orbit is much smaller than I ), along with the major 
potential spikes (MPS) due to focusingof the electrons injected by the emitter) thereis produced a 
series of auxiliary potential spikes (APS) due to trajectory transfer of the electric field by electrons 
moving from the MPS. The spike intensity is analyzed for various angles between the vector H 
and the metal surface and for a wide range of the emitter current. The spike intensity is found to be 
sensitive to the state of the metal surface, and significantly different for specular and diffuse 
reflection of the carriers from the sample boundary. At certain experimental geometries the MPS 
and APS can be made to reach the surface at different points. The potential distribution in the 
interior of the sample can therefore be analyzed by using transverse focusing. At large emitter 
currents the potential spikes contain information about the electron-phonon interaction. 

PACS numbers: 73.40.Cg 

I. INTRODUCTION 

Microjunction technology is now being extensively 
used to investigate the electronic properties of normal metals 
(see the re~iewsl-~). One of the application of point junctions 
is the conduction-electron focusing method proposed in 
1965 by S h a r ~ i n , ~  who pointed out the feasibility in principle 
of studying the electron energy spectrum by this method." 
Experiments on the observation of longitudinal7 and trans- 
verses electron focusing in metals and semimetals by a uni- 
form magnetic field were subsequently performed. Trans- 
verse electron focusing was found to be an effective method 
for studying the character of carrier interaction with a con- 
ductor surface.' From the ratio of the amplitudes of neigh- 
boring transverse-electron-focusing lines one can determine 
the probability specular reflection of conduction electrons 
from a boundaryss9 and the probability of intervalleys scat- 
tering processes,10 while the distance between the focusing 
line depends on the character of the carrier spectrum9 and on 
the structure of the metal surface.'' 

Another application of small junctions is connected 
with the determination of the determination of the electron- 
phonon interaction function from the nonlinear sections of 
the current-voltage characteristics of point  junction^.'.^.' '-I3 

In electron-focusing experiments one usually measures 
the distribution of the electric potential on the surface of a 
metal as a function of the magnitude and direction of the 
magnetic field. The same characteristic was calculated 
theoretically in Refs. 9, 10, and 14-16. It is also undoubtedly 
of interest to investigate the electric-field distribution in the 
interior of a metal, since this distribution describes in detail 
the focusing of the emitter-injected conduction electrons by 
the magnetic field. 

A method for determining the electric potential in a 
bounded metallic sample of arbitrary shape and an arbitrary 

placement of the current-conducting junctions was formu- 
lated in a paper by Azbel' and one of us, " where the conduc- 
tor resistance was analyzed, in an approximation linear in 
the weak electric field, for the case of point and linear junc- 
tions at an infinite mean free path and for an arbitrary inten- 
sity of the magnetic field H, including H = 0. The distribu- 
tion of the electric potential near an emitter of the 
constriction type in the absence of a magnetic field was de- 
termined in Ref. 12. The author of that reference have shown 
that the electric field is localized in the junction region hav- 
ing a characteristic size of the order of the constriction radi- 
us b, and decreases monotonically at larger distances. It will 
be shown below that turning on a strong magnetic field for 
which r,(l (r, is the Larmor radius and I is the electron 
mean free path) leads to the onset two types of potential inho- 
mogeneities at distances smaller than I from the current- 
carrying junction. One of them is due to focusing, at definite 
points inside the metal, of the electrons accelerated by the 
electric field near the emitter and making up the system of 
major potential spikes [MPS). The second type of inhomo- 
geneity is due to carriers that drag the electric field from the 
MPS and produce auxiliary potential spikes (APS). The ap- 
pearance of the APS recalls in many respects the effect of 
anomalous penetration of an electric field into a metal along 
a "trajectory chain,"18 while the MPS are the analog of the 
skin layer. Our problem, however, has a large number of 
distinguishing features. In particular, an electron emitted 
from a MPS gains a nonequilibrium energy increment if it 
experiences a collision inside the spike. In the opposite case, 
moving with and against the electric field, the carriers tra- 
verse as a result a zero potential difference. Since the maxi- 
mum length of that part of the orbit which is situated in the 
MPS is of the order of (br,)"2, the relative number of elec- 
trons scattered in the spike is proportional to (br,)'/*/l. Cor- 
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responding to an electron having a specified momentum and 
located at a given point in the bulk of the metal is a maximum 
number of initial states ( - ( b  /r,)'I2), located in the spike if 
the electron "starts out" from the MPS at small angle to the 
central line of the spike. It is precisely these carriers, focused 
at a distance from the MPS equal to diameter of their orbit, 
which form the APS. The second potential spike, in turn, 
leads to the onset of a third, etc. At a definite experimental 
geometry the major and secondary spikes can be brought out 
to the sample surface at different points, so that transverse 
electron focusing makes it possible to analyze the electric 
field distribution inside the metal. 

I I .  FORMULATION OF PROBLEM AND COMPLETE SYSTEM 
OF EQUATIONS 

We investigate the distribution of the electric field in a 
semi-infinite metal sample (x>O), on whose surface is placed 
an emitter with a characteristic dimension b. We assume that 
a second current-carrying junction is separated from the 
emitter by a distance greatly exceeding the carrier mean free 
path I, and that the constant and uniform magnetic field H is 
strong, but the condition bgr, (1 is always satisfied. 

The complete system of equations from which to deter- 
mine the electric potential p(r) at an arbitrary point r of the 
sample, including its surface, was formulated in papers by 
Azbel' and one of in an approximation linear in the 
electric field E, and generalized in Ref. 20 to include the case 
of strong electric field. It consists of the transport equation 
for the nonequilibrium electron distribution function n(r, p) 

and the electroneutrality equation 

Here, e, r, and p are the charge, coordinate, and momentum 
of the electron; ~ ( p )  and v = d ~ / d p  are its energy and veloc- 
ity; fo(q is the Fermi distribution function. The collision in- 
tegral W describes the electron scattering inside the volume, 
and their intraction with the metal surface is taken into ac- 
count by the boundary condition for Eq. (1). We confine our- 
selves below to an approximation linear in the electric field, 
and defer the generalization to the case of strong fields E to 
the last section. 

Linearizing the Boltzmann equation,' it is convenient 
to seek its solution in the form 

A 

The integral W of the collisions in the volume is a linear 
operator even when account is taken 2f the electron-phonon 
interaction. A weak nonlinearity of W can subsequently be 
taken into account by perturbation theory. A solution of Eq. 
( I )  in the form (3 )  can be easily obtained by using the method 
of charageristics in the T-approximation for the collision 
integral Wqb = - $/T, where T is the average time between 
the electron scatterings in the volume and the function $(r, P) 
takes the form 

I$ (r, p )  =J(r-r ( t )  ) e " - t ~  "- (E ('1 

whereA (r, p)gt is the instant of the last reflection of the elec- 
tron from the sample surface; f (r - r(t ))is an arbitrary func- 
tion of the characteristics, which should be obtained with the 
aid of the boundary condition. For the electrons in the vol- 
ume that do not interact with the surface, we must put 
A =  - cc in (4). the first term of (4) is then zero. Although 
the problem can be solved also under an arbitrary condition 
on the function $(r, p) on the boundary, in the form of a 
linear integral equation," we avoid unwieldy equations by 
using the specularity parameter q: 

( ( l - q )  v,$>- 
4(ra, p r ) = q 4 ( r a ,  P)+  

( v,> 
+ Q' ( r s ,  P )  , 

where r, is the coordinate of the surface point from which 
the reflection took place; $*(r,, p) is a specified electron dis- 
tribution function at the junctions; the angle brackets (...) 
denote integration with a factor 2e2/(2rrfi)3 over that part of 
the Fermi surface on which the electron-velocity component 
normal to the boundary is u, >O. The momenta p and p' of 
the incident and specularly reflected electrons satisfy the re- 
lations 

(p, is the quasimomentum component tangential to the sur- 
face). For simplicity we assume hereafter that the distribu- 
tion function $*(r,, p) of the injected carriers, which is deter- 
mined by the model of the junction, is independent of the 
momentum p. In this case a simple relation exists between 
$*(r,) and the current distribution i(r,) on the surface, name- 
ly i(r,) = $* (u, ) + . In a real situation the number of elec- 
trons leaving the emitter at small angles a to the surface is 
small, and the function $*(r,, p) is generally speaking pro- 
portional to Iu, 1 .  Allowance for this circumstance that alters 
the potential p(r)  is important at the points r at which the 
presence of an electric field E = - Vq, is connected with 
motion of carriers for which a 5 (b /r,)"* g 1, and does not 
change the results qualitatively. 

Taking the Fourier transforms in (4) 

(R is a two-dimensional vector in a plane parallel to the sam- 
ple surface) and substituting the result in the electroneutra- 
lity condition (2) we obtain an equation for the Fourier trans- 
form @ (k, x) of the electric potential at an arbitrary depth x :  

OD 

m (k, X )  = A  (t, I )  + J ax1  [B* (k; i, x o  + B J ~ ;  r,  X I )  1 c~ (k, X I ) .  
0 (8) 

The integral terms of (8) with kernels B, and B ,  describe 
respectively the contributions made to the potential by the 
"surface" and "volume" electrons. At arbitrary carrier re- 
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flection from the surface and at arbitrary angle between the t i - t2  
surface and the magnetic field, the functions A (k, x) and 

8 k  ( t , ,  t , )  =exp - - - [ -r i k A R ( f , ,  t r ) ]  . 
B~(k;x,x')areextremel~unwield~,andwepresentbelow A K ( t , .  t , )=R(t ,1 -1<(1 , ) ,  A J ( t , ,  t , ) = s ( t , ) - . x ( t 2 ) ,  (12) 
explicit expressions for these functions and an analysis of the 

t , ,  m=O 
distribution of the potential p(r) for the most important par- 
ticular cases. t m = {  ~ . + p ,  m + ~ ,  p = p ( x ,  ti). 

Ill. DISTRIBUTION OF POTENTIAL IN METALS WITH 
ISOTROPIC CARRIER DISPERSION IN A PARALLEL 
MAGNETIC FIELD 

1. Almost specular electron reflection from surface 

If the magnetic field is parallel to the sample surface, 
the motion of electrons drifting along the boundary as a re- 
sult of specular reflections is periodic with a period T. In this 
case the function F of the characteristics takes on only one 
value on the entire trajectory broken up by specular reflec- 
tions, and the condition (5) leads to a linear integral equation 
with a degenerate kernel. At almost specular carrier reflec- 
tion on the metal boundary q) (b  /r,)'I2, the term A (k, x) in 
(8) can be represented in the form 

We investigate now the distribution of the potential q(r)  
at distances r < I from the emitter E, through which a current 
flows with density i,(r,). We solve Eq. (8) by successive ap- 
proximation, expressing q(x, R) as a series2' 

where 
00 

9" ( i .  R) = [ J#1iek~~ (k, X) , 

m T/Z 

2e3H q n j  dp .  J d i u , ( h )  = J T d'ketk' J ~ X '  [ B ,  (li; X ,  i f )  +Bv (k; X, x')  ] Bv (k, z ' )  , 
A ( k ,  X )  = --- 

c(2nA)' ( l ) ( ~ , > +  - rn o 
n=O 0 

 TI+^ 
(15) 

~ [ 8 ~  (T,+)., h )  ] n  J d t l k  ( t ,  h) 6 (x-Ax (t. h )  ) . (9) Let us analyze the contribution of each of the term to the 
L total distribution of the electric potential in the sample. Sub- 

The integral term in (8), which is connected with the motion stituting (9) in ( I4)  we have 
of the electrons near the metal surface, can be written in the 2e"H 1 
form Y O  ( x ,  R )  = ---- 

~ ( 2 n h ) ~  (l>(v,>+ 

1 B. ( k ,  x,  X I )  8 (k, 5 ' )  d x r  = 2e3H 2 qnl J d p i  
c (2n f t )  Y I> 

0 m-0 

T A + ~  

x J d t  exp (F) i, ( R - A R ( t ,  h )  

P 

Calculating the integral with respect to t with the aid of a S- 
The last term, due to the "volume" carriers, is given by function, we estimate the integrals with respect to A and p, 
m by the Laplace method, using the "sharpness" of function 

I B,  ( k ,  x,  x r )  @ ( k ,  x i )  dx' i,(R - A R, ), which differs from zero only in a small region 

0 
with a characteristic dimension b in the vicinity of the point 
R = A R, . The contribution to the integral is made by small 

T intervals AA and Ap, near those values ofA andp, for which 
- - "'" j ap; J a t .  ( 1 - 0  (t,, p Z f )  1 

c ( ~ n f t ) ~ ( i )  R = A R ,  (A, p, )  = A R ( t ,  h )  +nAR(T ,+h ,  h) . (17) 

l' dt' 
X [  1 -8. (tt, t t )  B ( k ,  z -Ax( t1 ,  t ' ) ) .  Obviously, the potential p,(r) (16) is a maximum at the points 

T r = (x, R) corresponding to the extremum of the function 
1,-T 

i,(R -A R,(A,p,)), i.e., at the points where the Jacobian 

Here I (k) is the Fourier transform of i(R,), T is the period of 
carrier revolution in the field H, p, is the momentum projec- D,= 
tion on the magnetic-field direction, and 0 (t,, p',) is a func- yn' = 0, ARn= ( d y n ,  *I,,) a O", PZ) (18) 

tion equal to unity for electrons colliding with the metal sur- 
face and to zero for the "volume" carriers: vanishes. Recognizing that 
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we can rewrite Eq. (16) for D, in the form 

Here 

(")-'112 Vlrl a,, - - - - 
VVZ Vv1 

v, = v(A, p,),v, = v(t, p,),t = t (A, p,;x), and v, and v; are 
connected by the specularity condition (6) (Fig. 1). 

Analyzing (16) with account taken of (21) and (22), it is 
easy to note that at rH)b the electric field, just as at H = 0 
(Ref. 12), is localized mainly in a region of space of the order 
of the junction radius b, and the potential difference between 
points in the emitter region (r  5; b ) and a peripheral point of 
the sample (r)l) is of the order of U = U,,, z JERE; JE and 
RE are the total current through the emitter and its resis- 
tance: 

SE is the area of the current-carrying junction. 
In the case of an isotropic Fermi surface, Do = 0 if 

P (A, p, ) = I p, - p, 1 corresponds to the extremal diameters 
p extr that belong to the central section p, = 0. Therefore 
electrons injected by the junction and not interacting with 
the sample boundary form a potential spike (PS) with a char- 
acteristic size b near the geometric locus of the points located 
at a distance cPextr/eH from the emitter. These carriers, 
moving along a periodic trajectory over the metal surface, 
are subsequently focused by the magnetic field in the vicinity 
-b of the points r = Ar, = (Ax, A R,), for which D, = 0, 

FIG. 1. Electron trajectory in momentum space; vz-velocity of electron at 
a depth x, the velocities v, and v', are related by the reflection-specularity 
conditions (61, and n is the inward normal to  the metal surface. 

FIG. 2. Schematic arrangement of the potential spikes in the plane z = 0 
that passes through the junction, for specular reflection of the electrons by 
the surface (Hln). The amplitudes of the MPS, to which the curves 
a,b,(n = O), azb2(n = 1) and a,b, (n = 2) correspond in the figure, are de- 
termined by Eq. (23), and the amplitudes of the APS (the lines a,b,, 
n = m = 0; a2b,, n = 1, m = 0; c,b,, n = 0, m = I )  by Eqs. (27) and (28). 

forming a series of MPS (the spikes a ,b,, a ,  b,, and a ,b, in 
Fig. 2). Each of the MPS is due to the motion of electrons 
specularly reflected n times by the surface. In the situation 
considered, the spikes lie near the plane z = O(/zj 5 b ), and 
the amplitude of the MPS numbered n is 

whereas the potential far from the spikes (at a distance Ar)b 
from the MPS) at a depth x < 2rH does not exceed the value 

urn,, (b /rH 12+ 
We proceed now to an analysis of the term p,(r) in 

expression (13)  for the potential p(r). Substituting in (15) at 
Y = 0 expression (19) for Q0 = A,  we find that p,(x, R) has a 
maximum near the points 

where 

~ ; , = ( A z ( t ~ ,  t ' ) ,  AR,=IK(~, ,  t') +mAR(T,,+y,  11) 1, 

if the Jacobian 

a (Ax@,, t ' ) .  A&, ATrn) Dm= 
d ( t i .  t ' ,  p,') 

vanishes at these points simultaneously with D, . Expressing 
5, (25) in a form similar to (20) for D,, we can easily show 
that p(r) is a maximum if, besides the conditions that relate 
the velocities v(A, p,) and v(t, p,) at which D, = 0, the fol- 
lowing relations are satisfied: 

Consequently, the "volume" and "surface" electrons, which 
have at the point r = Ar, = (Ax(t, A), A R, (t, A )) a velocity 
component v, (t ') perpendicular to H and antiparallel to the 
velocity v, (t ) of the carriers that produce the MPS, interact 
effectively with the electric field of the spike and subsequent- 
ly "reproduce" it at r = Ar,, away from the MPS at a dis- 
tance equal to the extremal diameter of electron trajectory, 
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i.e., they form APS (the spikes a,b, and a2b3 in Fig. 2). Since 
the position of the APS, just as that of the MPS, is deter- 
mined by the value ofpeXtr, the spikes of both types emerge to 
the surface at the same points. 

Besides the APS considered, series of spikes are pro- 
duced in the sample by "surface" electrons accelerated by 
the electric field of one of the MPS and focused by the mag- 
netic field (after m specular reflections) at the points 
r = Ar,, for which D, = Dm = 0 (spike c,b, on Fig. 2). The 
amplitude of the APS with a characteristic size of the order 
of the dimension b of the junction, on the sections formed by 
the "volume" electrons (segment a s ,  of the APS a,b, in Fig. 
2), is proportional to 

and for the surface section of the spike (segment clb, of the 
APS a,b, on Fig. 2), produced by the electrons interacting 
with the boundary, 

In strong magnetic fields x 1, and the intensity of the APS 
in the volume of the metal is I /rH) 1 times larger than its 
amplitude near the surface. The reason for the latter is that, 
in contrast to the "surface" electrons the "volume" carriers 
return I /rH times to the spike within the time T. This in- 
creases effectively the number of nonequilibrium electrons 
than form at a given instant the auxiliary spike, and conse- 
quently increase its amplitude. It follows from (27) and (28) 
than the amplitude of the APS is smaller by a factor (b /rH), 
that the amplitude (23) of the MPS. Nonetheless, at depths 
2rH) < x  <4rH far from the spikes the potential is 
p(r) 5 U,,, (b / T ~ ) ~ (  U pi. In the region x < 2rH, in which all 
the APS with m#O are located, the amplitudes Uf,!,, are 
generally speaking smaller than the potential-distribution 
monotonic part produced by electrons injected by the emit- 
ter and gliding along the sample surface. 

Similarly, using the recurrence relation (15), we can in- 
vestigate the subsequent drawing of the APS into the inter- 
rior of the metal and along its surface. We onsider now the 
potential distribution in the plane b < lzl < 1 v, IT/2, per- 
pendicular to the magnetic field but not passing through the 
junction (v, is the electron velocity at the limiting point). 
The only electrons that can land on this plane from the emit- 
ter are those from noncentral sections of the Fermi surface, 
with velocity components along the vector H. Since the de- 
terminants D, (20) no longer vanish, an asymptotic estimate 
of the integrals in the expression (16) for p,(r) shows that the 
amplitudes of the MPS are smaller by a factor (rH/b ) I f 2  than 
the amplitudes (23) of the spikes in the planes lzl 5 b, and 
their position is determined from the condition that a:! van- 
ishes [see Eq. (21)] on the central line of the spike 
r = Ar, ( t ,  2 ) (spikes a,b,, a;  b,, anda;' b ; in Fig. 3). We note 
that spikes with n # O  are formed at each point by electrons 

FIG. 3. Schematic distribution of the potential in thez phne, which does 
not pass through the junction, for specular reflection of the electrons from 
the surface (Hln, b<lzl < lu, I T / 2 )  the lines a lb l ,  a;  b, and ayb, corre- 
spond to the MPS and a,b ;, a; b ;, clb  ; to the APS. 

from different sectionsp, = const of the Fermi surface. For 
this reasons the MPS, and consequently the APS (lines a,b 4 ,  
a; b,, and clb ; in Fig. 3) do not start out from a single point 
on the x axis, inasmuch as to each n there corresponds a 
different characteristic radius of electron motion along a he- 
lical trajectory. Further penetration of the field into the met- 
al is due, as before, to the motion of carriers belonging to the 
central section of the Fermi surface, and the ASP emerge to 
the surface at points that do not coincide with the poteritial 
maxima due to the electrons from the emitter. 

With increasing distance from the plane passing 
through the junction, the spike lines decrease in amplitude, 
approach the z axis, and at zjf) = (n + l)v, T/2 the ampli- 
tude of the n-th MPS on the surface becomes equal to zero, 
while at zf) = (n + 1/2)v,t this spikes vanishes also in the 
interior. 

2. Almost diffuse electron reflection from surface 

We consider now the case when the electron scattering 
by the metal surface is close to diffuse, q((b /r,)'I2. The 
terms A and 

m 

[ d s ' ~ , @  
0 

in the right-hand side of (8) are given by 

11 (k. 5 )  = 
I( ')  

< 8 k  ( t ,  (x, t )  ) ) (v,>,<l> 

m 1 
[&'B, (k, z, z') @ (k, 2') = ---- ( g r  ( t ,  3" (0, x) 1) 

(1) 

(29) 
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dt' 

Using (14), we obtain an expression for the function 
po(r) that describes the MPS system at a depth x 5 2r,: 

\ 1 

( v z ( t , ) .  . . <vx( tn) iE(R-AR(t .L(x .  t ) )  
Y 

-AR(t , ,  h(0,  ti)) - . . . 

Since the first MPS (n = 0) is produced by electrons 
emitted from the junction and not interacting with the sur- 
face, its amplitude is of the same order as the amplitude U, 
given by (23), and its position in the volume is given by condi- 
tion (18) at n = 0 (spike a,b, in Fig. 4). The remaining terms 
of the series in (3 1) describe weaker potential spikes due to 
focusing of carriers injected by emitters and diffusely scat- 
tered n > 1 times by the metal surface (spikes a,b,, and a3b3 in 
Fig. 4). The equation 

r=Arnl= (Ax ( t ,  k) , 

of the central line of the n-th spike is obtained from the con- 
ditions 

FIG. 4. Schematic distribution of the potential in a planer = 0 passing 
through the junction, for diffuse scattering of the electrons from the 
boundary (Hln). The lines o , b ,  (n = O) ,  02b, (n = I ) ,  and o,b, (n = 2 )  des- 
ignate MPS with amplitudes (33),  and a;  b2 and nib,  designate ABS. 

(a,, is the Kronecker delta). since A R(ti, A(0, ti)) is the dis- 
placement of the electron over the sample surface during the 
time between to successive collisions with the surface, it fol- 
lows that D = 0 if 

and the picture of the spikes is a repetition of the first MPS 
displaced along they axis by distances ncP '"lr/eH (n = 1, 2, 
3...). The MPS amplitudes decrease in power-law fashion 
with increasing number n: 

Using the recurrence relation (15) and Eqs. (30) and (3 l), 
it is easy to obtain an expression for the term in the potential 
p,(r) which describes the set of MPS at a depth x 54r, 
(spikes a;b, and a;b3 in Fig. 4). Without dwelling on the 
details of the asymptotic estimate of the integrals, we note 
that p,(r) is a maximum at the points r = Ar; + Af, for 
which Do = a, = D : = 0 and v,(t ') = v, (t,), while the 
mechanism ofthe anomalous penetration of the field into the 
metal differs from the case of almost specular reflection in 
the absence of sets of APS due to the periodic motion of the 
spike-carrying electrons over the surface. 

In the planes b < lzl< I u, I T/2 the first MPS (n = 0) is 
produced by electrons from a noncentral section of the Fer- 
mi surface near the curve r = Ar; if the condition a?; = 0 is 
satisfied. The MPS at n> 1 are due as before to electron fo- 
cusing in the vicinities of the points r = Ark that satisfy the 
condition at; = 0 and relations (32). It is easy to show that 
the amplitudes of the potential spikes in planes lzl> b that do 
not pass through the junction are smaller by a factor 
(r,/b)'I2 than the amplitudes Un given by Eq. (33). The 
MPS contained in the term p,(r), regardless of the coordi- 
nate z of the plane, are produced by electrons from the cen- 
tral section of the Fermi surface. 

IV. POTENTIAL DISTRIBUTION IN METALS WITH 
COMPLICATED CARRIER DISPERSION IN A PARALLEL 
MAGNETIC FIELD 

1. Multiply connected Fermi surface 

If the Fermi surface is multiply connected, the conser- 
vation conditions for the energy and for the tangential com- 
ponent of the quasimomentum (6) do not always ensure uni- 
queness of the state of the reflected e le~t ron .~ '  We consider 
by way of example a Fermi surface consisting of two isotrop- 
ic valleys. The boundary condition for the nonequilibrium 
increment $M (r, p)d fo/&, to the Fermi distribution of the 
electrons of the M-th valley (M = 1 or 2) is 
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Here P and Q are respectively the probabilities of the intra- 
valley and intervalley "specular" reflections (P + Q = q); 
W, and W, are the probabilities of diffuse intravalley and 
intervalley scattering; v, = d&,/dp is the electron velocity 
in the M-th valley; i,(r,) are the partial densities of the cur- 
rent through the junctions; p, and p, are the solutions of 
the system of equations (6) for M-th and N-th valleys of the 
Fermi surface, respectively. 

Writing down the solution of the transport equation (1) 
for each of the valleys in the form (3) and determining the 
functions f contained in (4) with the aid of the conditions (34), 
we substitute the sum of the solutions in the electroneutra- 
lity equation (2). After taking the Fourier transforms in the 
plane parallel to the surface, the equation for the function 
@ (k, x) takes the form (8). 

If the scattering of the conduction electrons by the met- 
al boundary is only weakly diffuse (P( W,, Q( W,) and the 
magnetic field is parallel to the surface, the Fourier compo- 
nent that describes the MPS is 

x [ I j r  (k) (1 - Paiv)/(vx,j~>+ -k QIN  ( k )  a ~ / ( z ' ~ \  >+I -- 
(1 - Pal)  (I  - Paz) - Q2alaz 

where a, = %",N'(~,, + A,, AN);N = 1, 2. The subscripts 
M and N in (35) label quantities pertaining to the M-th and 
N-th valleys of the Fermi surface, M #N. It follows from (35) 
that the presence of a second channel for "specular" reflec- 
tion of electrons leads to a lamination of the (n + 1)-st MPS 
(n = 0, 1,2, ...) into 2n + 1 spikes that emerge to the surface 
at n + 2 points, and the intensities of the spike lines depend 
on the probabilities P and Q. For example, the amplitudes of 
the MPS with n = 1, produced by carriers that have collided 
once with the boundary, are 

If the carrier scattering by the sample surface is close to 
diffuse (P( W,, Q( W,), the Fourier component of the func- 
tion p,(r) takes the form 

T f l  
2 e 3 ~  

Oo ( k ,  x) = A (k, 2) = (2nt~)3 (1) 2 5 ~ P Z  5 danruxnr ( a a i  
M =1 0 

T h M - k h ~ 1  

* 5 dtlkTf' ( t ,  A M )  
h  M 

(k) (1 - I V ~ P N ) / ( V ~ M ) +  4- W 2 l N  (k) P N / ( ~ X ~ ) +  
( I  - wlP1) (2  - WlP2) - ~,VzzBIPz 

where 

Expanding the denominator of (37) in a series and tak- 
ing the inverse Fourier transform we find that, just as in the 
preceding case, 2n + 1 MPS are produced by the electrons 
diffusely scattered n times by the metal surface (n = 0, 1, 
2 ...). The spike amplitude, which depends on W, and W,, 
decreases with increasing number n likewise in accordance 
with (33). 

The functions p,(x, R) (v> 1) describe the penetration 
of the electric field of the point junction into the metal along 
a "chain of trajectories," and in the case of a doubly connect- 
ed Fermi surface it is a sum in which each term contains an 
APS located at a distance c(mP:"" + sPYtr)/eH from the 
MPS (m + s = v + 1, m and s are integers, Pgtr is the extre- 
ma1 dimension of the M-th cavity of the Fermi surface). 

The foregoing results remain qualitatively valid for a 
Fermi surface consisting of an arbitrary number of closed 
cavities, since the geometry of the equal-energy surfaces de- 
termines only the amplitude and position of the potential 
spike. The central lines of the spikes are generally speaking 
not planar curves. 

2. Role of open orbits 

If the Fermi surface is not closed, the carriers belong to 
the open sections can drift, after leaving the emitter, int- the 
interior of the sample even in a magnetic field parallel tc ihe 
surface, and can produce potential spikes in the interior of 
the metal. 

We shall assume that the Fermi surface is a surface of 
revolution of the corrugated-cylinder type, with an axis con- 
gruent withp,. The momentum projections on the magnetic 
field direction Ip, I <p,  and p ,  < Ip, I <p, on the magnetic- 
field direction correspond respectively to closed and open 
electron trajectories in momentum space. Inasmuch as in 
this case the character of the carrier reflection from the met- 
al surface does not play an important role, we assume, to 
simplify the equations, a pure diffuse carrier scattering by 
the boundary. In expression (13) for p(r) the term with v = 0, 
which makes the principal contribution to the amplitudes of 
the spikes produced in the interior of the metal, is of the form 

2 2 ~  TO 

To (x, R) = --- 
I j d p , ~ d ~ v ,  ( a )  exp ( h-t-NTO ) 

~ ( 2 n h ) ~  (I>(v,)+ . T 
0 

xi, (R-AR(t ,  A ) )  6 (x-As(t ,  h) -NL) , 
(38) 

where T, is the time required for the electron to negotiate the 
distance L = cfig,,/eH along the z axis, g,, is the reciprocal- 
lattice period in the open direction, N = [x/L ], [a] is the 
integer part of a, and Ax(r, A ) < L. 

For the asymptotic estimate of the integrals in (38) we 
shall use expression (20) for the Jacobian Do. If the open 
trajectories of the carriers have no points at which the elec- 
tron-velocity component perpendicular to the magnetic field 
reverses sign, the maximum points 
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r=r, ( t .  a )  = ( A x ( t ,  L) +.VL. AR(t.  I . ) )  

(Do = 0) correspond to v, (t ) = v, (A ), and t = A, + To. 
Within a time equal to an integer number of periods NT, all 
the electrons of the open Fermi-surface sections penetrate to 
the same depth NL in the surface, regardless of the initial 
velocity v ,  = v(A ), and have at the end point of the orbit a 
displacement Ay(A + NT,, A ) equal to zero. Consequently 
these carriers produce potential spikes with characteristic 
size b near lines located in the xy plane at distances x = NL 
from the surface. Calculation shows that the potential-spike 
amplitudes at x = NL are proportional to 

and exceed by at least FH/b times the potential in the re- 
maining space (FH = c@, - p,)/eH, ?,/I( 1). The inequality 
p,/p,(b /NL means that the layer of open orbits alongpz is 
narrow and after a time NT, the electron displacement along 
thez axis is smaller than 6,  i.e., the potential spikes exist only 
in the vicinity of the points x = NL on the x axis. When the 
inverse inequality p,/p,>b /NL holds, the potential spike 
has finite dimensions along thez axis, and since the period To 
increases with increasingp,, and goes logarithmically to in- 
finity as [p, I-+p,, the intensity of the potential spike is a 
maximum near the plane z = 0 and decreases with increas- 
ing distance from this plane as a result of electron collisions 
in the volume. 

V. EFFECT OF INCLINATION OF THE MAGNETIC FIELD ON 
THE POTENTIAL DISTRIBUTION IN THE METAL 

We consider the distribution of the electric potential in 
a magnetic field inclined to the surface of the metal, assum- 
ing that the Fermi surface is isotropic. In this case the elec- 
trons that interact with the sample surface have nonperiodic 
trajectories. At each specular reflection, the projection pc of 
the momentum on the magnetic-field direction changes by a 
certain amount 6pc, and the carriers reflected once or sever- 
al times from the boundary go into the interior of the con- 
ductor or else, after a countless number of specular colli- 
sions, land on the line v, = 0. 

At an arbitrary inclination 9 = zc of the magnetic field 
and a specularity parameter q it is no longer possible to ob- 
tain in closed form an equation for the function f in the solu- 
tion (4). However, using Eq. (5) as a recurrence relation con- 
necting f [ r  - r(A,)] with the function f [ r  - r(Ai+, ) ]  at the 
an earlier instant of collision, A,, , >A,, we can write down 
the solution of the transport equation in series form,19 while 
the terms A and 

j ~ f ~ . ~  

0 

in Eq. (8) for the potential, which are due to "surface elec- 
trons" take the form 

A (k, X) = - 
c (27tqs ( L ? ~ ) +  (1) 

t 
dt' - 5 - Zk (t, t') @ (k, x - Ax ( t ,  t r ) ) )  , 

I T 

M (A,, pc, ) is the total number of electron collisions with the 
surface. 

At small inclination angles 9(rH/l the "surface" 
terms (40) and (41) in Eq. (8) are the major ones. Solving (8), 
just as in the case of a parallel magnetic field, by iterations, 
we find that the first MPS (n = 0) lies in the plane c = 0 and 
is produced by electrons from the central section. The re- 
maining MPS (n> 1) are due to focusing of electrons that go 
over, upon collision with the surface, from one Fermi-sur- 
face section pc = const to another. The geometric locus of 
the points making up the central line of the spike is deter- 
mined from the condition that a determinant analogous to 
D, (1 8) vanish on the curve 

b 

r= (&(t ,  a , )  ; A R ( t ,  ki) +x AR(A.i+$. k t )  ( 1 - 6 i o ) ) .  
(-0 

These lines, which are not planar at n #O, emerge to the 
surface at points lying on a straight line that passes through 
the junction and is perpendicular to the magnetic field.22 
The MPS amplitudes, which depend strongly on the angle 9 ,  
are proportional to the (b /rH)3'2. 

If the carriers are diffusely scattered by the metal 
boundary (qg l )  the distribution of the electric potential in 
the interior of the metal is not as sensitive to the inclination 
9 < r H  /I of the magnetic field, since there is no correlation 
between the momenta of the incident and reflected electrons. 
In particular, the potential spike in the = 0 plane takes a 
form similar to Fig. 4. 

With increasing 9 (tan9 > 2rH/l ) the number of intense 
potential spikes that emerge to the surface decreases even if 
the carriers are specularly reflected from the boundary, and 
is determined no longer by the mean free path but by the 
inclination of the magnetic field. In this situation, however, 
peculiar spikes of another type can be produced in the interi- 
or of the conductor, and are due to longitudinal focusing of 
the electrons by the magnetic field. We shall analyze this 
effect using as an example a very simple geometry, when the 
vector H is perpendicular to the diffuse surface of the sample 
(9 = n/2, q = 0). Deflection of the magnetic field from the x 
axis by a small angle A 9  (A9g 1) does not change the qualita- 
tive distribution of the potential in the conductor. 
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As in the case of an open Fermi surface, a potential 
spike in a normal magnetic field is described by the term with 
Y = Oin (13): 

Here 

Calculations similar to those performed above show 
that the function q,(r) is a maximum near the points 

r= (Ax ( t ,  h) +NL(p,), AR(t, h) ), 

at which the Jacobian 

vanishes. In (43), the a:; are determined by Eq. (21): 

p,, and p,, are they components of the momentum at the 
instants of time A and t; S(p,) = $p,dp, is the area of the 
intersection of the Fermi surface with the planepx = const. 

It is easily noted that D = 0 at v, = v,, i.e., carriers with 
definite values ofp, are focused at points such that the time 
of motion to them from the instant of leaving the emitter is a 
multiple of the period T of the motion in the magnetic field. 
In our case this is a straight line passing through the junction 
and perpendicular to the sample surface. After leaving the 
junction and executing a number of total revolutions lands 
on this line irrespectively of the value of A. In this case the 
Jacobian (43) vanishes at least like (NL (p , )  -xi, and the 
amplitude of the potential near the points lying on the axis is 
larger than or of the order of U=: U,,, b /x(b /x( 1). The po- 
tential spikes are produced by carriers that move along tra- 
jectories for which the density of states with given L (p,) is a 
maximum. These are electrons located in the vicinity of the 
limiting points of the Fermi surface, p, =p,, for which 
D- (NL (p,) - x ( ~ ' ~ ,  as well as electrons with extremal dis- 
placement along the magnetic field during one period: 

The potential-spike amplitude at the points of focusing of the 
'effective" carriers is equal to 

UN=Umm (blx) ''3, x=NL (pZo), (444 

Uh.=Umos(blz) I;', x = N L  (ps,). (44'3) 

Potential spikes of type [44(b)] were observed in longitudi- 

nal-focusing experiments7 to emerge to the surface, opposite 
that of the point contact, of a thin plate of thickness smaller 
than the carrier mean free path. 

VI. POTENTIAL DISTRIBUTION IN A METAL AT LARGE 
EMITTER CURRENTS 

The foregoing results can be generalized also to i~clude 
the case of strong electric fields. The collision integral Wis in 
this case, generally speaking, a nonlinear integral operator. 
Since the operator for elastic scattering by impuritks is lin- 
ear at any electron statistics, the nonlinearity of Win the 
absence of interelectron collisions with quasimomentum 
umklapp is due to electron-phonon interaction and can be 
determined at low temperatures by successive approxima- 
t i o n ~ . ' ~ . ~ '  In the zeroth approximation in the parameter 
b /I, <I ,  whe~e II,  is the carrier in elastic-relaxation length, 
the operator Win ( I )  describes only elastic-impurity interac- 
tion. It is easy to verify that in the absence of volume scatter- 
ing the function 

is a solution of the transport equation (1) (we note that t is 
here the time of motion in the fields E = - Vp and H). The 
function f is found with the aid of the boundary condition for 
the electron distribution function n,(p, r)  and the condition 
that the electric-current component normal to the surface be 
conserved. At relatively low emitter currents, when 
eU,,,,, ( E ~ ( E ,  is the Fermi energy), the influence of the inho- 
mogeneous electric field on the electron trajectory can be 
disregarded, and the potential distribution that must be cal- 
culated with the aid of the electroneutrality equation (2) is 
described, at almost specular carrier reflection from the met- 
al surface (q -- I), in the principal approximation in the pa- 
rameter b/r,(r,,<l,), by Eq. (16) in which we must put 
T =  w .  

To take into account the influence of the inelastic relax- 
ation of the electrons on the MPS amplitude, we obtain the 
increment n ,(p, r) to the nonequilibrium electron distribu- 
tion function n,(p, r). The function n ,(p r) satisfies the equa- 
tion 

with the boundary condition 

ni (P, rs) =qni (p', r s ) ,  

which is valid e r  nearly specular carrier reflection from the 
surface. Here W4(n,) is the electron-phonon collision inte- 
gral; e, !'(r) is the correction to the potential q,(r) and is ne- 
cessitated by the electron phonon interaction; E, 
= - Vpo;p and p' satisfy Eqs. (6). The phonon distribution 

function must be found by supplementing Eq. (1) with the 
transport equation for the phonons; at low temperatures the 
latter can be easily solved by successive approximations. 
However, allowance for the disequilibrium of the phonon 
system leads only to a renormalization of the kernel of the 
integral operator W,/ (no) of the electron-phonon colli- 
s i o n ~ . ~ ~  
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Assuming as before that eU,,, d ~ ,  and the vector H is 
parallel to the surface, we obtain a solution of (45) by the 
method of characteristics 

. Z 

where t is the time of motion of the electron in a magnetic 
field only. Substituting the expression obtained for n ,(p r) in 
the electroneutrality equation, we find that 

x ni 5 d3p ) 5t1i$'., (,lo (p, r + r ( t )  - r (1'))). 
1 =I hr+l . - 

(47) 
Calculating the correction to the distribution of the potential 
on the sample surface p gl(r,) and differentiating the resul- 
tant formula twice with respect to the emitter current, we 
obtain 

where 8 is the temperature. At low temperatures, as 8+0, 

v ( E ~ )  is the density of the electronic states on the Fermi sur- 
face; the symbol 8 ( v d !  ) stands for a function equal to unity 
when v belongs to the solid angle R containing the velocities 
of the electrons arriving at the given point r, from the emit- 
ter; N (p) is th total number of times that the electron collides 
with the surface when it moves from the current-carrying 
junction to the surface point r, ; IMP,., , l 2  = #iw,,., ,/2a is 
the squared modulus of the matrix element of the electron- 
phonon interaction, with account taken of the correspond- 
ing renormalization; the subscript k labels the branches of 
the phonon spectrum. 

Thus, the second derivative of the amplitude of the lines 
of the transverse electron focusing with respect of the emit- 
ter current contains the same information on the phonon 
spectrum of the metal as the nonlinear current-voltage char- 
acteristics of point junctions the only difference lies in the 
expression for the structural form factor Q (p, p', r,), which 

is determined by the shape of the emitter and by the distribu- 
ton of the current through it. 

VII. CONCLUSION 

Thus, the distribution of the electric potential on the 
surface and in the bulk of the crystal are substantially altered 
in a strong magnetic field. The structure of the resultant 
picture ofthe major and auxiliary spikes depends on the state 
of the sample boundary, on the orientation of the magnetic- 
field vector relative to the surface, and on the carrier disper- 
sion law. It turns out that even in the case of a magentic field 
parallel to the surface the value of the potential at depths 
appreciably exceeding the Larmor radius is determined by 
the probability of the specular reflection of the electrons 
from the metal boundary. 

The results of this paper show that transverse focusing 
of the electrons by magnetic field affords extensive possibili- 
ties for the investigation of the potential distribution in the 
interior of a conductor. The information provided by the 
focusing line depends substantially on the location of the 
collector on the sample surface and on the direction of the 
vector H. In particular, the possibility of observing secon- 
dary potential spikes exists if the magnetic field is directed at 
an angle to a line joining the current-carrying and the mea- 
suring junctions, and when the electrons are reflected from a 
plane that does not with the plane on which the emitter and 
collector are placed (e.g., a macroscopic defect is present in 
the gap between the junctions). In these cases the major and 
secondary spikes emerge to the surface at different points, 
and this should manifest itself in a splitting of the focusing 
peaks into several lines of different intensity. 

Investigation of electron focusing at various tempera- 
tures and various emitter currents makes it possible to study 
the spectrum and the relaxation properties of conduction 
electrons, including electron-phonon interaction, as well as 
obtain information on the phonon spectrum. 
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"It will be shown below that the parameter of the expansion (13) of the 
potential is the square of the ratio of the emitter dimension b to the 
characteristic Larmor radius r,. 
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