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The cross section for photoionization of a hydrogen atom in a uniform electric field is calculated 
with the use of a quasiclassical approximation that takes account of the above-barrier reflection, 
or the tunneling, that occurs during the motion of the electron in the final state. The structure in 
the energy dependence of the cross section is determined by the complex poles of the cross section. 
The motion of the poles that occurs as the parameters of the problem are varied is investigated. 
Equations for the positions and widths of the resonances in the regions below and above the 
effective potential barrier are derived and analyzed; the boundaries of these regions are defined. It 
is shown that the cross section in the vicinity of an isolated resonance forms a Fano profile, and 
approximate expressions are obtained for the profile index. A comparison with the results of 
numerical calculations is carried out, and recent experiments on the photoionization of rubidium 
atoms are discussed. 

PACS numbers: 32.80.Fb 

61. INTRODUCTION 

The development of methods of laser spectroscopy has 
made the detailed experimental investigation of highly excit- 
ed atomic states in electric and magnetic fields possible (see 
Refs. 1-3 and the literature cited therein). Of special interest 
here are the hydrogenlike excited states of the atoms of the 
alkali metals, in view of the possible simplicity of their de- 
scription. At excitation energies lower than the classical 
threshold for ionization of the atom in the electric field," i.e., 
for E S  E,, the excited states form the wellknown Stark 
~ t ruc tu re ,~ .~  but for the states with E k  E, the effect of the 
electric field is not weak, and cannot be treated as a perturba- 
t i ~ n . ~  The analytical theory that takes account of this char- 
acteristic of the spectrum has not been sufficiently developed 
even for the hydrogen atom. 

The study of the Stark effect is an integral part of the 
theoretical investigation of the cross section for photoioniza- 
tion of the hydrogen atom. The procedures developed by 
Damburg and Kolosov6 for the numerical computation of 
the positions and widths of the resonances, and based on the 
Lorentz parametrization of the resonance peaks, are well 
known. But Luc-Koenig and Bachelier7 have observed in a 
numerical calculation in which normalized wave functions 
were used that there are resonance peaks which differ in 
shape from the Lorentz peak. 

The low clarity of the results and the ambiguity of many 
qualitative estimates obtained by means of numerical calcu- 
lations indicate the need for an analytical theory. The natu- 
ral means of constructing such a theory for strong fields is 
the quasiclassical approximation. 

There have been establ i~hed~- '~ in the quasiclassical ap- 
proximation simple equations for the positions of the reson- 
ances lying below the top of the potential barrier, and explic- 
it expressions have also been found for the widths of these 
resonances. The results assume a compact form in the ap- 
proximation most consistently used by Drukarev9 (see also 
Ref. 8), and consisting in the explicit separation of the contri- 

butions of the centrifugal terms from the phase integrals and 
the subsequent expression of these integrals in terms of hy- 
pergeometric functions. This approximation is used in the 
present paper. 

The above-barrier resonances, which also manifest 
themselves in  experiment^'.^ and numerical  calculation^,^^^ 
have thus far not been analytically investigated. 

In the present paper we develop for the purpose of de- 
scribing the resonance structure of the cross section a quasi- 
classical theory of photoionization of the hydrogen atom in a 
uniform electric field. In contrast to our previous paper," 
here we take into consideration (using the separation of the 
variables in parabolic coordinates) the above-barrier-reflec- 
tion and tunneling effects. This allows us to obtain for the 
cross section in the region E < 0 an expression that goes over 
continuously into the formulas obtained earlier" for E > 0 
(42). The investigation of the poles of the cross section in the 
complex plane of the separation z, (or z, = Z - z,) (43) ena- 
bles us to identify unambiguously the resonances lying both 
below and above the barrier, The system of equations ob- 
tained for the below-barrier resonances goes over into Dru- 
karev's r e s ~ l t . ~  

As the energy is varied, the photoionization cross sec- 
tion poles trace out certain trajectories, the investigation of 
which (44) is of fundamental interest. We also explain in 44 
the experimentally observed'92 general character of the de- 
pendence of the structure of the photoionization cross sec- 
tion on the polarization of the radiation. 

The investigation of the shape of the resonance cross- 
section peaks ($5) shows that these peaks have the Fano pro- 
file'' even in the case of the hydrogen atom. The assertion 
has been made b e f ~ r e ~ . ~ ~ ~ . ' ~  without sufficient justification 
that Lorentz resonance profiles are characteristic of the hy- 
drogen atom. Approximate analytical expressions, applica- 
ble in a broad range of variation of the parameters of the 
problem, are obtained for the Fano parameters: the profile 
index q and the width T. 

The expression for the resonance width generalizes the 
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previously obtained f o r m ~ l a s , ~ . ~ ~ ~  agreeing with them in the 
region of their applicability. As far as we know, this is the 
first time that expressions have been derived for the profile 
index and the energies and widths of the above-barrier reson- 
ances. In $6 the results obtained are compared with numeri- 
cal calculations and experiment. 

The paper was earlier presented in part at All-Union 
conferences.I3 

92. PHOTOIONIZATION CROSS SECTION 

As a result of the separation of the variables for the 
superposed Coulomb and homogeneous fields in parabolic 
coordinates 6 = r + z,q = r - z,p = arctg( y / x ) ,  the pho- 
toionization cross section in the dipole approximation can be 
represented in the form of a sum of partial cross sections": 

nt 

onEd= I <Yo l (r, e) I YnEm> 12, 

where c is the velocity of light in vacuo, e is the polarization 
vector of the light wave, and Yo is the initial-state wave func- 
tion, the effect of the homogeneous field on which is neglect- 
ed. The final-state wave function YnSmE is characterized by, 
besides the energy E, the discrete magnetic m and parabolic 
nc quantum numbers. The states with fixed E and m values 
are degenerate in np >O. The discreteness of nc is due to the 
finiteness of the motion in the parabolic coordinate 6. In the 
coordinate q, the motion is infinite, it being possible for the 
effective potential V,(q) to have the form of a barrier (see 
Figs. 1 and 2 in Ref. 1 1). Earlier1 the quasiclassical approxi- 
mation was applied by us to the above-barrier (i.e., E>O) 
motion. 

The main distinction of the present paper in respect of 
the computation of the partial cross sections anpm, consists 
in the refinement of the quasiclassical description of the mo- 
tion in the coordinate q by taking into account the above- 
barrier reflection (in the case of motion above the barrier) 
and the tunneling (in the case of motion below the barrier). 
For energies close to the top of the barrier, the latter can be 
approximated by a parabola, which allows us to introduce 
into the general quasiclassical expressions a correction that 
ensures the correct passage to the indicated limit (see Ref. 8, 
as well as the Appendix). The legitimacy of this approxima- 
tion is confirmed by Harmin's recent investigation.1° 

We propose a new correction that guarantees the pas- 
sage to the correct limit as z,/lk I 4 [ k  = (2E)1'2]; it is de- 
rived by comparing the corresponding asymptotic forms of 
the solution of the Coulomb problem with the quasiclassical 
wave function. Qualitatively, we can assert that this correc- 
tion (see the Appendix) takes account of the potential-barrier 
asymmetry, whose role increases as z,/lk 1-4 (the dipole 
moment of the atom is oriented against the direction of the 
electric field). A similar correction should be introduced in 
the description of the motion in the 6 coordinate in the case 
when E > 0 (see the Appendix). 

Let us give here the final expression for the partial cross 
sections, which it is convenient to treat as functions of the 

separation constants z, and z,: 

, , 
zizz 

'(zi)= (I+ezL) [1+2e~'+2e~(l+e'")" oos Z'D]  
(m= I ) .  

(2.5) 
The functions S,, S-, @, and K are defined in the Appendix. 
The derivative in (2.3) is calculated at fixed E and 8 .  The 
expressions (2.4) and (2.5) are applicable for all energies 
when z, < 0 and for E < 2 ( ~ , 8 ) ' / ~  when z, > 0. 

For E 2 2 ( ~ , 8 ) " ~  the expressions obtained by us ear- 
lier,'' and corresponding to the following formulas for f (z,): 

are valid. 
For the hydrogenic wave function 

Yo = n-1'2a3'2exp( - ar) of the initial s state, the coeffi- 
cient C in (2.3) has the form 

The integral S+(z,,E ) enters into the Bohr-Sommerfeld 
quantization rule for the finite motion in the coordinate c: 

which gives the functionz,(np,E,m). In (2.9), as in Ref. 11, we 
have used Drukarev's appro~imation,~ which consists in the 
explicit separation of the contribution of the centrifugal 
term to the phase integral. 

93. POLES OF THE PHOTOIONIZATION CROSS SECTION 

To investigate and explain the singularities of the pho- 
toionization cross section, let us consider the cross section to 
be a function of the complex final energy E. In practice, it is 
convenient to consider the plane of the complex separation 
constant z,, which is related to the energy according to Eq. 
(2.9). Since the boundary conditions for the wave function in 
parabolic coordinates do not depend onz,, it can be expected 
that the exact partial cross sections will be analytic functions 
ofz,. It follows from the formulas (2.3)-(2.7) that the singu- 
larities of the cross section are poles, which naturally divide 
into two series according to the two factors in the denomina- 
tor of the function f (z,). In view of the symmetric disposition 
of the poles with respect to the real axis, below we consider 
only those poles that lie in the upper half-plane of z, (corre- 
spondingly, those in the lower half-plane of z, = Z - z,). 

The simplest case is the one in which the expression (2.6) 
or (2.7) for f (z,) is used for all physically important values of 
z,. This corresponds to the approximation adopted in our 
previous paper," and, as will be seen below, it is correct 
when E 2 g2I3. Numbering the poles of the function f (z,) 

720 Sov. Phys. JET? 56 (4), October 1982 V. D. Kondratovich and V. N. Ostrovskil 720 



inside each series by integers I, n,>O, we obtain for them the 
expressions 

For f (z,) given by the formulas (2.4) and (2.5), the poles 
of the series are respectively given by the equations 

S-(zl, E)=in[l+ ' 12( (m(+l ) ] ,  (3.3) 
G(z2, E)=2n[n2+'/2(Iml+ 1)  I ,  (3.4) 

where 

G (z,, E )  =2@,f '12i ln ( I f e - ' " )  (3.5) 

and the functions @, and K are defined in the Appendix. 
It is convenient to characterize the disposition of the 

poles by the parameters 

5, =E2/48= (EIE,) '2. V =  1 k 1 3 /8 .  (3.6) 

For Y 5: I, the positions of the poles of the first series do not 
depend on the energy, and are completely determined by the 
strength of the electric field: 

In the case Y 2 1 the positions of the poles are given by the 
relation (3.1) with k replaced by Ik 1, and do not depend on 
the field strength. The poles of the first series have practical- 
ly no effect on the energy dependence of the cross section in 
the case when E <O, since in this case the spectral z,(np) 
values obtained from (2.9) are considerably far from these 
poles. 

For the second series of poles, when the energy is lower 
than the top of the potential barrier V,(v) [and 
exp( - 2K ) 5: 11, the equation determining the poles assumes 
the form 

@o(z , .  E ) = ~ [ n , f ' / ~ ( I m ( + l ) ] .  (3.8) 

It gives together with (2.9) the positions of the levels of the 
Stark multiplet and the corresponding values of the separa- 
tion constants z,, and z,, ,z,, + z,, = Z (see Ref. 9, where 
this system of equations is reduced to a form suitable for 
computations, and Ref. 14, where examples of the calcula- 
tion are given. Thus, n, has the meaning of a parabolic quan- 
tum number, determining together with n, = ng and m the 
state of the atom in the presence of an external electric field. 
The imaginary part of the pole z,(n,) is connected with the 
width of this state, and is found, when exp( - 2K ) 5 1, from 
(3.4) and (3.5), where the imaginary term is treated as a small 
correction: 

As the energy is increased, the pole with a given value of n, 
moves away from the real axis, describing some trajectory in 
the process. 

The poles with Rez, > z, correspond to resonances lying 
above the top of the barrier V2(v). The energy at which the 
position of the resonance corresponds to the top of the bar- 
rier V,(v) is called in the literature the "parabolic critical 
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energy," and is denoted by7 E,,. It turns out to be possible to 
derive in the quasiclassical approximation analytic expres- 
sions for this energy as functions of n, and n,, i.e., expres- 
sions that determine the order in which the resonances rise 
above the top of the barrier. 

The equation Rez,(n,) = z, together with (3.6) and (3.8) 
gives ED, as a function of n,: 

from which it can be seen that all the resonances for energies 
E >  Epc(0) = - [an-(lml + 1)gI2l3 are above-barrier reson- 
ances. The inequality Epc (0) < 0 contradicts the assertion 
made in Ref. 7 that values of Epc >O exist. The condition 
z,(n,) = Z - z, together with (2.9) and (3.6) gives EP, as a 
function of n, : 

where 0 < r < 1 is determined from the equation 

in which F (a,b,c;z) is a hypergeometric function. 
Equations (3.10)-(3.12) allow us to classify the reson- 

ances into above- and below-barrier resonances at any value 
of the electric field. Indeed, from (3.10)-(3.12) we can derive 
a universal relation between the quantities 
X = $ ' 1 4 2  -314[n2 + J(lrn1 + l)] and 
Y =  $ '14~-314[n l  + !(lrnl + I)]: 

Figure 1 shows a plot of the function Y (X ). The points locat- 
ed below this curve correspond to below-barrier states. We 
can, by finding the area under the curve through integration, 
obtain a simple expression for the total number of below- 
barrier states with fixed m < g - 1 1 4 ~ 3 1 4 ;  it is equal to 

FIG. 1. The function Y (X ), ( 3 . 1 3 ) ,  determining the division of the reson- 
ances into below- and above-barrier resonances (X, = 25'2/31r, 
Y,,, = T 2 ( $ ) / 3 d " ) .  The region under the curve corresponds to the below- 
barrier resonances E < E,,). 
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(27r)If2r -2(j)Z312E5-1'2. The point (X ,  ,0) on the graph de- 
termines the below-barrier resonance with the highest possi- 
ble-for a given field intensity-n, quantum number (and 
n, = 0); the point (0, Y,,,), the highest below-barrier reso- 
nance with n, = 0 [and with the highest possible n, value for 
a below-barrier resonance). The E, (n ,,m) values determined 
from Eqs. (3.1 1) and (3.12) are in good agreement with the 
values found in Ref. 7 by numerical computation in the re- 
gion E < 0. 

The system (3.13) allows us, when n,, n,, and m are 
given, to determine the critical value 8, of the field intensi- 
ty and [with the aid of (3.1 I)] the corresponding Epc value. 
The scaling laws established for the Stark spectrum by Dru- 
karev9 manifest themselves here: the reduced values of the 
critical field and critical energy $,n4 and Epcn2 (n is the 
principal quantum number) depend only on the ratios n ,/n, 
n2/n, and (lml + l)/n: 

where 0 < T < 1 is determined from the equation 

The same scaling laws manifest them~elves'~ when the con- 
tribution of the centrifugal terms is taken into account exact- 
ly in the evaluation of the phase integrals of the quasiclassi- 
cal approximation and in the determination of the peak of 
the effective potential barrier, but this approach leads to 
more complicated expressions for E, and $, . 

04. TRAJECTORIES DESCRIBED BY THE POLES UPON THE 
VARIATION OF THE ENERGY 

We can, by separating out the dominant terms in Eq. 
(3.4) for E 2 E,, obtain an equation describing the motion of 
a pole in the above-barrier region: 

FIG. 2. Disposition of the series, determined by Eq. (3.4), of cross- 
section poles in the complex z, plane (only the upper half-plane is 
shown). The poles for E < 0 lie below, and those for E > 0 lie above, 
the straight line arg(z, - Z )  = (2/3)?r. The pole closest to the point 
z, = Z corresponds to n, = 0. The continuous line depicts the tra- 
jectory described by a pole as the energy increases. 

where w = z2/z,, E = - E / E ~ ,  

and we have used the notation zpc = E j C / 4 g .  
Let us qualitatively describe the motion in the complex 

z, plane of the poles determined by Eq. (3.4) as the energy 
increases [the disposition of the poles of the first series (3.3), 
which do not contribute to the structure of the cross section 
in the region E < 0, is described in $31. Let us consider in the 
z, plane the circles C, and C, with radius z, and centers at 
the points z, = 0 and z, = Z, i.e., z, = 0 (Fig. 2). Inside the 
circle Cz the poles z,(n2) = Z - z,(n2) are located near the 
real axis. The distance from the axis increases as we ap- 
proach the boundary of the circle. A resonance appears in 
the cross section when the real part of the pole z,(n2,E ) coin- 
cides with some value of the spectrumz,(n ,,E ) determined by 
Eq. (2.9) with n5 = n,. As the energy increases, the points 
z,(n,) move to the left along the real axis, while the poles 
inside the circle Cz move to the right (E < 0) practically 
along the real axis. In the process, the radius of the circle C,  
decreases faster, so that the poles successively find them- 
selves outside the circle, after which they move away from 
the real axis along the trajectories determined by Eq. (4.1) 
(see Fig. 2), approaching the straight line arg(z, - Z ) = 2 ~ / 3  
as E 4 .  

The spectrum z,(n,) differs little from the Coulomb 
spectrum whenz,(n,) 5: z,, i.e., inside the circle C,. Thus, the 
circles C, and C, contain those spectral values of z,(n ,) and 
z,(n2) for which the homogeneous field has little effect on the 
motions in the coordinates 6 and r ] ,  respectively. Such a re- 
gion exists for both coordinates at once only when zc > Z/2, 
i.e., when E 5 - (2~$)'".  For the resonances of this region, 
z, zz2 ,  i.e., the value of the additional integral of the motion 
0 = z, - z, differs little from zero. Near the Coulomb cen- 
ter, 0 coincides with the component of the Runge-Lenz vec- 
tor along the direction of the field," so that, for the reson- 
ances under consideration, this vector is perpendicular to 
the direction of the fieJd. Such states are populated largely by 
o-polarized light (el@. In the case of ionization by T-polar- 
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-+ 
ized light waves (ell 8 ), the states with z, z O  and z, Z Z  are 
populated, which gives rise to a significantly lower-in com- 
parison with the preceding case--density of resonance peaks 
of appreciable height in the region E > Ec . As the energy 
increases (E  < O), the width of the resonances with n, = 0 [to 
which correspond, according to (3.8), z, values close to Z ]  
increases most slowly, since the potential barrier V2(77) is 
highest in their case. As a result of this, the structure is pre- 
served right up to energies E z 0 in ionization by n-polarized 
light, whereas the denser resonance structure in the case of u 
polarization is concentrated in the lower-energy region 
E 5 - (2z8?)'12. Such dependence of the density of the reso- 
nance peaks on the light-wave polarization is observed in 
experiment. l s 2  

As E-tO, the circles C, and C, contract each to a point, 
which corresponds to the exertion of a strong influence by 
the electric field on the Coulomb center at E--+O. 

As the energy E >  0 increases further, the circles C, and 
C, again expand. The poles inside the circle C,  lie on the 
diameter perpendicular to the real axis, and their positions 
do not depend on the electric-field strength [see the formulas 
(3.1) and (3.2) and Fig. 21. The poles of the first series inside 
the circle C, lie on the imaginary axis. The poles closest to 
the real axis exert the strongest influence on the magnitude 
of the cross section, so that the formulas (2.6) and (2.7) can be 
used to describe the photoionization cross section in the re- 
gion E 2  g 2 I 3 .  In this energy region, the positions of the 
poles with I = 0 and n, = 0 are given by the relations (3.1) 
and (3.2). 

55. RESONANCE FEATURES OF THE PHOTOIONIZATION 
CROSS SECTION 

When the electron energy in the final state is lower than 
the classical ionization threshold Ec, the photoionization 
proceeds largely via the resonance Stark states. There occurs 
in the region E > Ec a background corresponding to the pos- 
sibility of above-barrier infinite photoelectron motion. Su- 
perposed on this background are peaks corresponding to be- 
low- and above-barrier resonances whose widths are smaller 
than the Stark splitting. We can show on the basis of the 
results presented below [see (5.4)] that the number of such 
above-barrier resonances with a given value of the quantum 
number n, is proportional to [zpc(n2)] -'I2. Thus, in the case 
in which n, = 0 and the field intensity = 4335 V/cm (the 
field applied by Freeman et al. in their experiment1) there 
can be as many as twenty of them. The energy dependence of 
the total cross section in the vicinity of such a resonance is 
determined by the partial cross section with the quantum 
number of the resonance. The resonance energy E, is given 
by the system of equations (2.9) (with n6 = n,) and (3.8) on 
condition that z, + 2, = Z.  

Near E, the magnitude of the partial cross section is 
determined by a pair of polesz,(n,) and z:(n,) of the function 
(2.4) or (2.5). Taking into account the fact that the energy 
dependence of zl(n ,) is given by Eq. (2.9), while the position 
of the polez,(n,) is given by Eq. (3.4), and also neglecting the 
small quantity exp(2S-) in (2.4), we obtain a representation 
of the partial cross section near E, in the form of a resonance 

Fano profile: 

298 + 1 82, e - Z K  + X I  z a s ,  1 
where 

all the quantities are computed at the location of the pole 
z,(n,). The expression for the cross section u,,,, is obtained, 
in accordance with (2. 5), by replacing lzl - 2,1 by lz,z, 1 in 
(5.1) and 2arg(z, - z,) by arg(z,z,) in (5.3). The formula (5.4) 
is applicable in the case when the width T i s  smaller than the 
distance between resonances with quantum numbers differ- 
ing by unity, a condition which corresponds to the inequality 
Ims ,  5 1. 

The possession by the resonances in a superposed Cou- 
lomb and homogeneous fields of Fano profiles corresponds 
to the interaction of the discrete Coulomb spectrum with the 
continuous spectrum for the motion in the homogeneous 
field. This interaction is strongest in the neighborhood of 
E = 0, the condensation point of the Coulomb spectrum. 
The characteristic scale for the energy region in which this 
interaction is appreciable is the magnitude Ec of the classical 
ionization threshold. The profile index q is determined by 
the resonance width and the density of states (the first term 
in (5.3), as well as the nonuniformity in the population of the 
quasibound state lying within the limits of the width of the 
resonance in the case of photoionization [the second term in 
(5.3)]. The last term in (5.1) gives the magnitude of the back- 
ground part, due to tunneling through the potential barrier, 
of the cross section. 

For the resonances whose widths are much smaller than 
the Stark splitting, the expressions (5.1)-(5.4) admit of 
further simplification. Let us given here only the formula for 
the resonance width in order to compare it with previously 
proposed  approximation^^.^: 

where all the quantities are computed with z, and z, that are 
a solution to the system (2.9) and (3.8). For the below-barrier 
resonances (i.e., for E 5; E,,) we have 

o(s+, a) /a(z,, E )  ;=? (as+/az,) ( a ~ a ~ ) ,  
(the error introduced by this substitution decreases with de- 
creasing n,). Setting also In(1 + e - 2K) z e  - 2K, we arrive at 
the Drukarev appro~imation,~ which agrees with the Dam- 
burg-Kolosov appr~ximation.~ The use of the correction 
(A.9) proposed by us for the barrier asymmetry significantly 
improves the agreement with the numerical cal~ulation.~ We 
can simplify the expression (5.5) further in the various ener- 
gy regions and for different relations between n, and n,, and 
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obtain a number of simple approximate formulas for the res- TABLE I. Parameters of some resonance peaks from the region - 36 

onance widths. cm- ' < E < - 30 cm-'  of the photoionization spectrum of the hydrogen 
atom in a field of intensity P = 158 V/cm (m = 0 in the final state). 

The above-barrier resonances with large widths can be 
described with the use of the equation (4.1) of the pole trajec- 
tory; the above-barrier resonances in the energy region 
E 2 I E, 1, with the expression (3.2). 

56. COMPARISON WITH NUMERICAL COMPUTATIONS AND 
EXPERIMENT 

The numerical-calculation data on the Stark spec- 
trum6*' correspond largely to the Lorentz parametrization of 
the resonance peaks. We can, by Lorentz parametrizing the 
peak of the Fano profile for the resonance energy E,, the 
width r,, and the profile index q, arrive at the following 
values for the resonance energy EL and the width rL : 

It can be seen from these relations that, for a sufficiently 
small resonance width and a sufficiently large profile index 
q) 1, the difference in the peak-parametrization modes does 
not play a significant role. The parameters r and q have 
values that satisfy these requirements in the case of reson- 
ances lying sufficiently far below the top of the effective- 
potential barrier V2(q), i.e., in the energy region E S Epc. In 
the opposite case the difference is appreciable. 

Using the quasiclassical expressions obtained, we com- 
puted the parameters of nearly forty resonances for which 
numerical-calculation data were a~a i lab le .~ .~  We deter- 
mined the resonance energy from the system of equations 
(2.9) and (3.8), using in Eq. (3.8) the parabolic-barrier correc- 
tion (A.7), which reduces by an order of magnitude the error 
made when the energies are determined in the quasiclassical 
approach. The energy values found are in good agreement 
with the numerical-calculation data in both the subbarrier 
region (with a relative deviation of about lop5) and the 
above-barrier (i.e., E 2 E,) region, but the deviation from 
the numerical-calculation data increases with increasing en- 
ergy. The recalculation of the resonance energy in accor- 
dance with (6.1) improves the coincidence significantly (by a 
considerable factor) in the case of the resonances located 
close to and above the top of the effective potential barrier 
(the numerical calculations reported in Refs. 6 and 7 are 
based on the Lorentz parametrization of the profiles). This 
suggests that the interpretation of the numerical calcula- 
tions should be improved by allowing for the correct para- 
metrization. 

amples illustrating the parabolic-critical-energy calculation. 
Fano resonance-peak profiles have been experimentally 

observed in the photoionization cross section for the rubi- 
dium atom.3 The values r = 0.13 GHz = 2.OX lo-' a.u. 
and q = 3.3 were obtained in an electric field of intensity 
8 = 158 V/cm for a resonance energy of Er = 33.614 cm- '. 
We have computed for the hydrogen atom the spectral re- 
gion containing the indicated energy value. In Table I we 
present the parameters of fairly narrow peaks with profile 
indices q 2 - lo3 from this spectral region. Such peaks are 
least subject to distortion by the instrumental effects, and 
their parameters are easy to measure. The resonance with 
n, = 37 and n, = 13 is an above-barrier resonance, and the 
rest are below-barrier resonances. The photoionization spec- 
trum of the hydrogen atom, like that of the rubidium atom, is 
characterized by a developed structure. But it differs from 
the spectrum of the rubidium atom in that its resonances are 
disposed differently, there is a different relationship between 
the magnitude of the profile index and the width, and the 
profile index is opposite in sign. The last circumstance is, 
apparently, a manifestation of the mixing of the Rydberg 
states as a result of the deviation of the field of the atomic 
core from the Coulomb field. 

APPENDIX 

Here we present the definitions of the quantities used in 
the quasiclassical approximation and the expression for the 
corrections. All the integrals can be expressed in terms of the 
hypergeometric function in both the below-barrier9 and the 
above-barrier case. 

1. The barrier index K (z,,E, %') is defined by the relation 

K=Im jiF9dq, (All 
9- 

The expression (5.5) together with the correction (A.9) where the 7, are the roots of the modified" momentumj.j, 
for the barrier asymmetry provides a good approximation to 

of the motion in the coordinate q( Im~+)Imq-) :  the resonance width in a broad range of electric-field intensi- 
ties (below- and above-barrier resonances) and for any rela- Ps= (E/2-I-zZlq+P;q/4) q*= [-E* (EZ-4228) '"I /8. (A2) 
tion between the quantum numbers n1 and n2 (different ori- The function ,y is positive in the below-barrier case and neg- 
entations of the dipole moment of the atom). The relative ative in the above-barrier region. 
error can be as high as in the subbarrier region 2. The phase integral @ (z2,E,8) for the motion in the 
(E 5 E,), but is lower in the case of the above-barrier reson- coordinate is defined as 
ances (i.e., in the region E2 E,). But there are also discre- - r - "+ pancies in the values obtained for the above-barrier reso- o = ~ ~ - I  m1ni2 ,  m o = ~ e  J p,, dq. nance width in the two published numerical  calculation^.^^^ (A.31 

A detailed comparison for various versions of the approxi- 0 

mate formulas will be published separately together with ex- 3. The phase integral for the motion in the coordinate < 
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4. The function S-(z, ,E,g)  is defined by the relation 

S-= Im p"tdg+ilmln12. r (A.6) 

5. The correct description of the resonances near the top 
of the barrier is achieved8 through the introduction of a 
parabolic-barrier correction, i.e., through the replacement 
of Q>, by @, + a, where 

6. Qualitatively, the meaning of the introduction of the 
correction for the potential-barrier asymmetry is given in 52. 
Quantitatively, this correction consists in the replacement of 
K by K + x ,  where 

In the same approximation, z 2 / l k l = @ / ~ +  lml/ 
2 = n ,  + (lm 1 + 1)/2; consequently, 

7. The correction for the asymmetry of the potential 
well V,({ ) for E > 0 consists in the replacement of S+ by 
S+ + u,, where 

(A. 10) 

"E, = - 2(ZR)IE; hereand below, unless otherwisestated, we useatom- 
ic units, Zis the charge of the atomic core (for the hydrogen atom Z = I), 
and 8 is the electric-field intensity; E = 0 corresponds to the photon 
energy, equal to the ionization potential of the atom. 
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