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The motion of electrons in the field of two one-dimensional periodic potentials with incommensu- 
rate periods is considered. The existence of an Anderson transition in such systems is demonstrat- 
ed. The critical exponent of the wave-function localization radius is calculated and found to be 
unity. 
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INTRODUCTION 

In connection with recent reports of new experimental 
procedures, it has become possible to produce the so-called 
incommensurate systems (see Ref. 1 and the literature cited 
therein). The simplest example of such a system is a monato- 
mic film with period a, located on a crystal substrate with 
period 6, so that the ratio P =  a/b is an irrational number 
(the case of a rational number ratio is of no interest, since the 
system is then periodic with a larger period). We are interest- 
ed in the case of a metallic film on a dielectric substrate. In 
connection with the electronic properties of such systems, 
the naturally raised question is that of the motion of an elec- 
tron in the field of two periodic potentials with incommensu- 
rate periods. 

These systems are of interest because they constitute an 
intermediate case between periodic and disordered sys- 
tems-they have no translational symmetry, but likewise no 
real disorder; in particular, Anderson localization, which 
has attracted much attention of late, is possible in them.2.3 
Arguments favoring the existence of localization in incom- 
mensurate systems are advanced by A ~ b e l , ~  A ~ b r y , ~  and So- 
koloff et as well as the results of numerical experi- 
ment~.'.~ We show in the present paper that for a definite 
class of incommensurate systems it is possible to construct a 
consistent localization theory, and calculate the mobility 
threshold and the critical exponent of the localization radi- 
us. 

Since the Anderson transition has been observed al- 
ready in incommensurate system in the one-dimensional 
case, we confine ourselves to this case, which also has a bear- 
ing on systems such as mercury chains (see the experimental 
studies cited in Ref. 4). We note that at the present time we 
do not know of any other model that admits of an analytic 
solution in which the Anderson transition exists (including 
the Bethe solution). 

1. LOCALIZATION IN THE SIMPLEST MODEL 

The simplest model that describes the situation under 
consideration is the tight-binding model with periodic mo- 
dulation of the levels: 

al+i+a,-i+V cos (2npl) al=Eal, (1) 

where is the irrational incommensurability parameter (the 
energy is measured in units of the overlap integral J). With- 

out loss of generality we can assume that0 < 1 (a change o f0  
by an integer does not change the Hamiltonian). 

As shown by A ~ b e l , ~  the classification of the states of an 
incommensurate system is determined by expansion of 
into a continued fraction: 

The reason why the continued fraction (2) appears in the 
theory can be easily understood. An irrational number 0 can 
be naturally regarded as a limit of a sequence of rational 
numbers. From all these sequences we single out the se- 
quence of rational numbers p, /q ,  obtained by terminating 
the continued fraction (2) at the n-th step. These numbers 
(and only these) have a definite extremal property-each of 
the gives, in a certain sense, the best estimate o f 0  (namely, 
p, /q ,  has the minimum value of the quantity Iq, 0 - p ,  I 
from among all the fractions with a denominator does not 
exceed q ,  (Ref. 9)). This sequence of rational numbers gener- 
ates a sequence of periodic systems that approximate in ex- 
tremal manner the given incommensurate one. The periods 
of these systems (the interatomic distance is Lo = 1) 

are the characteristic lengths of the considered incommen- 
surate system and manifest themselves in one manner or an- 
other in all the observed phenomena. 

To obtain a lucid physical picture, we consider a situa- 
tion in which there is an hierarchy of lengths (3), i.e., when 
0, PI,  &... ( 1. By the same token, we restrict the analysis to 
irrational numbers of a definite type." The qualitative pic- 
ture for arbitrary irrational numbers will be presented in Sec. 
3. 

The problem consists of bringing to light the character 
of the solutions of Eq. (1). At V = 1, its spectrum is a band of 
width - 1. It is clear that this band is preserved in some form 
also at finite V. Considering the edge of the band, we can 
replace, by virtue of the conditionp( 1, the difference opera- 
tor by a differential one (since a, will be a slowly varying 
function). We then obtain an ordinary Schrodinger equation 
with a periodic potential 
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dZ - 4- V cos (2npx) a ( x )  =Ea(x)  , I (4) 

FIG. 1 .  a) The level of the discrete Schrodinger equation, E, oscil- 
lates as a function of the phase p that determines the position of the 
discrete system of points on which the equation is specified. b) The 
phase q is different for different minima of the periodic potential. 

h 

whose spectrum consists of an aggregate of bands with ex- 
ponentially small width (relative to -P), the distance 
between them is -p. Thus, in this approximation the initial 
band of Eq. (1) turns out to be split into a large number ( - 1/ 
p ) of narrow bands (we shall call them first-order bands), and 
the wave functions are Bloch waves. 

By going from (1) to (4), however, we have completely 
lost the incommensurability: in Eq. (1) there are two periods, 
1 and 1/b, whereas in (4) there is only one, 1/P. It turns out, 
however, that Eq. (4) gives a correct first-order approxima- 
tion, but it is necessary to take into account also the principal 
discreteness effect. 

To bring to light the discreteness effect, we consider a 
difference equation of the type (I),  but with a potential in the 
form of one well [Fig. l(a)] in place of the periodic potential 
V cos(2n-ox). Assume that in the continuous approximation 
(as the interval of the difference operator tends to zero) a 
level E, exists in the well. Then we have also for the discrete 
equation a level E, at a small interval (or a slowly varying 
potential) close to E. However, the discreteness leads to a 
new effect-to a dependence of the level E on the phase q, 
[Fig. l(a)], which determines the position of the discrete sys- 
tem of points singled out by the difference operator, relative 
to bottom of the well. Since a change of q, by unity changes 
nothing, this dependence will be periodic. For a slowly vary- 
ing potential this dependence is described by one harmonic 
(see Sec. 2): 

I - 

k 4  

E (cp) -Eoacos 2ncp. (5) 

+I-+- J-4- X 

Yr 

We turn now to the spectrum of Eq. (1) and consider one 
of the first-order bands. This band was the result of broaden- 
ing of the level corresponding to motion in one of the minima 
of the potential, owing to the tunneling into the next minima 
(the smallness o f p  ensures applicability of the tight-binding 
approximation). In the continuous approximation corre- 

'I! 

sponding to Eq. (4), the levels are the same in all the wells; 
when the discreteness is taken into account, they turn out to 
be different, since the phase q, is different for the different 
wells [Fig. 1 (b)]: for the k-th well p, = P,k, where PI = 1/ 
B - [1/P] [i.e., it coincides withp, from (2)], so that thelevel 
E, changes as a result of (5) in proportion to cos (2lrP,k ). 
Taking into account the overlap of the wave functions corre- 
sponding to motion in individual wells (i.e., using the dis- 
crete analog of the tight-binding approximation) and confin- 
ing ourselves to nearest neighbors, we find that each of the 
first-order bands is described by an equation of type (1) with 
p, in place of@. Consequently, each of the first-order bands 
is arranged in the same manner as the initial band, i.e., it 
turns out to be split up into a large number ( -  l/fl,) of bands 
of second order etc.-the so-called devil's stairs is pro- 
d ~ c e d . ~  

The foregoing points clearly to a procedure for con- 
structing the wave functions of Eq. (1). We initially have 
Wannier functions at the lattice site, with a period L, = 1, 
whose amplitudes are described by Eq. (1). In first-order ap- 
proximation, i.e., on the first level of the devil's stairs, we 
should form new Wannier functions (of first order) located at 
the minima of the potential cos (277Px), i.e., at distances 
L ,  - l /p  from one another (Fig. 2a), and with amplitudes 
described by an equation of type (1) but with coefficients PI 
(from (2)) in place offl and with V, in place of V. Analogous- 
ly, on the n-th level of the devil's stairs we obtain from the 
Wannier functions of order (n-1) the Wannier functions of n- 
th order with distance L, - 1/m,  ...On - between them, and 
with amplitudes described by Eq. (1) in which P and V is 
replaced by 0, and V,. It is required to determine what is 
obtained in the limit as n+m. 

We note that the limit n-+w can formally be ascribed a 
physical meaning: it corresponds to the system length L 
tending to infinity (since the levels to which lengths L, > L 
correspond exert no influence on the properties of the sys- 
tem). Let L -L, ; then the sample length accommodates one 
Wannier function of order n (Fig. 3). Since the Wannier func- 

FIG. 2. a) Formation of first-order Wannier functions from 
the initial Wannier functions. b) Cessation of modifications 
of the Wannier functions at V, k I/&. 

I 
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FIG. 3. 

tion decreases exponentially on both sides, we have a certain 
analog of localization; this, however, is not a true localiza- 
tion, since the radius of localization of the wave function 6, 
is of the same order as the dimension L of the system. We 
increase the system dimension to -L, + , , and then the sam- 
ple length will accommodate one Wannier function of order 
(n + 1) with localization radius 6, + , , etc. Obviously, for lo- 
calization to exist we must have g , / L , 4  as n-t w. To this 
end it is necessary in turn that in Eq. (1) the sequence of the 
coefficients V, + w as n -+  w . 

It is easily seen that localization does indeed exist at a 
sufficiently rapid growth of V,. After V, reaches a value 
- UP, (in units of the overlap integral J,) ,  the localization 
radius 6, of the Wannier function of n-th order becomes 
smaller than the distance L, - , between the Wannier func- 
tion of order (n - l) ,  and modification of the Wannier func- 
tions no longer takes place [see Fig. 2(b)]-the Wannier 
functions of order n and n-1 turn out to coincide physically. 
By the same token the localization radius {, takes on a con- 
stant value (. 

Thus, the problem reduces to finding the law for the 
transformation of the coefficient V, : 

and to a determination of the behavior of V, as n - +  w . 
It will be shown in 2 that the transformation (6) has the 

following properties: 

V>V,>V,>. .. at V<2, 
V,, +, - V;lBn at Vn<l. 

Thus, at V> 2 the sequence V, is an increasing function and 
has at n-w the following growth order (at P-Pi -P2- ...) : 

In In V,-n. (8) 

On the contrary, at V<2 they decrease at the same rate. 
Obviously, V = 2 is the Anderson transition point: at V> 2 
all the states of the considered incommensurate system are 
localized, and at V< 2 all the states are delocalized. There 
are no mobility energy thresholds in this model. This result 
agrees with the data of the numerical experiments.' 

We ascertain now the behavior of the localization radi- 
us near the Anderson transition. Let N be the number of the 
devil's-stairs level on which the Wannier function ceases to 
become modified. Then, obviously, 

It remains to determine N, i.e., to find out after how many 
steps the sequence V, increase from the value Vo = V=: 2 to 
the value V, - I/&, which can be regarded, by virtue of the 
rapid growth of V, , as independent of N. Being interested in 
the value ofg accurate to a constant factor, we can determine 
n accurate to an additive constant. We can therefore choose 
V, to be any constant: it is convenient to choose it close to 2. 
Expanding (6) near the transition, we obtain the equation 

whose solution is 

V N - 2 = A o A i . .  . AN-I  (v-2) 

It remains to put V, = const and eliminate N from (9) and 
(10). Calculation of the coefficients A, in the tight-binding 
approximation yields A, = I//?, (see Sec. 2). We therefore 
obtain from (9) and (10) 

i.e., the localization radius diverges near the transition in 
accord with a power law, with a universal critical exponent 
equal to unity. It is curious that according to the numerical 
calculations for the three-dimensional Anderson modeli0 
this critical exponent is equal to 1.2 + 0.3, i.e., it turns out to 
be the same within the limits of error. 

We have obtained essentially single-parameter scaling 
close to that proposed in Ref. 11. In particular, at 
p = p, = p, = ... the transformation ( 6 )  does not depend on 
n and can be written in the form of the "renormalization- 
group equation" 

A In V,/A In L,=B (V,) , (12) 
where Af, =f, + , - f, and it is recognized that L, - I//? ", 
i.e., n-In L,. The "Gell-Mann-Low" function /?(V,,) in- 
creases monotonically (with increasing 
V,)from - co to + w (B(v,)-ln V, at V,%l and Vn<l), 
and goes through zero at V, = 2. 

2. CONVERSION OF THE COEFFICIENTS V,, ON THE DEVIL'S 
STAIRS 

We show first how to calculate the effect of the oscilla- 
tions of the discrete Schrodinger equation as a function of 
the phase p [see Fig. l(a)]. For the sake of clarity, we start 
with an analysis of a discrete oscillator: 

We shall assume Eq. (13) to be specified not on a discrete set 
of pointsx = 1, + 1, ..., but on the entirex axis. With the aid 
of the shift operators e ip ( j  = - id /dx) we reduce it to the 
form 

[2 cos p+x2] a (x) =Ea (x) (14) 
(the phase p is made to vanish by the substitution x + p-+x). 
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Changing over to the momentum representation 
(j-+p, x+x = id /dp), we obtain a Schrodinger equation 
with a periodic potential 

[-d2/dp2+2 cos p] a ( p )  =Ea ( p )  , (15) 
whose spectrum is an aggregate of bands. In place of the 
levels of discrete oscillator we obtain bands, since Eq. (14) 
has more solutions than (13)-the information on the phase 
e, is lost in (14). The solutions of Eq. (1 3) are picked out of the 
solutions of (14) with the aid of the boundary conditions (in 
the momentum representation) 

a (p+2n) =ei2"qa(p). (16) 

Indeed, at e, = 0 the function a(x) differs from zero only at 
integer points, and its Fourier transform is periodic with a 
period 277; the shift of the discrete system of points by e, leads 
to the appearance in (1 6) of a phase factor. According to (16), 
the phase e, plays for Eq. (15) the role of a quasimomentum: 
at a fixed p there is selected from each band of (15) a level 
corresponding to the quasi-momentum p; when p changes 
from zero to unity the selected level runs through the entire 
band and returns to the initial position. Thus, thes-th level of 
the discrete oscillator varies-like 

where &,(q) is the dispersion law of thes-th band of Eq. (14). 
For the quasiclassical potential, the spectrum of Eq. (1 5) is 
described by the tight-binding approximation, and the dis- 
persion law ~ , ( q )  takes the form of a simple cosine-this 
proves Eq. (5). 

In essence, we did not use in the foregoing reasoning 
any specific properties of the potential x2. In the case of an 
arbitrary potential V (x) we arrive at Eq. (1 S ) ,  but with a more 
general V (x) dispersion law in place of x2 = - d 2/dp2. 

We proceed to derive the transformation law (16). For 
the sake of argument we consider the first level of the devil's 
stairs. Equation (1) is equivalent to the equation 

[ C O S  P + ' / ~ V  cos (2nPx) ] a  ( x )  =Ea (x) 

with boundary condition (16). Writing for it the quasiclassi- 
cal-quantization conditions, we obtain - I//? levels E, cor- 
responding to motion in one of the minima of the potential 
(there is no modulation of the levels in this approximation). 
Allowance for the small probability of tunneling into neigh- 
boring minima leads to broadening of these levels into bands 
of width 

Ip ( x )  I =arch{'/,V cos ( 2 n ~ x )  - E s )  

(see problem 3 of Sec. 55 in Ref. 12); here w is the frequency 
of the classical oscillations and the integration in the argu- 
ment of the exponential is over the classically inaccessible 
region. The band width Tt  determines the overlap integral 
J, on the next level of the devil's stairs (r = 4J,). As is clear 
from the statements made at the beginning of the section, the 
amplitude V, of the level modulation is determined by the 
band width 1": of the equation conjugate to (A) (x+@,j-x) 

which, following the substitutions x = 277Pf and E =J vZ, 
reduces to the form (A) with 2/Vin place of V/2, so that 

rsB=i/2vr. (2117). 

Expressing V, = T,8/2 in units of the overlap integral 
J, = r:'/4, we obtain 

i.e., the transformation (6) with n = 0 it has the same form 
also in the succeeding levels. 

It is easy to present a formal derivation of (18). We neg- 
lect in (2) the small quantity PI; then the incommensurate 
system is transformed into a periodic one having a period of 
n, atoms. Therefore, the equation (A) with the boundary 
conditions (1 6) will have a spectrum of n, bands with disper- 
sion laws 

'that depend on e, as a parameter. In view of the periodicity of 
the system, the phase e, will be the same for all the periods of 
the potential of Eq. (A), so that the Schrodinger equation for 
the s-th band takes the form 

At finite but small/?,, the phase e, becomes slowly varying in 
space: e, = /?,x [see Fig. l(b)], but Eq. (19) is preserved in 
first-order approximation. Since the phase e, plays the role of 
a quasimomentum for the conjugate equation (B), and the 
quasimomentump plays the role of the phase, we have obvi- 
ously 

where &,8(p,e, ) is the dispersion law of the s-th band of Eq. 
(B). If the tight-binding approximation is applicable to Eqs. 
(A) and (B), the quantities E; and E: have a cosinusoidal vari- 
ation in p. Noting also that the modulation of the overlap 
integral is small compared with the modulation of the levels, 
we find from (20) that 

eSA ( p ,  (p) =const+'/,rSA cos p+1/2rsB cos 2n(p 

Substituting this in (19) withe, = /?,x, we obtain an equation 
of the same form as (A) with V, = 2 r f / r t  in place of V, 
which is equivalent to (1 8). 

The properties (7) of the transformation (6) are derived 
without almost any calculations. The property (7a) is ob- 
vious from (1 8). The properties (7b) and (7d) follow from the 
fact that the widths of the allowed bands of the Schrodinger 
equation decrease with increasing potential, and in the qua- 
siclassical approach this dependence is very strong. Finally, 
to establish the property (7c) [and analogously (7e)], we note 
that the ratio of the width of the s-th band of Eq. (A) to the 
width of thes-th band of Eq. (B) is determined at Vs 1 by an 
exponentially small transmission coefficient D through the 
barrier separating the two minima of the potential 
V cos (2v/?x); in the case considered, D - V - Calcula- 
tion of the coefficient An in (1 1) is carried out using Eqs. (17) 
and (1 8) and raises no difficulties in principle. 
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In the entire preceding exposition we have used essen- 
tially the tight-binding approximation, the validity of which 
was ensured by the smallness ofp, PI,... . This calls for two 
remarks. 

1. At Vn > 1 the tight-binding approximation is violated 
for Eq-(B), while the quasiclassical approximation is violat- 
ed at Vn 2 l/Pn for Eq. (A). Therefore, in Eq. (I), on the 
succeeding levels, cos (2?rP,x) is replaced by a more compli- 
cated function of x, and modulation of the overlap integrals 
appears as well. Nonetheless, the estimate (7c), in which V, 
must be taken to mean the ratio of the characteristic value of 
the potential to the characteristic value of the overlap inte- 
gral, remains in force in this case, too. 

Indeed, assume for the sake of argument that V> 1. The 
Schriidinger equation on the first rung will have the form 
(19), where e ( p , p  ) is one of the n, solutions of the nl-th- 
order secular equations, which, as can be easily shown, has 
the following structure: 

cos p+Q,, ( E )  =O, (21) ' 

where Qnl is a polynomial of degree n, in E, with the highest- 
order coefficient - 1. As V-t co , the bands of the Schro- 
dinger equation degenerates into the levels 

E,=V cos (2nsln,+cp), s=l, . . . , n,, 

and the Wannier functions are localized near the corre- 
sponding lattice sites. Consequently the roots of the polyno- 
mial Q,, (E ) at large V are close to Es. We then easily obtain 

from (2 1) that the bands have a width - 1/ V "I - ', whereas 
their displacement with changing p is of the order of V. Con- 
sequently, the ratio of the characteristic value of the poten- 
tial to the value of the overlap integral (which is none other 
than V,) is of the order of Vnl, which agrees with (7c). 

The validity of the estimate (7c) is sufficient for the con- 
clusion that localization takes place; to calculate the critical 
exponent, however, all that is important is the form of the 
transformation (6) at Vn ~ 2 .  A similar remark must be made 
for Vn(l. 

2. At Vn ~2 the strong-coupling approximation cannot 
be used near the center of an n-th order band, therefore the 
theory expounded is valid for not all states. Nonetheless, 
V = 2 is the threshold of localization for the entire band. 

It is easiest to verify this using the following heuristic 
 consideration^.^ On going into the momentum representa- 
tion, Eq. (A) is transformed into itself with the substitution 
V/2+2/V [see (B)], i.e., the equation with V> 2 goes over 
into the equation with V< 2 and vice versa. Localization in 
coordinate space corresponds to delocalization in momen- 
tum space and vice versa, therefore if the threshold value of 
Vexists, it cannot be anything but two. That this reasoning is 
not rigorous is clear even from the fact that the case of ra- 
tional p is not singled out in any way. Nonetheless, Eq. (A) 
has an additional symmetry at V = 2; let us show how this 
symmetry can be used consistently. 

First, it is easy to show that there exists a localization 
threshold for all states; indeed, from the remark one follows 
exponential localization of all states at VB 1, from which we 

obtain, after a Fourier transformation, the delocalization of 
all the states at V< 1. 

Next, at V = 2, Eqs. (A) and (B) coincide, so that the 
functions 4 ( p , p  ) and ~ f ( p , p  ) are identical. It follows then 
from (20) that the function e (pp ) is symmetrical with re- 
spect to permutation ofp and p ,  and consequently, in view of 
(19), that the Hamiltonian is invariant on the next level of the 
devil's stairs relative to the permutation o f j  and x. There- 
fore Eqs. (A) and (B) will coincide also on this level. Continu- 
ing the induction, we find that the invariance of the Hamil- 
tonian with respect to permutation o f j  and x is preserved on 
all the succeeding levels of the devil's stairs. 

The Hamiltonian e( jfilx), generally speaking, cannot 
be represented in the form of two terms corresponding to 
potential and kinetic energy. It is clear, however, that the 
meaning of the potential Vl is possessed by the characteristic 
oscillation amplitude e(pfi ,x)  whenx is varied, whereas the 
order of magnitude of the overlap integral J, is determined 
by the amplitude of the oscillations in p. From the estab- 
lished symmetry of e ( p , p  ) it is clear that V, - J , .  Similarly, 
Vn - Jn on an arbitrary n-th level, and in particular as n-t m .  
This situation can take place only at the transition point, for 
otherwise the ratio Vn/Jn should tend as n- co either to zero 
or to infinity (we assume, of course, that the renormaliza- 
tion-group transformation (6) has qualitatively the same 
properties as under conditions for the applicability of the 
tight-binding approximation). Thus, V = 2 is the Anderson 
transition point for all states. 

3. CERTAIN GENERALIZATIONS 

In view of the x, p symmetry of Eq. (I),  indicated in the 
preceding section, there is no data that for the model de- 
scribed by this equation V = 2 is the Anderson transition 
point at arbitrarily (and not only ~mall)PJ?,$~, ... . The exis- 
tence of a single threshold for all states is a specific property 
of this model. 

In the general case the incommensurate system is de- 
scribed by a difference equation with a periodic coefficient of 
more general form than (I),  namely, account must be taken 
of overlap integrals with a larger number of nearest neigh- 
bors, as well as their modulation, which, just as the modula- 
tion of the levels, can be an arbitrary periodic function. At 
p( 1, however, this case reduces to the one considered, inas- 
much as the tight-binding approximation will be applicable 
to the first-order bands, and they will be described by Eq. (1). 
Consequently, localization of each of the first-order bands 
will take place at a definite value of the parameter V, but 
these values will be different for the different bands. For the 
initial band there will therefore exist two critical values V,, 
and V,, such that at V> V,, all the states are localized, and 
at V< V,, all are delocalized, whereas in the interval 
V,, < V< V,, there are mobility energy thresholds. 

For noncommensurate systems of general form and at 
not small PJ?,,&, ... the situation becomes much more com- 
plicated. Now the localization of each of the bands of first 
order will take place also in a finite interval of values of V; the 
same holds true also for bands of second etc. order. There- 
fore, the structure of the mobility threshold will take the 
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FIG. 4. Structure of mobility threshold in incommensurate systems of 
general form. Several bands of first order are shown, and the single and 
double hatchings show localized and delocalized states, respectively. The 
mobility thresholds in the first-order bands are constructed in the same 
manner. 

form shown in Fig. 4. The mobility threshold in bands of 
higher order are similarly constructed. Thus, an ever finer 
mixing of the localized and delocalized states takes place; it 
stops on the rung where the small B, first appears." 

In the latter case (jJ,fiI,...Bk - I - 1, fik (1) it is expedi- 
ent, when calculating the mobility threshold, to "jump over" 
all the steps with small fin, i.e., to represent fi in the form 

(p, and q, are integers). Next, solving the secular equation 
of order k,, we write down Eqs. (19) with p = yx. For these 
equations it is already possible to use the quasiclassical ap- 
proximation. 

In the same manner, in all the essential cases, the de- 
scription of incommensurate system reduces to Eq. (1). On 
the other hand, the only qualitative difference between the 
general type of system from the model of Sec. 1 is in the 
dependence of the critical value of Von the energy. 

The author thanks A. F. Andreev, Yu. K. Dzhikaev, I. 
M. Lifshitz, L. P. ~itaevskc, and Yu. G. s i n 2  for a discus- 
sion of the results. 
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