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A new electron-imperfect surface collision integral is obtained which takes account of the conser- 
vation of the adiabatic invariant in a system in which there is periodic motion along one of the 
coordinates. The surface relaxation rate and the impedance of a metal in a parallel magnetic field 
are computed with the aid of this integral. 
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1. INTRODUCTION 

There arises in the investigation of many physical phe- 
nomena occurring in metals the problem of the solution of 
the Boltzmann kinetic equation for the electron distribution 
function. Its general solution contains an arbitrary function, 
for the determination of which we must formulate boundary 
conditions at the sample surface. From the physical point of 
view, such conditions describe the interaction of the conduc- 
tion electrons with the surface. 

The simplest of the known boundary conditions is the 
relation (proposed by Fuchs') 

f + = p f -  (1.1) 
between the nonequilibrium parts of the distribution func- 
tions of the electrons impinging on (f-), and flying away 
from (f,), the boundary. In Eq. (1.1) the properties of the 
boundary are characterized by the parameterp, which is the 
probability for specular reflection of an electron from the 
surface of the metal. 

The phenomenological condition (1.1) correctly de- 
scribes the limiting cases of diffuse ( p  = 0) and specular 
( p  = 1) reflections. In the remaining cases it is necessary to 
take into account both the dependence of the coefficientp on 
the magnitude of the electron-momentum component nor- 
mal to the surface and the possibility of the scattering of the 
electron in the "nonspecular" directions. The latter circum- 
stance leads to a situation in which the boundary condition is 
transformed into an integral-with respect to the mo- 
menta-relation between the functions f- and f+. In the 
case of elastic scattering of the electrons at the surface of the 
metal, this relation can be written in the form 

Here thex axis is the inner normal to thex = 0 boundary and 
pis the two-dimensional electron momentum in the plane of 
the sample (the yz plane). The quantity V(p,pl) = V(pl,p) is 
the probability density for the occurrence of the electron 
transition from the state p into the state p' during a single , 
scattering. The current state of the theory of diffraction al- 
lows us to calculate the kernel V (p,pl) in its explicit form only 
in the case when the electron reflection is nearly specular, 

i.e., when the integral term in (1.2) is small compared to 
f-(x = 0,p). Thus far, the function V(p,pl) has been deter- 
mined for different types of surface defects (see Andreev's2 
and Okulov and Ustinov's3 review articles). 

In the model of a statistically homogeneous rough 
boundary with a root-mean-square roughness height u and 
for an isotropic quadratic conduction-electron dispersion 
law the probability V(p,pl) is described by the formula4 

Here W (p) is the spatial Fourier transform of the binary cor- 
relation function for the roughnesses. The characteristic 
variation scale for W (p) is 2~ f i /L  where L is the mean length 
of the inhomogeneities along the boundary (the correlation 
length). The domain of the integration in (1.2) is bounded by 
the Fermi momentum pF(Ipll (p,). 

A general feature of all the known collision integrals273 
is the fact that they are valid in the approximation of single 
electron scattering on a random surface. In the presence of 
periodic motion in the direction perpendicular to the sur- 
face, the electrons can repeatedly return to the sample 
boundary, i.e., multiple scattering occurs. In this situation 
there arises the question of the correlation of the successive 
reflections. The application of the boundary condition (1.2) 
in systems with periodic motion reduces to a simple summa- 
tion of individual scattering events, and yields the correct 
results if there is no correlation. The absence of correlation 
implies that the distance A between two successive collisions 
of an electron with the boundary is much greater than the 
mean length L of the roughnesses. In the opposite case (i.e., 
for A 5 L ) the successive reflections of the electron are not 
independent, the boundary condition (1.2) is inapplicable, 
and, thus, there arises the need for a new boundary condi- 
tion. 

In the present paper we derive for the surface collision 
integral a quasiclassical expression that takes account of the 
correlation in the case when multiple electron scattering 
events occur at the sample boundary. The periodic motion is 
secured by a constant and uniform magnetic field H oriented 
along the metal-vacuum boundary (parallel to thez axis). We 
show that, in the case of strong correlations (i.e., for L ) A j, 
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the electron scattering on the random surface potential is 
adiabatic, and conserves the adiabatic invariant in the mag- 
netic field. We compute in this limiting case the transport 
surface relaxation rate J for the electron and the high-fre- 
quency impedance of the metal. The obtained functional de- 
pendences of the relaxation rate and the surface imped- 
ance on the magnetic field differ significantly from the 
corresponding dependences obtained in the case of weak cor- 
relation~.~-' 

2. THE AVERAGED ELECTRICAL CONDUCTIVITY OF A 
METAL IN A MAGNETIC FIELD 

The electron-rough boundary collision integral arises 
naturally in the computation of the current excited by a 
plane electromagnetic wave incident from vacuum on the 
surface of a metal. According to Konstantinov and Perel',8 
the general quantum-mechanical expression for the current 
j = j(x,r)e-'"I in the approximation linear in the field 
E = E(x,r)e - '"I has the form 

The integration is performed over the volume of the sample. 
The response function xaB(x,r;xl,r') is given by the expres- 
sion 

Here the factor 2 takes account of the spin degeneracy; each 
of the symbols a and a' denotes the complete set of quantum 
numbers in the steady state; E, and E,, are the eigenvalues of 
the electron Hamiltonian in the magnetic field, which de- 
pend on the specific realization of the shape of the surface; 
F(E, )  is the equilibrium Fermi distribution function; and 
(aIJa(x,r)la') is the matrix element of the a component of the 
current-density operator in the magnetic field H. 

As a result of the multiple collisions with the surface, 
there occurs self-averaging of the electron state over the en- 
semble of random-boundary realizations. Let us write the 
equation of the boundary in the formx = 6 (r), wheref (r) is a 
random function. Thus, the observable quantities should be 
averaged over the set of functions f (r). 

As a result of the statistical homogeneity of the surface, 
the field E(x,r) in the metal depends only on the coordinate x, 
while the average value (x,(x,r;xl,r')) of the response func- 
tion depends on XJ', and the difference r - r'. Taking this 
fact into account, we find from (2.1) that 

co 

ja(x)=J dx1Qar (x, x')EP (30 ,  (2.3) 
0 

Qap (x, xl)  = J drr(xaB (x, r; xf , r') ). 

To average;yaB, we express its dissipation parts in terms 
of the product of the two single-particle Green functions of 

the Schrodinger equation in much the same way as is done by 
Edwards9 for the static conductivity. Below we shall deter- 
mine the nondissipative part of the conductivity with the aid 
of the Kramers-Kronig dispersion relation. Let us, omitting 
the standard transformations, give the expression for the dis- 
sipative part QaSt (x,xl) of the electrical conductivity tensor: 

," F(~+f io) -F(E)  
Q,pf (s, x') =-4ne f i  5 de 

Ro 

XRe(G, (p', p; x', x)C- (q, p'; x, x') ). (2.5) 

Here v, ( p j )  = ( pa + eAa /c)/m is the a component of the 
electron velocity in the magnetic field; e and m are the abso- 
lute value of the charge and the mass of the electron; 
A = (0, Hx,O) is the vector potential of the magnetic field 
H; and c is the velocity of light. The Green functions satisfy 
the Schrodinger equation: 

Here p = (fi/2mL! )'I2 is the magnetic length; X = - cp, / 
eH is the coordinate of the center of the electron orbit in the 
magnetic field; and r] = (E - pf  /2m)/fin; L! = eH /mc is the 
Larmor frequency. We do not write the energy variable E of 
the Green function, and the tilde mark denotes an h energy 
shift. 

We must formulate boundary conditions for the differ- 
ential equation (2.6). One of them is the requirement that the 
G function vanish at x - +  m : 

G+(p, p'; x - + a ~ ,  xf)=O. (2.7) 

The condition on the surface of the metal is formulated in the 
coordinate representation: 

a, (r, r'; x=E (r) , x') =O. (2.8) 
The transition to the momentum representation is effected in 
accordance with the formula 

G, (p, p'; X, x') = (2nfi)-' - 
In order to rewrite the condition (2.8) in the momentum re- 
presentation, we must bear in mind that the electron scatter- 
ing on the rough surface is assumed to be weak, i.e., that the 
metal boundary x = 6 (r) is assumed to differ little from the 
x = 0 plane. This circumstance allows us to expand (2.8) in 
powers of the small magnitude of the deviation 6 (r) of the 
real boundary from the perfect plane: 

f , ( r ,  r'; x=0, xf)+E(r)f,' (r, rf; x=O, z') =O. (2.10) 

The primes denote thex derivatives of the quantities in ques- 
tion. 
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The approximate boundary condition (2.10) approxi- 
mates the exact condition well if the first term in it is much 
greater than the second term. For this to be the case, the x 
"component" fi/p, of the de Broglie wavelength must be 
much greater than the root-mean-square height a of the 
roughnesses: 

(p,o/A) 2 <  1 .  (2.11) 

In typical metals this inequality is fulfilled for those elec- 
trons which "graze" almost parallel to the surface. It is pre- 
cisely these electrons that determine the conductivity in the 
case, characteristic of metals, of strong spatial dispersion, 
and therefore the approximation (2.10) is valid. 

The condition (2.10) in the momentum representation 
has the form 

m 

dq 
(p-q)  G,' (q, pr; 2=0 ,xJ )  -0, G,(p,p';x=O,x')+ 

-, 

.D 

(2.12) 

( p )  = dr e r p  (-iprlR) (r) . 

The formal solution to Eq. (2.6) with the boundary condi- 
tions (2.7) and (2.12) can be represented in the form of an 
iterative series containing moments (of different orders) 
of the function g(p). The combination 
G+(pl,p; x', X ) C _ ( ~ , ~ ' ;  x, x') is obtained as a result of the 
multiplication of two such series. To average such a product, 
we used a diagrammatic technique similar to the one that has 
been developed in the theory of wave scattering on statisti- 
cally rough ~urfaces. '~  The use of the diagrammatic tech- 
nique enables us to sum the iterative series, which turns out 
to be equivalent to an integral equation. Let us, omitting the 
intermediate calculations, give the final expression for the 
averaged two-particle Green function: 

(G ,  (p', p; z', X )  G- (9 ,  p'; X ,  x') )= (2n;li) -* (fin) (p -9 )  

Here D, - ,,, [(x - X )/p ] is a parabolic cylinder function, 
being a solution to Eq. (2.6) with the right-hand side replaced 
by zero; X '  = - cpi/eH; and a prime on a parabolic cylin- 
der function denotes differentiation with respect to the argu- 
ment. The functiong(p,pf) is determined from an equation of 
the Bethe-Salpeter type, that in the ladder approximation 
has the form 
g (PI P' )  =R+ (P)R- ( P I  

In Eq. (2.14) the quantity R . (p) is the pole part of the aver- 
aged single-particle Green function: 

The mass operator M(p)  determines the single-particle 
damping of the electron states, that results from the scatter- 
ing of the electrons by the rough surface. The mass operator 
is computed in the Born approximation in Ref. 11: 

The summation over the magnetic quantum number n in 
(2.16) terminates at the integral part, denoted by N (qz ), of the 
quantity [ ( E  - q,2/2m)/W2 ] + 1/4. 

As usual, the poles of the single-particle Green function 
determine the spectrum of the quantum states. In metals 
with perfect boundaries (i.e., for which a = 0) the mass oper- 
ator is equal to zero, and from (2.15) we obtain the quantiza- 
tion condition: 

4.. p z ) - ~ ~ ,  ( cpd~eH)  =O.  (2.17) 
If the transverse energy 7 of the electron is fixed, then Eq. 
(2.17) leads to the quantization of the y component 
p,, =p,"(pZ) [ n  = 1,2 ,..., N (  p,)] of the electron momentum. 
The quantum states determined by the dispersion equation 
(2.17) are strictly steady states. The presence of a random 
surface potential leads to a nonzero probability for transition 
of an electron from one state into another, i.e., the "lifetime" 
in a definite state becomes finite. If the electron reflection is 
nearly specular, then we can consider the states to be quasi- 
stationary, and retain the previous classification for them. 
For this reason, the external parameters (E, p,,, p,) entering 
into the right member of (2.16) correspond to the unper- 
turbed spectrum (2.17) of the electrons. 

The dissipative conductivity (2.5) of the metal can be 
represented in the form of a double sum over the discrete 
quantum numbers n and n'. To do this, we must resolve the 
single-particle Green functions R +(p) and -(p) into the 
simplest fractions, and perform the integration over p,, us- 
ing the theory of residues. A similar procedure should be 
followed in Eq. (2.14). For the computation of the nondissi- 
pative part of the conductivity we shall use the Kramers- 
Kronig relation. As a result, the expression for QclS(x, x') 
will have a structure typical of quantum conductivity. 

In the presence of the effects of spatial dispersion, it is 
convenient to analyze the conductivity of the metal in the 
Fourier representation, in which the relation (2.3) has the 
form m 

I - 
ja ( k )  =2 J dx EW ( k z )  ja (5) = -J dkJQap (k, kt) 8. (kt). 

n 
0 0 

(2.18) 

In the majority of cases the conduction electrons in the metal 
can be considered in the quasiclassical approximation. 
Therefore, let us at once give the quasiclassical asymptotic 
form of the tensor1' Q,, (k,k ') : 

rin N ( P , )  , 
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The summation over the index s takes account of the transi- 
tions between the (n + s)-th and n-th quantum states of the 
surface electrons. The transition frequency wns = B S ~  /p, . 
The angle pn of impact of the electron with the boundary is 
connected with the momentum components by the relations 
p: sin g,, and p," = p, cos p, , where 
pL = - P:)1'2. From (2.17) we obtain the following qua- 
siclassical quantization rule for the angle g, (see, for example, 
Ref. 12): 

cp-sin cp cos cp=n (n-'1,) AO/ ( ~ ~ - ~ , ~ / 2 m ) .  ' (2.20) 

The matrix element of the current-density operator can be 
represented in the form 

- .* 
e 

(nlZa(k, p,) In+a) = - -I dh P~(PS ,  h) 
mqn 

xcos (nshlcp,) cos [ kR, (cos qn-cos h)  1. 

Here R, = cp, /eH is the radius of gyration of an electron in 
the magnetic field; p, ( p, ,A ) = p, cos A and p, ( p, ,A ) = p, 
are the components of the electron momentum; and /2 is the 
azimuthal angle. 

The function AS(k,pn, p,) should be found from the 
equation 

This equation has a structure that is characteristic of the 
linearized kinetic equation. The first term in the left member 
is similar to the field derivative of the nonequilibrium distri- 
bution function [with allowance made for the volume colli- 
sions in the T approximation (v = T- ')I; the remaining terms 
in the left member have the form "departure minus arrival," 
and is the quantum electron-surface collision integral; final- 
ly, figuring on the right is the usual inhomogeneity arising 
from eg ,v , .  Allowance for the arrival term leads, as al- 
ways, to the replacement of the total scattering cross section 
by the transport cross section. 

Let us emphasize that the formula (2.19) gives the con- 
ductivity of the electrons that collide with the surface of the 
metal. The conductivity of the volume electrons naturally 
does not depend on the properties of the surface, and, when 
the reflection is nearly specular, its consideration leads only 
to small corrections. 

The quasiclassical asymptotic form of Q,, (k,k ') is valid 
if 

f i l p x ~ R L q 2 / 2  and 1s 1 e n ,  (2.22) 

i.e., if the dimension of the trajectory of a surface electron 
along the x axis is much greater than the de Broglie wave- 
length fi/p, (n > I), and we can then consider only the transi- 

tions to the neighboring levels. 
In deriving the results of this section, we made essential 

use of the fact that the electron reflection from the surface is 
nearly specular. This requirement imposes definite limita- 
tions on the geometrical dimensions o and L of the rough- 
nesses. One of them is expressed by the inequality (2.11). It 
can be shown that, besides the inequality (2.1 I), the follow- 
ing conditions should be fulfilled: 

(o/L) 2~ 1, ppo2/tiL< 1. (2.23) 

The first of them implies that the mean slopes of the inhomo- 
geneities should be small, while the second allows us to neg- 
lect the diffraction occurring in a single electron scattering. 
The simultaneous satisfaction of the inequalities (2.11) and 
(2.23) ensures the applicability of the Born approximation to 
the surface collision integral in (2.21). If we replace the colli- 
sion integral by the effective surface-relaxation rate #, then 
the requirement that the reflection be nearly specular im- 
plies that $ is low compared to the frequency of the periodic 
electron motion along the x axis: 

The classical result for the conductivity of the surface 
electrons is obtained from the formula (2.19) by going over in 
it from the summation over n to integration over the angle g, 
with the aid of the dispersion equation (2.20): 

P.' j E...== dcpsin' q . . .  . 

In the kinetic equation (2.21) the sum over ii can be replaced 
by an integral over pi ,  i.e., we can set 

if the correlator W [ p,"(p,) - p,"(p:); p, - p: ] is a smooth 
function of the number 5. When the number 5 is changed by 
one, the argument of the correlation function changes by 
ldp,"/dFi(. Taking into account the fact that W changes sig- 
nificantly over momenta of the order of 2 d / L ,  we find that 
the replacement (2.26) of the sum by an integral is possible if 

From (2.20) we easily find that lap;/an 1 = 2d /A , ,  where 
A ,  = 2R, sin g,, is the distance traversed by an electron 
along they axis between two successive collisions with the 
surface. Thus, the condition (2.27) implies that L ( A,, i.e., 
that the successive electron-scattering events occurring at 
the interface are independent events. In this case the colli- 
sion integral in (2.21) is equivalent to the expressions (1.2) 
and (1.3) given in the Introduction. The weak-correlation 
case (2.27) is investigated in detail in Refs. 5-7, and therefore 
we shall not discuss it here. 

3. THE SURFACE IMPEDANCE OF A METAL IN THE 
PRESENCE OF STRONG CORRELATION OF THE 
SUCCESSIVE REFLECTIONS 

Let us use the results obtained in the preceding section 
to compute the surface impedance of a metal located in a 
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FIG. 1. Schematic dependences of the surface relaxation rate J and the real part Re Zof  the impedance on 
the cyclotron frequency f2 (the magnetic field). Indicated beside the curves are thelaws of variation with the 
frequency 0; the other symbols are defined in the text. 

magnetic field. We shall consider the case of the anomalous 
skin effect, 

R/6>1+l yI2, y=(v-iw)/Q, (3.1) 

in which the electrodynamic properties of the metal are de- 
termined by the group of grazing electrons13 with character- 
istic angles of hop p-(6 /R ) ' I2 (6 is the skin depth and 
R = cp,/eHis the maximum cyclotron radius). The grazing 
electrons move inside the skin layer along small arcs of the 
Larmor circle, and repeatedly collide with the surface. The 
condition w g 7 ~ 0  /p, which follows from (3. I), implies that 
noncollisional resonance absorption of the wave energy by 
the grazing electrons does not occur. Consequently, in this 
situation the electromagnetic absorption occurs in collisions 
with both the volume and surface scatterers. The inequality 
(3.1) also contains the condition Y ( 0/247, which, together 
with (2.24), ensures the periodicity of the motion of the graz- 
ing electrons. 

The surface impedance of the metal 

Z,= (4nio /cZ)  Ea (0)  /Em' ( 0 )  (3.2) 
is determined by solving the Maxwell equation for the Four- 
ier transform of the electric field: 

k 2 8 ,  ( k )  +2Eaf(0)  =4ni~oc-~j ,  ( k )  . (3.3) 
Here the prime denotes the x derivative of the quantity in 
question. 

An analysis of this equation can be performed only after 
extreme simplification of the kernel of the integral conduc- 
tivity tensor Qaa (k,k '). The condition (3.1) for anomalous 
skin effect allows us to limit ourselves in the sums overs and? 
[see the formulas (2.19) and (2.2l)l to the consideration of the 
terms with s = F = 0. Furthermore, because of the rapid os- 
cillations of the matrix elements, the dominant contribution 
to the e, integral [after the substitution (2.25)] will be made 

by the region of small angles q, - (kR )-'I2 g 1. As a result, 
the kernel Qaa (k,k ') assumes the form 

In the case of extremely strong correlation of the 
successive reflections the inequality 

is satisfied. After computing the derivatives, we can write it 
in the equivalent form 

LBA, Az=AL2+ Ax2, (3.6) 

where A ,  = Qclp, ( / eH is the distance traversed by an 
electron along the magnetic field H between two successive 
collisions. It follows from (3.5) that the correlation function 
W ( p;(pZ) - p;( pi); pz -pi)  is a "sharp" function of the 
difference E - n, which allows us to limit ourselves in (2.21) 
to the consideration of only the term with Fi = n. Thus, in the 
case of strong correlations the discrete quantum number n is 
conserved in the surface electron scattering. 

The quantum-mechanical explanation of this effect is 
that the width of the scattering indicatrix is not "enough" to 
change the number n of the state in one scattering event. The 
strong-correlation condition in the form (3.6) can be inter- 
preted as being a requirement that the state (classical or 
quantum) of the electron be changed adiabatically slowly by 
the succession of correlated reflections from the boundary. 
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According to the general theory of adiabatic perturba- 
t i o n ~ , ' ~  the invariability of the discrete quantum number im- 
plies that the continuous quantum numbers should change 
in the course of the scattering. In our case such a quantum 
number is the momentump,. In order for the correlation to 
be observed in the classical magnetic-field region, the length 
of the roughnesses should be sufficiently large, i.e., we must 
have 

LBh/pa. (3.7) 

Under this condition, the dominant contribution to the pi 
integral in (2.21) is made by a small neighborhood of the 
point pi = p,. Consequently, the collision integral in (2.2 1) 
can be evaluated in the Fokker-Planck approximation. The 
expansion in powers of the small momentum transfer 
pi -p, up to the quadratic terms yields the following equa- 
tion for the function A, in the strong-correlation limit: 

Here W(T) = L - 2  W (27Tfir/L ) is a dimensionless correlation 
coefficient. 

It is not possible to obtain the general solution to Eq. 
(3.8). But this equation lends itself easily to a qualitative 
analysis. The first term in the left member is a surface colli- 
sion integral, which, in the Fokker-Planck approximation, is 
a differential operator. If we take into account the fact that 
the function A, has a characteristic scale of variation in the 
angle p-(kR )-I1', while the momentump, is always of the 
order ofp,, then, up to a numerical factor a,, the action of 
this operator can be replaced by multiplication by the sur- 
face relaxation rate 

vaa=aa - 9 zZw (7) dz. " 3 RL 

After this replacement, the quantity - (v + y', - iw)A, will 
stand on the left-hand side of Eq. (3.8). The subsequent pro- 
cedure for computing the asymptotic form (3.4), solving the 
Maxwell equation, and determining the impedance essen- 
tially coincides with the procedure followed in Refs. 13 in 
the v' = 0 case. Let us, omitting the intermediate computa- 
tions, give the final expression for the surface impedance of 
the metal: 

7iw 3)'2nca 0002 za=- ?, 
c ka ka = [ ijrz C'R' (w+iv+ival) 

] "'. 
(3.10) 

Here k, is a complex wave number, which determines the 
depth of penetration of the electromagnetic field into the 

metal (S= lk, I-'), w, is electron plasma frequency, 
C, = 3/2, and C, = 1. It follows from (3.10) that, depending 
on the relationship between the relaxation rates v and #, the 
electrodynamic properties of the metal are governed by ei- 
ther the volume (v > y',), or the surface (y', > v), relaxation of 
the gliding electrons. 

If the frequency w of the external wave is much higher 
than the sum v + ga, then the impedance (3.10) is essentially 
purely imaginary. The small real part, which determines the 
electromagnetic absorption, is proportional to (v + y',)/w. 
Let us note that, for such a relationship between the relaxa- 
tion rates, the coefficient a, in the formula (3.9) can be deter- 
mined exactly, since Eq. (3.8) and the Maxwell equation (3.3) 
can be solved by the method of successive approximations 
(see Ref. 6). For the coefficient a, we obtain the following 
result: a, = 163R2/81, a, = 1 182/27. In the opposite case 
of low frequencies (i.e., for w 4 v + v',), w can be neglected 
in comparison with v + v', in the expression for k,, and the 
real and imaginary parts of Z,  are found to be of the same 
order of magnitude. 

In the case of weak correlations the Fokker-Planck ap- 
proximation is applicable in the region of sharp decrease 
(i.e., in the region p2 , 27Tfi/pFL ), where the surface relaxa- 
tion rate is given by the formulas-' 

a' 
vad- -(kaR)"Q. (3.11) 

L' 
It can be seen from a comparison of (3.1 1) and (3.9) that these 
expressions cannot be matched with each other when L -A. 
The reason is that the formula (3.1 1) takes account of the 
contribution of a large number of terms in the Fi sum figuring 
in Eq. (2.21), and, what is more, the componentspi -p, and 
p; -p, of the momentum transfer are in no way related with 
each other. On the other hand, the expression (3.9) takes 
account of the conservation of the quantum number n in the 
scattering [i.e., of the fact that n( p, , p,) = n( p;, pi)], and 
does not contain terms with E#n. The transition from one 
formula to the other is effected precisely with the aid of such 
terms in (2.21). The decrease of the correlation function with 
increasing IFi - n I and the simultaneous increase of the dif- 
ference A,(k,p, , p,) - A,(k,p, , pi )  give rise to competition 
in the off-diagonal-in n and Z-terms. If we take the off- 
diagonal terms into account, then in the strong-correlation 
limit (3.6) there appears in y',, besides (3.9), a term Av', that 
is sensitive to the form of the correlation function. For exam- 
ple, for the power correlation function 

the relaxation rate Av', is given by the formula 

where6 ( x )  is the Riemann function, A,  = (k, R ) - ' 12~ ,  and 
b, is a numerical factor. It can be seen from the formula 
(3.12) that, in the transition region, the surface relaxation 
rate decreases rapidly as H (i.e., the parameter L /A,) in- 
creases. The cause of this decrease of A y', is the adiabaticity 
of the surface-scattering potential in the case of strong corre- 
lations. The indicated decrease occurs until the terms (3.9) 
and (3.12) are of the same order of magnitude. As the mag- 
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netic-field intensity is increased further, the term (3.9), 
which increases with H, begins to play the dominant role. 
For a Gaussian correlation function, the relaxation rate Av', 
coincides up to a numerical factor with (3.12) with P =  5. 
This result is valid in the high-frequency region v + ga 4 o ,  
where the method of successive approximations can be used. 
In the opposite (o 4 v + y",) case it can be shown that the 
relaxation rate Av', decreases rapidly with increasing mag- 
netic-field intensity H, but that it is not possible to determine 
the functional dependence Aga (H ). 

Reference 7 contains plots of the relaxation rate fl and 
the real part Re Z of the impedance as functions of the mag- 
netic field in the case of weak correlation of the successive 
reflections (i.e., for L 4 A ). In Fig. 1 these curves are contin- 
ued into the region of stronger magnetic fields (i.e., into the 
R > R, region, where R, is the point at which L = A ), where 
neighboring reflections are no longer independent. In the 
region 0, < R < 0,, the surface relaxation rate is given by 
the formula (3.12) (in Fig. 1 we give the result for the Gaus- 
sian correlation function, i.e., for p = 5). The minimum of 
the surface scattering is attained at the point R = R,, where 
the relaxation rates (3.12) and (3.9) are equal. To the right of 
the point R = 0, the scattering conserves the quantum 
number n (5 = n), and the rate Y' is given by the formula 
(3.9). The curves a) and b) correspond respectively to the 
high- and low-frequency cases. The dot-dash lines are in the 
regions where the functional dependences could not be de- 
termined. 

A nonmonotonic dependence Re Z (H ) is realized in 
those magnetic-field regions where J (H ) > v. If the volume 
scattering predominates [i.e., if si' (H  ) 4 v] ,  then the imped- 
ance is proportional to H - ' I 5 ,  which corresponds to the 
specular-reflection (i.e., $ = 0) case. 

Order-of-magnitude estimates of the characteristic 
field-intensity values at which the transition from one func- 
tional dependence to the other occurs, as well as of the corre- 
sponding surface relaxation rates, can be carried out. Such 
estimates are given for R, and 6 in Ref. 7. Using the formu- 
las (3.9)-(3.12), we easily find that 

These results are valid when w > v + y', . The estimates for 
R, and Y j  are also valid in the opposite (w 4 v + y',) case, 
but no estimates could be obtained for R, and in this case. 

4. A NEW BOUNDARY CONDITION 

In this section we give a new boundary condition for the 
nonequilibrium distribution function for the conduction 
electrons. We shall proceed from the quasiclassical collision 
integral contained in the kinetic equation (2.21). Let us for- 
mally introduce integration over the momentumpl into this 
collision integral, and write down the appropriate S function 

that removes this integration. The argument of the S func- 
tion should contain a quantity that gives rise to the same 
relation between the momentum components pi and pi that 
follows from the quasiclassical quantization rule (2.20). Such 
a classical quantity is evidently the adiabatic invariant 

After this transformation, the collision integral will contain 
the classical momenta p and p', and the boundary condition 
that takes account of the periodic motion of the electrons 
along the x axis can be represented in the form 

The boundary condition (4.2) has been written in the general 
form, and is valid for any quasiparticles and an arbitrary 
(static) surface scattering potential. In a magnetic field, the 
adiabatic invariant F(p)  is given by the well-known formula 

whereS (p) = p: (p - sin p cos p) is the area enclosed by the 
surface-electron orbit in momentum space. 

In the case of weak correlations a large number of S- 
function peaks with different I fit into the characteristic in- 
terval of variation of the transition probability V(p,pl) (i.e., 
into the scattering indicatrix). Therefore, the sum over 1 can 
be replaced by an integral over I. This integral is evidently 
equal to unity, and we thereby arrive at the usual form (1.2) 
of the collision integral. 

In the opposite limiting case of strong correlations only 
one S function with I = 0 is "positioned" inside the scatter- 
ing indicatrix. In other words, the scattering conserves the 
adiabatic invariant. We obtain from the conservation of the 
adiabatic invariant, i.e., from the relation F(p)  = F(pf), a sin- 
gle-valued relation that connects the components of the mo- 
mentum p - p' transferred during the scattering, and de- 
creases the dimensionality of the phase space by one, 
transforming this space from a two- into a one-dimensional 
space. It is clear that the adiabatic-invariant conservation 
law is the classical analog of the quantum condition 5 = n. 
The conservation law F (p) = F (p') becomes obvious when we 
take into account the fact that the condition L ) A  for 
strong correlations allows us to treat the scattering potential 
as an adiabatic perturbation. Let us emphasize that, in the 
case of strong correlations, the boundary condition (4.2) 
with I = 0 is actually not an integral, but a differential, con- 
dition, since the Fokker-Planck approximation, as illustrat- 
ed by the formula ( 3.8), is valid. 

The boundary condition (4.2) again goes over into (1.2) 
in the limit as H-+ w . Indeed, as the magnetic-field intensity 
increases, the total scattering cross section increases, and the 
width of the electronic levels eventually reaches a value of 
the order of, or greater than, the level spacing. This leads to 
the "smearing out" of the8 functions entering into (4.2), i.e., 
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the dominant contribution to the sum over I is then made by 
a large number of terms, and the sum can again be replaced 
by an integral. It is easy to estimate the characteristic mag- 
netic-field value at which the indicated transition will occur. 
The surface-relaxation rate computed without allowance for 
the arrival term in (4.2) [i.e., the rate proportional to the total 
scattering cross section, which, under strong-correlation 
conditions, is (p ,L  /2&)' times greater than the transport 
cross section] should have a value of the order of 0 /2p. In 
the case of high frequencies we find from this condition that 

We can use the boundary condition (1.2) when 0 > 0,. In 
this magnetic-field region the surface-relaxation rate and the 
impedance will begin to decrease as H is increased, just as 
they do in the case of weak correlations in the range from 0, 
to 0,. 

In conclusion, let us note that similar adiabatic effects 
should exist for the kinetic coefficients of thin conducting 
plates even in the absence of a magnetic field, as well as for 
the volume scattering in the presence of a long-range pertur- 
bation potential. 
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