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The effect of an impurity on the threshold electric field E,  of a commensurate charge density 
wave in a quasi-one-dimensional conductor is investigated theoretically. Equations describing the 
smooth fluctuations of the electric potential q, and phasex ofthe charge density wave are obtained 
on the basis of the microscopic theory by taking the impurities into account. It is concluded that 
the fluctuations o f x  due to the impurities decrease E,. 

PACS numbers: 71.55. - i 

It has been established in the last few years that the 
motion of a charge-density wave (CDW) in quasi-one-di- 
mensional conductor below the Peierls-transition tempera- 
ture contributes to the conductivity of the crystal. '-, Exam- 
ples are such substances are NbSe, and TaS,. In weak 
electric fields E, the conductivity of such substances is con- 
stant and is determined by the free electrons with energies 
larger than the Peierls gap. In this case the CDW is at rest, 
being pinned by the impurity and (or) by the crystal lattice (in 
the case of a commensurate CDW). When the field E rises 
above a certain threshold, the CDW begins to move and the 
crystal conductivity increases, with the CDW motion ac- 
companied by nonstationary To describe the con- 
tribution of the CDW to the conductivity, both a phenomen- 
ological and a microscopic were used. 
The threshold field E,  was calculated both for an incom- 
mensurate CDW, when the pinning is by the impur i t i e~ ,~ .~  
and for a commensurate CDW, when the pinning is connect- 
ed with the commensurability of the periods of the CDW and 
of the initial The threshold field of the incommen- 
surate CDW increases with increasing impurity density. In a 
commensurate CDW, in the limit of a pure substance, E, 
should not depend on the impurities. Yet in orthorhombic 
TaS,, where the CDW is commensurate, the threshold field 
is different in different samples. Thus, in Ref. 10 E, reaches 
100 V/cm, and in Ref. 11 E, amounts to 10-40 V/cm, while 
in Ref. 3 the samples investigated has E, = 2.2 V/cm. This 
raises the question of the cause of such a scatter of E,. It 
might be assumed that the impurities produce an additional 
mechanism of pinning of the commensurate CDW and in- 
crease the threshold field. We shall show that this is not the 
case: addition of impurities to a pure material lowers of the 
threshold field of the commensurate CDW as a result of the 
order-parameter phase fluctuations produced by the impuri- 
ties. 

We use the theory developed in Refs. 8 and 9, where 
equations were obtained for the Green's functions that de- 
scribe the kinetics of a quasi-one-dimensional conductor 
with CDW. The equations were obtained for matrices of 
Green's functions and are similar to the equations used to 
describe kinetic phenomena in superconductors. These 
Green's function determine the state density, the order pa- 
rameter 2 = AelY, and the electron distribution function; 

they can be used to calculate the current density and the 
charge density. 

In the equations of Refs. 8 and 9, averaging was carried 
out over the locations of the impurities, and no account was 
taken of the CDW order-parameter fluctuations due to the 
impurities. Yet the fluctuations are quite substantial, and a 
particularly important role is played by long-wave fluctu- 
ations of the phasex, which can lead to violation of the long- 
range order even in the case of a commensurate CDW." 

To take into account the phase fluctuations, we shall 
not average over the impurities in the Green's functions of 
Refs. 8 and 9, and obtain an equation for the phase with 
allowance for the fluctuations. We assume that the potential 
of the impurities is concentrated at distances of the order of 
interatomic, which are small compared with the macroscop- 
ic lengths of the problem. The equations for the Green's 
functions, with momenta near the Fermi surface, will con- 
tain then only Fourier components of the impurity potential 

with wave vector q = 0, + Q, where Q is the wave vector of 
the CDW. The Fourier components with q = 0, which de- 
scribes the renormalization of the chemical potential and is 
not connected with the phase fluctuations, will be disregard- 
ed. The Fourier components 

relate the diagonal Green's functions that describe the cur- 
rent and charge densities with the off-diagonal components 
that describe 2. The equations for the Green's functions in 
the stationary state are of the form 

=V8 (r-r,) [&, cos ~ r + &  sin Qr, ;I-, (1) 

where x is the coordinate along the conducting filaments, q, 
is the electrostatic potential, v = Q, /2m is the Fermi veloc- 
ity, 

643 Sov. Phys. JETP 56 (3), September 1982 0038-5646/82/090643-04$04.00 @ 1983 American Institute of Physics 643 



p,p ,g(" )  are the retarded, advanced, and anomalous Green's 
functibns, g(p, ) describes the dependence of the band spec- 
trum of a quasi-one-dimensional conductor on the trans- 
verse momentum p, . We shall assume below that g(A. The 
function g(r,,r;) depends on the energy E and on the two 
transverse coordinates (and in the momentum representa- 
tion on the two transverse momenta p, and p:); 

, " Y ,  k= 2 (rl)z(rl, rL 1 - g (rl, rL1) A ( r ~ ) .  

We consider a sufficiently pure conductor, so that the 
mean free path of the electron exceeds the coherence length 
%/A. In this case we can disregard the influence of the im- 
purities in the size of the energy gap A. We confine ourselves 
also to the case of low temperature TgA. This is just the 
situation in TaS,, where Tp = 218 K and A = 740 K even 
several degrees below Tp. In this case the number of free 
electrons with E > A  is small, and we can disregard g'"', which 
determines the change of the distribution function of the 
excitations. 

For convenience, we separate the phase factors in 2 and 
in t)e $nctions g. This corresponds to transformation 
&-+S +gS, where 

We seek the solution for and 2 in an approximation 
linear in p/A and (v x Vx)/A : 

From (1) we obtain an equation for the Fourier compo- 
nent 8 with respect to the coordinates: 

+sin (Qr,-X) (&g-R-i+R&) 1, 
(2) 

P*"=BoR (pl* kl /2 ) ,  q+=q (plf kJ2). 

Using the orthogonality relation 

(aoR)2=i, a+RglR+g,Rg-R=o, 

we easily obtain from (2) a solution for 8: 
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The solution for 8 is obtained from (3) by interchang- 
ing the indices R and A, 

The self-consistency condition obtained in Refs. 8 and 9 
for the functions ,ij with a singled-out phase, with allowance 
for the dependence o f x  on r, , takes the form 

where oQ is the frequency of the phonons with wave vector 
q = Q, and A is the dimensionless electron-phonon interac- 
tion constznt. The last term describes the influence of the 
commensurability, m is the order of the commensurability, 
E, is an energy of the order of the width of the conduction 
band (at m = 4, just as for TaS,, we have E, = 4 3 9  /2)). 

Substituting the solution (3) in (4) and assuming kll ugA 
and k, u, (A we obtain an equation for the smooth fluctu- 
ations of the phase X: 

a2x d2x Y -all - - a, -2+ - sin mx+ b6 (r-ri) sin (x-Qr) 
axZ ar, L C 

- eliv drp - .  
ax ' 

It can be seen from this equation that the fluctuations of 
the phase x are connected with the fluctuations of the elec- 
trostatic potential p .  If the quasi-one-dimensional metal 
consists of chains of different type with electron and hole 
conductivity, the term in the right-hand side of (5) does not 
lead to significant effects. If only chains of the same type are 
present, we must find the connection between the fluctu- 
ations of q, and x with the aid of the Poisson equation, by 
expressing the charge density in the terms of the trace of 
(&zg).9 For the smooth fluctuations we obtain 

(6 )  

where ~ l ' ~ / k ,  and ~!'~/k, are the screening lengths of the 
electric fields along and across the strings in the normal me- 
tallic state (withA = 0); E~~ and E, are the dielectric constants 
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along and across the filaments without allowance for the 
contribution of the conduction electrons. The term with 
a 2p/d!x2 in the right-hand side of (6) describes the renormal- 
ization of E,,  : 

~ , , - + ~ ~ ~ + h ' ~ ~ k , 2 / 6 A ' .  

The quantity 1 - N, = (8n-d / ~ ) " ~ e - * ' ~ < l  deter- 
mines the contribution of the free electrons to the charge 
density. 

We eliminate the potential e, from (5) with the aid of (6). 
Returning to Fourier components, we obtain 

Here E is the homogeneous part of the field, which is 
different from zero if a voltage is applied to the sample. In 
the limit v, = 0 and T = 0, this equation goes over into the 
equation obtained in Ref. 12 for the phase, and neglecting 
the fluctuations (the term with b ) and the dependence ofx on 
r, it goes over into the equation of Ref. 9, which was used for 
the analysis of solitons. 

We shall consider hereafter a case in which a, > 0 in 
Eqs. (5) and (7). This condition is easily satisfied if the elec- 
tron spectrum is strongly one-dimensional and the phonon 
spectrum is weakly one-dimensional. The ratio of the first 
and second terms in a, is of the order of 

where s is the speed of sound (we assume satisfaction of the 
adiabaticity condition m*/m) 1, which ensures smallness of 
the one-dimensional thermal and quantum fluctuations). 

TO find the threshold field E, we must ascertain the 
largest value of E at which a stationary solution of Eq. (7) is 
possible. Neglecting the fluctuations, such a solution is pos- 
sible at 

E<ETo= (AZ/etiv) h/y. 

In fields E >  ETo the equation for the phase has a solu- 
tion only when account is taken of nonstationary effect (this 
case was analyzed in Ref. 9). 

We obtain now E, with allowance for the fluctuations. 
We consider the case when the fluctuations are small and can 
be taken into account by perturbation theory. We represent 
the solution (7) in the formx = ? + SX, where? = (x), and 
(...) is statistical averaging. Averaging (7) in the lowest ap- 
proximation in SX, we obtain 

sin m a ( +  <dX2>m2/2) =E/ETo.  (8) 

We subtract (8) from (7) and obtain in the linear approx- 
imation in SX an equation for SX: 

( L  - -7 c o m a  d ~ = -  bd (r-ri) sin (Qri-a). (9) '" ) $I 
If the impurities are randomly distributed we obtain 

(6x2> = - d3k 
[L- (ymlh)cos  ma]' ' 

where n is the impurity density. Substituting (10) in (8) we 
obtain the dependence of the mean value of the phase ? on 
the field E and the decrease of E, due to the fluctuations 
caused by the impurities. The quantity (SX ') depends on the 
relation between the small parameters y/A,  1 - N, and 
E~ /a, k g. In the limit 

nZnbz[h( l -N. )  1'" 
(6xP> =- 

2a,all'" (ym cos m a )  '" ' 

n'nVzoQz ( I-N. ) a] 
E ~ = E ~ ~  [ I - AfivoQZ// 2hy 

In order of magnitude, the decrease of the threshold 
field as a result of the impurities is 

where r is the time of momentum scattering by the impuri- 
ties. Since the denominator of (1 1') contains the small com- 
mensurability parameter y, it is seen that E, can be substan- 
tially lowered even in relatively pure samples at A,l/r. If 
the Coulomb screening of the fluctuations is negligible be- 
cause of the presence of chains with different types of con- 
ductivity, the result is obtained by leaving out the factor 
1 - N ,  f rom(l l )and( l l ' ) .  

We shall not consider the case E > E,. It is natural to 
expect at E > E,, when the slippage of the CDW begins, the 
radiation from the sample to contain, besides the monochro- 
matic radiation due to the motion of the CDW under the 
influence of the forces of pining to the l a t t i ~ e , ~  also a noise 
part due to the presence of phase fluctuations due to the 
impurities. The stronger the lowering of the field E,, the 
more appreciable the noise component in the radiation. 

It would be of interest to investigate the case of larger 
densities of the impurities, when (SX 2 ,  2 1. However, the 
solution of (7) in this case is quite difficult. In the limiting 
case (SX ') > 1, according to Ref. 12, the impurities disturb 
the long-range order of the commensurate CDW. 

We are grateful to A. F. Volkov for helpful advice and a 
discussion and also to K. B. Efetov and A. I. Larkin for a 
discussion of questions connected with the disturbance of 
the long-range order. 
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