
Effects occurring near the critical points of phase transitions in a Fermi 
liquid as illustrated by pion condensation 

A. M. Dyugaev 

(Submitted 23 March 1982) 
Zh. Eksp. Teor. Fiz. 83, 1005-1024 (September 1982) 

The line n = n,(T) of first-order phase transitions of neutronic matter into the inhomogeneous 
state with a pion condensate is determined. It is assumed that m,/p,(l; the Thomas-Fermi 
approximation, which breaks down when (n - n,)/n, - (m/~ , )~ ,  is then applicable at points far 
from the transition line. At low T the character of the transition is determined by the quantum 
fluctuations. The pion-field jump is small (as small as (m/~ , )~ ) ,  while the entropy and compress- 
ibility jumps are large. At high T the transition is from the liquid phase of the pion condensate into 
the crystalline phase. In the liquid phase the characteristic pion frequency is much lower than the 
temperature. The pion lattice has a low melting point. Near the transition line the thermodynamic 
functions of the system depend on n - n, and Tin a power-law manner characteristic of nearly 
second-order phase transitions. 

PACS numbers:05.30.Fk, 21.65. + f 
1. INTRODUCTION 

1. The main theoretical ideas about pion condensation 
were developed by Migdal, and are expounded in Ref. 1. The 
physics of the phenomenon consists in the fact that in suffi- 
ciently dense nuclear matter there appear unstable spin- 
acoustic-type-excitation branches carrying pion quantum 
numbers. The instability is eliminated through a reconstruc- 
tion of the medium, with the appearance of a static pionfield 
condensate with wave number k #O. The nuclear spin and 
isospin densities after the reconstruction are periodic func- 
tions of the coordinates. The qualitative picture of the phen- 
omenon can now be understood within the framework of the 
model with a Ap4-type m interaction.' The pion-field fluc- 
tuations that occur near the phase transition point are taken 
into account within the framework of this model in Ref. 2. 
Because of the large phase volume of the (k #0) fluctuations, 
the role of these fluctuations does not reduce only to the 
renormalization of the coefficients that occur in the pheno- 
menological theory of second-order phase transitions: they 
change the order of the transition from second to first. This 
phenomenon occurs even at T = 0, when there are no real 
pion excitations in the system. In the high-Tclassical case, in 
which there are many such excitations, the role of the fluctu- 
ations has been investigated by Brazovskii3 in the analogous 
problem of the phase transition of a liquid crystal into the 
inhomogeneous state. Interest in pion condensation at finite 
T arose in connection with the nuclear-matter warm-up, 
that occurs in heavy-ion  collision^.^ Estimates of the effect of 
the thermal fluctuations on the phase transition have been 
made by Voskresenskii and Mishustin.' 

In the present paper we consider the effects occurring in 
the vicinity of the critical point by means of the Thomas- 
Fermi method.' We are able to determine such characteris- 
tics of the system as the entropy, the compressibility, the 
melting point of the lattice, and the Fermi-liquid constants. 
We limit ourselves to a purely neutronic medium under the 
assumption that m/p, is a small parameter. The point is that 
for a medium with N = Z i t  is difficult to choose the optimal 
isotopic composition of the condensate.' In a neutron medi- 

um with m/p,( 1, the Thomas-Fermi approximation, which 
is a zeroth-order approximation, and against whose back- 
ground the fluctuations are taken into account, is applicable 
at points far from the transition point. For m/p,z 1, we 
must consistently take account of the nucleon-nucleon cor- 
relations and the effect of the A resonance on the phase tran- 
sition.' These effects are important in connection with the 
establishment of the system's instability and the determina- 
tion of the critical density n,. But the effects connected with 
the phase transition can be understood on the basis of a sim- 
ple model in which the mean-field approximation has a 
broad region of applicability. They depend weakly on the 
local characteristics of the system, and are determined large- 
ly by the form of the universal long-range interaction that 
occurs in the system in the vicinity of the phase transition 
point. A similar model has been considered by Vaks, Larkin, 
and P i k h 6  

2. The phase diagram of the system is shown in Fig. 1. 
For T ~ E , )  the neutrons are degenerate, and there exist five 
characteristic (n,T) regions differing from each other in the 
pion states. The region 1 is a quantum liquid with a soft pion 

FIG. 1. 
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mode and a characteristic pion frequency A)T. Its proper- 
ties are studied in Ref. 7, where nearly antiferromagnetic 
Fermi liquid is considered. The region 2 represents the clas- 
sical pion gas in a background of cold neutrons; the roton 
gap in the pion spectrum A(T. The pion excitations can be 
treated as static magnetic impurities. The region 3 repre- 
sents a semiquantum pion gas. There occur here a cancella- 
tion of the contributions of the quantum and classical fluctu- 
ations and the appearance of a distinctive effect, a namely a 
proton gap A = LOT. The number A, depends weakly on n 
and T. The region 4 represents a quantum pion crystal char- 
acterized by a periodic spin structure. The roton gap for the 
pions in the background of the condensate A)T. The pion- 
field jump that occurs on the 1-4 transition line is small [as 
small as (rn/p,))], but the entropy and compressibility jumps 
are large. The region 5 is the region of the classical pion 
crystal. The periodic spin structure is superposed here with a 
small roton gap on a condensate background: A(T. On the 
2-5 transition line the jumps in all the characteristics of the 
system are small. 

The smallness of the pion-field jump on a transition line 
allows us to follow how the new phase appears. Initially, the 
?r-condensate phase is metastable and thermodynamically 
unstable, since its compressibility is negative. As its density 
increases, the sound speed goes to zero, and then the new 
phase becomes energetically advantageous. The melting 
point of the pion lattice is an order of magnitude lower than 
E ~ ,  an effect which is characteristic of the liquid-crystal tran- 
sition. The thermal fluctuations of the pion field have such a 
strong temperature dependence that we can neglect in the 
entire region T(E, the smearing of the momentum distribu- 
tion of the neutron quasiparticles, and follow only the pion 
temperature. For this reason the dependence n = n,(T) has 
nothing in common with the dependence that corresponds to 
the mean-field approximation (the thin line in Fig. 1). The 
properties of the system do not charge on the "false" curve 
n = n:(T). Let us emphasize that the (n,T) or (V,T) plane 
does not contain a region of phase separation. The specific 
volume of one of the phases is always equal to zero. The 
phase transition, accompanied by pressure and chemical-po- 
tential jumps, occurs in the whole volume. 

3. The main results of the paper are not connected with 
the specific properties of the ?r-condensate phase transition 
in neutronic matter. Only in Sec. 6 of the paper do we use the 
specific form of the order parameter of the pion field. In 
Secs. 2-5 we generalize the results obtained by the present 
author for liquid He3 (Ref. 7), and develop the theory of the 
nearly antiferromagnetic Fermi liquid. For a neutronic me- 
dium the order parameter has the form (a*k)p,, i.e., is char- 
acterized by a scalar function. For an antiferromagnetic Fer- 
mi liquid this parameter is the complex vector u0q,; for 
nuclear matter it is an isotronic vector (mk) (7-Q~). In the 
mean-field approximation this vector corresponds to the 
minimum of the functional: 

The quantity 6 i depends on n and T, and changes sign at the 
transition point. The instability arises on the sphere k = k,; 
for k0(2pF the quantity A,  depends only on the angles 
between the vectors k,. The main difficulty lies in the choice 
of the optimal solution. Besides the periodic solutions of the 
spin-density-wave type with long-range order, there exist so- 
lutions only with short-range order, i.e., of the spin-liquid or 
spin-glass type. An example of this solution in the coordi- 
nate representation is p(r) = Ziqi(r - r,), where qi(r) is any 
solution to the equation Aq + k i(p = 0. Such a "disorder 
parameter" corresponds to a localized defect, with which 
the operation of displacement to the points ri is effected. The 
displacement can also be accompanied by rotations of the 
vector Q, and we can perform both purposeful and random 
displacements and rotations. Furthermore, let us assume the 
existence of partial disorder in the background of a periodic 
solution. The energies of all such structures differ little from 
each other, and there arises the complicated problem of 
choosing the optimal solution with allowance for the critical 
fluctuations. Even a qualitative analysis of systems with a 
vector order parameter shows that several structural-transi- 
tion-related singular lines occur in the (n,T) phase diagram. 
The character of the optimal solution depends strongly on 
the relation between k, andp,. The main gain in energy for 
the system is connected with the softening of the spin-acous- 
tic excitation branch, and the differences between the ener- 
gies of the crystalline, liquid, and gaseous phases of the mate- 
rial are determined by the third term in (I), which is small, 
because A,&l,. The computation of this small quantity 
takes us in a sense beyond the accuracy of the theory, since 
the expression (1) for the free energy approximate, and we 
must turn to experiment. The effect of the pion condensate 
on the single-nucleon absorption of pions by nuclei has been 
investigated by Troitski'i, Koldaev, and Chekunaev.' But 
such an experiment is crucial only for structures with long- 
range order. An isotopic-spiral type of structure' can be 
sought in experiments by the method of double charge ex- 
change between pions. The appearance of latent itinerant 
antiferromagnetism in metals, as well as of a structure of the 
isotropic-glass type in nuclei, leads to the decrease of the 
mean free path of the Fermi quasiparticles. In a solid this can 
manifest itself as a sharp increase in the resistance at low 
temperatures. 

4. A characteristic of the phase transition in question is 
that the appearance of an order or disorder parameter is not 
accompanied by particle localization. The spin or isospin 
density nodes become localized. In this case, for underdevel- 
oped structures, the number of nodes is much lower than the 
number of particles. A similar phase transitions has been 
considered by Kirzhnits and Nepomnya~hchii.~ Another 
characteristic of the transition is connected with the fact that 
the melting curve n = n, (T )  is not a line of absolute instabilty 
of the homogeneous phase. Therefore, the situation is more 
complicated than the case of ordinary second-order phase 
transitions, in which there is a narrow region around the 
transition point where the fluctuations are important, and 
outside which the mean-field approximation is applicable. 
The crystalline and liquid phases compete in a broad (n,T) 
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region, where one phase is stable and the other is metastable. 
The main difficulty is connected with the search for the tran- 
sition line and the choice of the competing phases. 

The properties of the homogeneous phase turn out un- 
expectedly to be interesting (Sec. 5). Depending on the rela- 
tion between n - n8 and T, the system turns out to be in one 
or another of qualitatively different states, manifesting the 
properties of a quantum or classical liquid. Systems with a 
vector order parameter will be considered in detail in subse- 
quent publications. 

2. BASIC EQUATIONS 

1. The long-range interaction that occurs in a neutron 
medium is connected with ?ro-meson exchange, and is char- 
acterized by the static potential 

V(k) =-f(o,k) ( ~ k ) l ( k ~ + r n ~ ) . ,  h=c=l.  

The frequency dispersion of Vcan be neglected since the 
characteristic frequencies of the problem w2g&:gm2. The 
pion excitation spectrum in the medium coincides with the 
poles of the pion distribution function D: 

D (k, o) =-f (a,k) (azk)/ [kZ+m2+k211 (k, a)]. 

For the polarization operator II(k,o)  we can use the 
following expansion: 

A wavy line in (2) represents the function D; a continuous 
line, the neutron Green function G; and a line with an aster- 
isk, the nonequilibrium "trial" pion field r, = WA,. The k 
dependence of the spin vertex r is determined by the form of 
D: A, = k y ,  . Besides the explicit dependence o f n o n  D and 
7, there exists an implicit dependence through the chemical 
potentialp. The value ofp as a function of r and D is fixed by 
the relation between the density and the single-particle 
Green function G. We can also expand Gin power of G and r :  

The equilibrium value of the anomalous vertex T is found 
from the consistency condition: 

The heavy ring in (4) represents the neutron spin density with 
allowance for D and T. In the homogeneous phase, because of 
the tensorial character of the one-pion exchange, r = 0. 
Thus, the diagrammatic expansions (2)-(4) constitute a sys- 
tem of nonlinear equations for the determination ofZ7, r ,  and 
D. Let us emphasize that these equations are not expansions 
in powers of the coupling constant f 2. We shall take account 
of only those effects which are important for the phase tran- 
sition. This means that we should retain those diagrams in 
(2)-(4) which are "amplified" in the vicinity of the phase 
transition point by the small denominator n - n,, and dis- 
card the rest. In order for the model to be correct, we must 
"truncate" Vat momenta k-p,. If we cut off the expansions 
(2)-(4) at the first terms, we shall have the Thomas-Fermi 
approximation; the next terms are connected with the fluc- 
tuations. It is found that the phase transition occurs when 
the first fluctuations are switched on and the subsequent 
ones are still small. The expansion terms written out in (2)- 
(4) are sufficient for the solution of the problem. Notice that 
it is precisely this fact that made the exact solution of the 
problem in the AP4 model possible.2.3 An analysis of the ap- 
proximations is carried out at the end of the paper. 

2. The Eqs. (2)-(4) can be significantly simplified as a 
result of the fact that, in terms of the parameter m/p,( 1 the 
pion field T is a long-wave field, and therefore the character- 
istic momenta transferred via the wavy lines in (2)-(4) are 
small: k42pF. This makes it possible to separate the 
integrations over the pion and nucleon variables. We can 
then make the fermion loops in (2)-(4) contract to a point, 
and consider them to be local, their magnitude determining 
the .n.n interaction via the excitation of the medium. The 
spatial and frequency dispersions of the pion are determined 
largely by the plane-polarization operator 17, in (2). As for 
the quantities II ,, in (2) they can be considered to be con- 
stants in the variables k and w, but functions of r ,  n, and T. 
They should be taken into account beside (n - n,)/n,, but 
can be neglected in comparison with unity. Taking into con- 
sideration the expression 

for )7, for small k and w,  we parametrize the D function: 

In (5) we have introduced the variables n = k/ko and t = w/ 
E ~ ;  E~ = 2koup/?r. The momentum ko is found by minimizing 
thequantity k '[I + f 2Z7(k,0)] withrespect tok 2. Thequanti- 
ty 6 is defined as 
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It is precisely this characteristic of the system that is 
most sensitive to density and temperature changes. As for 
the quantities k g and g, they depend weakly on these varia- 
bles: 

k o Z = 2 ~ ~ p m < p F Z ,  yZ=kO2/12pp2. 

In the mean-field approximation, when r = 0, 
TZn2 t z =  n'(T)-n n: (T) =n: (0) (I + -) . (6)  

3nC(0) ' 4sp2 

The function n:(T) determines the phase-coexistence line in 
the mean-field approximation: n = n:(T). The critical den- 
sity n: (0) can be expressed in terms of the dimensionless 
coupling constant 2 figuring in (5): 

g,Zm2=3p,2 (g,3- I)', g?=f pcM/n2, n, (0) =p,3/3nZ. 

On account of the smallness of m2/pf, the quantity gf - 1, 
and we can set g2 = 1 in all the quantities that are insensitive 
to its precise value. Notice that the parametrization of D in 
the form (5) differs from the one adopted in the literature.' 
The point is that the meson system of units used in Ref. 1 is 
inconvenient here, since the characteristic energy scale in 
the vicinity of the transition point is much smaller than not 
only m, but also&,. The quantity wg in Ref. 1 differs from { g 
in (5) by a factor -p,/m. 

3. The quantity {g has the meaning of a dimensionless 
bare roton gap for the diffusion spectrum of pions. This fol- 
lows from (5); D has, when analytically continued from the 
right semiaxis of w ,  a pole at 

If {i > 0, i.e., if n < n:, then this pole is located in the lower 
half-plane under the branch cut in the unphysical sheet of 
thew plane. But if { < 0, the pole lies on the physical sheet 
in the upper w half-plane, thus indicating that the system is 
unstable when n > n:. To determine the dependence of the 
true roton gap{ on n and T, let us first determine the quanti- 
ties 17 in (2). These quantities can be factorized with respect 
to the parameter k /4pi 1 : 

1 
Hi=ILB, Hz=- 3 111, 

,-, 

In (7)A4 is the fermion ring with four external pion lines, and 
is a slowly varying function of the pion momenta: 

The quantities 17, and 17, can be computed in the same way: 

nl=h r, (Ak,A-k,), 
k. 

The dependence of 17, on the angle between k and the 
reciprocal-lattice vectors ki is due to the tensor character of 
the one-pion exchange and the noncommutability of thespin 
operators. For this reason, 17, +&, 4 #n,, and the roton 
gap { depends on the angle between k and k,. But for the 
three-dimensional lattice, which, in the mean-field approxi- 
mation, corresponds to the minimum energy,' this depen- 
dence disappears, and 17, = - 4 / 3 .  The relation connect- 
ing { with A and D follows from the expressions obtained: 

We have, in deriving (8), also taken into account the depen- 
dence of the chemical potential on D, T, and n: 

The relation (9) follows from the relation between p and G: 
thed 4p integral of the diagonal-in the spin and the momen- 
tum-G is equal to the mean density n, =, . It is natural that 
the scalar quantity p depends on the square of the pion field 
A. The quantity A, in (9) is the fermion ring with three exter- 
nal pion lines, and A in (8) can be expressed in terms of A, 
and A,: 

In the Ap4 model the dependence of p on the pion field is 
neglected, and the effect of the noncommutability of the spin 
operators also gets lost; therefore, in this model A = 3A4/v. 

4. Let us introduce the following convenient-for whd 
follows-notation: 

Then (8) is an equation for the determination of { ': 

The quantity a2 has the meaning of a dimensionless pion- 
field amplitude and the quantity @ is connected with the 
fluctuations. To determine it, we need only compute the in- 
tegral in (7). The sum over the frquencies w, in (7) is comput- 
ed, using the standard procedure: by going over to integra- 
tion over w. Let us, omitting the computations, give the 
result: 

Since the integral in (7) formally diverges, it is necessary to 
carry out a substraction procedure, which only renormalizes 
the quantity n: (0), i.e., shifts the curve n: ( T )  as a whole. The 
quantity @ is normalized by the following condition: at 
T = 0, @ - 6; the parameterp in (1 2) is small [as small as (m/ 
p,)3'2: P = 7 & , ~ / 6 & ~ p ~ .  At low T the value of @ is deter- 
mined by the quantum fluctuations, since the quantity J ({ ') 
in (12) is small for T - 4 . J =  Z - ' T ~ / ~ ~ E , ~ { ~ .  At high T the 
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dominant contribution to Qb is made by the classical fluctu- 
ations: 

In the classical limit, (1 1) coincides, when a2 = 0, with the 
analogous equation obtained by Brazovskii in Ref. 3. The 
expression (13) can also be obtained by retaining in the sum 
over the on in (7) only the leading term with w ,  = 0. Notice 
that we can choose the scale of the quantities 6 2 ,  <:, and T 
such that the parameters B and E, will not enter into the 
equation for 6 '. 

3. THE FREE ENERGY 

1. Let us now proceed to determine the equilibrium val- 
ue of r from (4). The computational procedure is the same as 
for the derivation of the equation for 6 2. The optimal three- 
dimensional solution has in the coordinate representation 
the form 

* ( r ) = 2  ( +) '* 2 { k i  sin k,.+k, sin krr+k, sin kg), 

where the k, are three orthogonal vectors: Iki I = k,. Using 
the values obtained above for 17,, , we find from (4) the con- 
sistency condition for the field amplitude a2: 

go2+@ ( t2 )  + (1-62)a2=0 or E2=6Za2. ( 14) 

The parameter S depends on the type of lattice: for the 
three-dimensional lattice S = 3/28; for the one-dimension- 
al, 6 : = 1/28; and for the two-dimensional, S : = 5/56. For 
a 2 g  1, when the pion field is weak and the next harmonics in 
the expansion of A(r) in terms of the reciprocal-lattice vec- 
tors need not be taken into account, the equation for a2 is 
closed on the sphere I k 1 = k,. The dependence on the type of 
lattice has a purely combinatorial origin, and affects only the 
quantity S 2. The quantity S is small, and the consistency 
condition for a2  coincides with the equation for 6 when 
6 = 0, and, as can be seen from (14), the simultaneous solu- 
tion of (1 1) and (14) should yield the value f = 0. In order to 
understand the cause of the smallness of 6 2, let us determine 
the dependence of S on the parameters of the system. For a 
three-dimensional lattice 

62=3A,/2 (5A,+Asvln) =A,/ (2vA). (15) 

Thus, the smallness of S is due to the weak nonlinearity, 
which arises as a result of the interaction of the pions via the 
excitation of the medium. When A, = 0, we have a theory 
that is linear in the pion variables, and the instability is eli- 
minated by the redistribution of the nucleons in the conden- 
sate fields, a redistribution which leads to the decrease of the 
chemical potential and the Fermi momentum and stabilizes 
the system. As can be seen from the expression (10) for the 
effective value of A, the quantity A #O when A, = 0. This 
fact, which is unexpected for the phenomenological ap- 
proach, leads to a number of interesting consequences. The 
actual small parameter ofthe theory is notp- (m/pF)3'2, but 
6 2fl 2; this parameter is small even when m -p,. As can be 
seen from (14), the value of the roton gap f is small even at 
points far from the supercritical region with a highly devel- 

oped condensate. As will be shown below, the smallness of S 
leads to a very low pion-lattice melting point. It is precisely 
this parameter which makes the phase transition a nearly 
second-order transition: even when m -p, we have a2( 1 on 
the phase-coexistence line. On the face of it, it appears that a 
consistent allowance for the interaction of the nucleons can 
greatly affect the magnitude of 6 and change its sign. But 
perturbation-theory estimates show that this is not case, and 
the sign of8 is surprisingly stable. In particular, the magni- 
tude of S is not affected when allowance is made for the 
weakening of the pion-nucleon vertex by a factor 
(1 + q-')-I (Ref. 1). Let us emphasize that the smallness of 
S is not a consequence of the allowance for the fluctuations: 
this fact is noticeable even in the mean-field approxima- 
tion.'' Below we shall consider S to be a free parameter. 

2. For the analysis of the phase transition, the equations 
for 6 and a2 are not sufficient: we must also derive an expres- 
sion for the free energy F. The quantity Pcan be found from 
(14), since it is known from general principles that this equa- 
tion determines the extremum of F. Therefore, we find from 
(14) with allowance for the relation 

that 

It can be verified that the variation of F with respect to a2 
leads to the condition (14). The constant E, in (16) is deter- 
mined from the requirement that the density derivative of F 
at a fixed value of T give the correct value of the chemical 
potentialp, (9): E, = 27n,~,/7. The quantity Fo in (16) is the 
free energy of the ideal Fermi gas and the value of J(6 2, is 
given by formula (12). The direct calculation of F through 
the summation of the ring diagrams is complicated. This is 
done for the homogeneous (a2 = 0) phase in the linear 
(A, = 0) theory in Ref. 7, where the analogous problem for 
He3 is considered. It can be seen from (16) that, when the 
field a2 appears, the functional dependence of Fon the roton 
gap does not change, but 6 becomes a function of a2 in ac- 
cordance with (1 1). 

4. EXACT RELATIONS 

1. Let us show that the system is stable against small 
variations in the field a2, and that the pion field can start out 
only from a finite value, discontinuously. To do this, let us 
expand F in  powers of a': 

The derivatives of Fwith respect to a2 can be found from (1 6) 
if the relation (1 1) between lj and @ is taken into account: 
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The quantities f and @ have been referred to the homogen- 
eous phase, i.e., the roton gap is the solution to the equation: 
f = f + @. AS f decreases, the coefficient attached to a4 
changes sign before f vanishes. This can be seen from the 
expression (12) for @. At low T, @ - f ,  and @ ' diverges like 
1/6; the divergence is even stronger at high T: @ ' - 1/6 3. 
Notice that @ is a monotonic function of f 2: @ ' < 0 and 
@ " > 0; therefore, the sign in front of a6 in (17) is always 
positive. At low T, F "  has a finite limit at {-&;.at high T, 
F" -6 4. Therefore, for T 4  the terms written out in (17) are 
sufficient for the determination of the optimal value of a2, 
but at high T such an expansion is sufficient, and the exact 
expression (16) for F should be minimized. The physical 
cause of the change of sign of F " is the same as in the pheno- 
menological theory. The second variational derivative with 
respect to a2 of F is proportional to the effective-interaction 
amplitude r,,, which changes sign as 6 4 .  For the one- 
dimensional lattice in the scalar Rp4 model, 6 = 1/2 and 

Fu/E0= ( 1 + 0 ' ) / 2  (I-@'). 

At T=O 

FNIEo= ( E - p )  /2 (g+p) ; 
at high T (Refs. 2 and 3) 

2. For the determination of the entropy and the com- 
pressibility of the system, it is convenient to eliminate @ 
from (16), using Eq. (1 1). For the homogeneous phase F, has 
the form 

For the phase with a pion condensate 

In computing the T derivatives ofF,,, we need to take into 
account only the explicit dependence of these quantities on 
T, since the variations ofF  , ,  with respect to f :, are equal to 
zero on account of Eqs. (19) and (19'). We have 

P depends on T also through the quantity l i ,  (6), but this 
dependence is significantly weaker than (20), and we shall 

not take it into consideration. The entropy of the homogen- 
eous phase is greater than that of the T-condensate phase at 
all n and T, since the phase transition leads to an increase in 
the roton gap, while S, as can be seen from (20), decreases 
with increasing 6 2. Thus, the entropy of the system is great- 
est on the transition line, and its decrease occurs discontinu- 
ously with heat release. At low T the entropy - T. This can 
be seen after substituting the low-temperature expansion for 
J into (20): 

Near the transition line the quantities M 7, are large (as 
large as I/{). This result is obtained in Ref. 2 by a direct 
computation of the contribution of the pion to the self-ener- 
gy part of the nucleon. At high T the entropy S has the form 

The first integral in (21) does not depend on < 2; into the 
second we can substitute the high-temperature expansion of 
J: 

In the region T < ( ~ / ~ , ) ~ ' ~ E ,  the dominant term in the 
expression for the entropy is - T 'I2. , at T >  ( m / ~ , ) ~ ' ~  cF the 
fluctuations are unimportant, and S-So. Thus, in both 
phases the entropy and the specific heat are linear functions 
of the temperature Tin both the low and high (T>PE,) tem- 
perature regions. As shown in Ref. 7, this is due to the exis- 
tence of well defined quasiparticles near and far from the 
Fermi surface. In the medium-T region the thermal fluctu- 
tions destroy the quasiparticles, andS- T 'I2. In the classical 
region the difference between the entropies of the phases at 
small 6' stems from the small correction -6 in (22). This 
means that the entropy jump is small at high T: ASgS. 

3. Let us now ascertain how the compressibility of the 
system depends on n and T. From (18) and (19) we can deter- 
mine the chemical potentials p, and p2 of the phases: 

1li,z=~a{1-'/r ( E : , 2 - E o ~  ,>. (23) 

It can be seen from (23) that thep jump is negative, i.e., that 
p2 <p, ,  since f : > 6 : .  For the velocity of sound we have 
from (23) the expressions 

The phase transition leads to a decrease in the velocity of 
sound: 

5. THE PROPERTIES OF THE HOMOGENEOUS PHASE 

The properties of the homogeneous phase are deter- 
mined by the relation between the roton gap and the tem- 
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perature. Let us analyze Eq. (1 1) for 6 in the case when 
a2  ='O. It  is convenient to do this is the variables. 

After such a choice of scale for the quantities 6 2, 5 i, and T, 
the equation for the gap A does not contain dimensional 
quantities: 

1. In the quantum case, i.e., for A)6, we can treat the 
quantity J in (25) as a small correction, and solve Eq. (25): 

The region A,) 1 corresponds to the mean-field approxima- 
tion, i.e., for 

In the region Ao(0, i.e., for (n: - n)/n;((m/~,)~ 

The fluctuations significantly alter the bare dependence 
A,-(n: - n)/n:: the true roton gap depends quadratically 
on n: - n. The mean-field approximation has no region of 
applicability when P- 1. According to (27), 'the region 
A, > 8 'I2 corresponds to the quantum case when A 0 4  and 
8 4 .  This is due to the fact that the limit for A 4 , 6 + 0  of 
the quantity J in (25) depends on the relationship between A 
and 6. 

2. In the classical case the gap is smaller than T and A is 
the solution to thn equation 

There are two characteristic regions; in the first 

A=(n0)'/l7 OBI7 l A o I  <<@'/a. (28) 

In this region the roton gap does not depend on the density. 
The condition A /6< 1 is fulfilled better at high 6 values: A / 
8-6 -'I3. For m -p, the region 6)l corresponds to the 
temperature region I ~ E ~ ,  where the neutrons can no longer 
be considered to be degenerate. In the second region 

~ = n ' 0 ' / ~ , i ,  Ao<O, ( A o ]  >0"', I A. I >0"$. (29) 

This region for the mean-field approximation is supercriti- 
cal: A, < 0 when n > n:. The limitations [A,/ > 8 'I2, 8 2'3 can 
be combined with the requirement that 6 < 1; therefore, (29) 
is valid in the relativistic case m -pF, T ~ E , .  

FIG. 2. 

3. There exists a third interesting region where 6 4  1 and 
Idol (6 'I2: 

Here A, is a root of the equation J ( A  ) = 1; A,- 1 and the 
number c,- 1. In this region A = 62, for 6 4 ,  A , 4 .  Thus, 
in the semiquantum case the gap depends weakly on the den- 
sity, and is proportional to the temperature. The relation (30) 
is valid near the line, i.e., the boundary separating the re- 
gions of applicability of the quantum and classical statistics 
for the pions. This line is characterized by the cancellation of 
the contributions of the quantum and classical fluctuations. 
For the real case m-p, the semiquantum region corre- 
sponds to T < E ~ ,  i.e., it is most interesting region. The strong 
singularity of Eq. (25) at A + 0 , 8 4  is, of course, fictitious. 
As will be shown below, all this region belongs to the crystal- 
line phase of the material, for which all the quantities are 
single-valued, and do not depend on the relationship 
between A and 8 for A 4  (see Fig. 2). 

4. At -A the system contains real pion excitations. 
Their distribution function n(k) is characterized by a delta- 
function peak on the sphere k = k,: 

Let us determine the total pion density: 

nn=-- 
k03 I dn - T m 9n ppS -nnr---, nN=- 

E,, (2n) ~Z+yZ(nz-I) '  80 pa S 3nZ ' 
(31) 

The pion density n, increases with decreasing{. The quanti- 
ty n,/n, = c, has the meaning of a pion concentration (the 
number of pions per neutron). Neutrons are scattered by 
classical pions in the same way as they are scattered by static 
magnetic impurities. In order to show this, let us determine 
the decrement of the neutron-like quasi-particles: 

G (p) = (8-E,+iel sign (8) )-'. 

The quantity E, can be expressed in terms of the imaginary 
part of the mass operator 8: 

For E > A, we can retain in the sum over the frequencies the 
dominant w, = 0 classical term, and take out the function G 
from under the integral sign at the point k = k,: 

8 i ~ n n / ~ = z / ~ ~ , ~ ~  

We have obtained a natural result: the quantity I/&,, which 
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has the meaning of the time between collisions with the 
"pion impurities," is proportional to the density v of states of 
the Fermi surface, and inversely proportional to the pion 
density n,. The next orders of perturbation theory in terms 
of the pion concentration c, can be found by means of the 
usual cross technique." Let us emphasize that the analogy 
with impurities is almost total. In the homogeneous phase 
the sphere k = ko is uniformly populated by pions, and the 
scattering on them occurs in random fashion. In the inhomo- 
geneous phase the pions separate out and form a condensate 
at six (for a three-dimensional lattice) points on the sphere, 
and the scattering on them occurs coherently. As will be 
shown below, not all the pions precipitate out into the con- 
densate: there remains a classical pion gas in its background. 
The density of this gas decreases with decreasing T, and van- 
ishes at T = 0. The pion-number conservation law is approx- 
imately observed in the process: the number of condensate 
pions + the number of pions in the gas is a function of only 
n - n,, and does not depend on T. This law can be illustrated 
by writing down the diagrammatic expression for { ': 

The first diagram represents the density of the condensate 
particles; the second, that of the epicondensate particles. 
Since the pions are soft at all n and Tin the crystalline phase, 
and 6 2({ i, the total pion density depends only on { i, i.e., 
on n - n,. In the quantum region 6 > 0, and the number of 
epicondensate pions is negative. This is not surprising, since 
pions are produced virtually at T = 0. In the semiquantum 
region the total density of the real and virtual pions is equal 
to zero. 

5. Thus, the allowance for the fluctuations has led to the 
appearance of a qualitatively new phenomenon: the homo- 
geneous phase is stable at all n and T, since the equation for 
the roton gap A > 0 possesses solutions. In the far supercriti- 
cal region, at low temperatures, this phase is metastable, and 
is a supercooled liquid. For the classical case, this result was 
first obtained by Braz~vskiY,~ and has been reobtained by 
Bunatyan and Mishustin.12 

6. THE PHASE TRANSITION 

To determine the phase-coexistence line n = n,(T) and 
the melting points T = T, (n) of the lattice, we must compute 
the roton gapg t2 for each point ofthe (n,T) plane, and deter- 
mine the F , ,  from (18) and (19). By comparing F, and F2, we 
can determine the transition line: F2 < F,. Such an approach 
turns out to be too complicated, and we shall limit ourselves 
to the consideration of the limiting cases, using an expres- 
sion for Fin the form (1 6), which includes the explicit depen- 
dence of F on the field amplitude. A significant simiplifica- 
tion arises because the curve n = nl(T), which determines 
the density n, at which the metastable inhomogeneous phase 
first appears, is close to the curve n = n,(T). As for the curve 
n = n,(T), we can determine it from the consistency condi- 
tion (14) without computing the free energy. Thus, we can 
give a reliable estimate for n,: n,(T) > nl(T). 

The low-temperature expansion 

1. The expression for F gets simplified at T = 0: 

The equation for the roton gap can also be solved: 

E - - p +  (pZ+E02+a2) "'. 
Let us again use the fact that we are free to choose the scale, 
and perform the analysis in the variables A, A,, and p2: 

A=kVpz, Ao=E0Q" cpz=az/p2. 

In those variables we obtain from (32) the expression 

(33) 
Thus, in the variables q, andA, the expression for Fis univer- 
sal; the dependence on fl enters only as constraints, p2( 1/ 
B anddo( l/fl 2, which are connected with the inapplicabil- 
ity of (33) at high pion field values (i.e., for a 2 -  1) and at 
points far from the transition point (i.e., at points where p: 
- 1). The region 1 (A0(1/8 corresponds to the mean-field 
approximation; it is essential that the fluctuations be taken 
into account in the region A,( 1. Let us use the fact that S is 
small, and expand SF for A,( 1 and p2( 1 : 

8F/EOi3'='/i2 (A~+cpz)3-i/z62~4-'/zAo2. (34) 

The optimal p, is found from the condition dF/dp = 0: 

cpo=6* (6z-A0)'".  

Let us also give the expression for Go, that minimizes the 
exact expression (33) for F: 

i$,(i--6" ==6*[62-A0( i -62 ) ]  '". 

A comparison of p, and Go shows that indeed the smallness 
of S causes them to be close in value. Below we limit our- 
selves to the analysis of the aproximate expansion (34). For 
A, < 6 ', Fpossesses two extremal points, one of which corre- 
sponds to the minimum, and the other to the maximum, ofF. 
Ford, <A, <a2, where A, = 2flS2/(2 + d 3 ) ,  the crystal- 
line phase is metastable, and at A, = A, there arises discon- 
tinuously a pion field of strength a f  = f l  'p f ,  where p f 
= 6S2/(2 + d 3 ) .  

Thus, the quantum fluctuations facilitate the phase 
transition, which occurs at n, < n:: (n: - nc)/3n: = A,fl '. 
The density at which the new phase first appears is close to 
the equilibrium density S - A, = S2/(2 + d3)2(S2. Quali- 
tatively, this is also the case when the thermal effects are 
taken into account; therefore, the function n, ( T )  for low T 
can be approximately determined from (14): 

Let us, considering the term - T 2  to be a small correction, 
find 9,: 

The metastable state appears at A,(T) = S2 - T2/TiS6. 
Now we can estimate n,(T): 
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n, ( T )  -n, (0)  (1+T2/T,7) ,  ~ , - - ~ ~ 6 ~ / ~ ~ ~ ~ 0 , l e ~ r n ~ / ~ , ~ .  

The fluctuations significantly modify the bare temperature 
dependence n = n:(T), since TI<&,. Even when m -pF, the 
temperature T I  -0.1 E F .  Let us also give the density depen- 
dence of the melting point: 

Tc ( n )  =TI [ (n-nc (0 )  )In, (0)  1 '", n>n, ( 0 ) .  

2. To ascertain how the thermodynamic quantities vary 
on the melting curve, we need only find the roton gap as a 
function of n and T, and substitute its value into the formulas 
(20), (23), and (24). Let us limit ourselves to the consideration 
of the T-tO limit. For the homogeneous phase 

For the condensate phase: 

The roton gap changes sharply at the transition point: A,/ 
A,  = ( 1  + V3),. For the p jump we obtain from (23) the 
expression 

~ , ( n ~ ) - ~ ~ ( n ~ )  27 15 = -- p Z , 4  - 
EF 7 2 + y i '  

Let us given the density dependence of the velocity of sound: 

At the transition point u: is small: u: (n,) ~ 0 . 0 3 ~ : ;  let us also 
give the value of u: at the "old" critical point n: and in the 
Thomas-Fermi approximation: 

At the phase temperature point, the quantity u: is close to its 
minimum value ui = (5/14)u:. In the condensate phase, this 
value is, up to the term -8 ,, the maximum value, and is 
attained at points far from the transition point. The sound 
velocity jump is high: Au2- u:. Let us note that p jump is 
small, i.e., as small as S ,, and that the u2 jump does not 
contain this parameter at all, being dependent only on the 
type of lattice through 6 '. In the mean-field approximation 
(i.e., for p = O ) ,  the jump Ap = 0, and u2 no longer depends 
on the density. Since the condensate phase, at the moment of 
its appearance, has u: = - CQ, (35), it is thermodynamically 
unstable, i.e., it collapses. 

3. Let us now determine the dependence of M t, on n: 

Mi' (12) 36 eF2 -=I+ + A -  b =TF' n<nc, 
M 

Both M 7 and M :  are maximal at the transition point: 

The entropy jump can be found in terms of these values: 

For the physically interesting m -pF case, quantity M */M 
attains a value of lo2 at the transition point. From the ex- 
pressions for u2 and M * we can, using the formulas of the 
theory of the Fermi liquid, determine two harmonics Q0 and 
@, of the neutron-like quasiparticle scattering amplitude. In 
the vicinity of the transition line @ , )  I,@,> 1, with 
@, = @ , / 3  in the region of applicability of the mean-field 
approximation. This result is obtained in Ref. 7 through a 
direct computation of @. Let us emphasize that the Fermi 
surface does not disappear at the transition point, and the 
Landau theory of the Fermi liquid remains valid there, but it 
has a narrow region of applicability: T<e# 284; for m -pF, 
T<10-2&F. 

The .high-temperature expansion 

1 .  The contribution of the thermal fluctuations begins 
to predominate at T >  ~ ~ ( r n / ~ ~ ) " ~ S ~ .  The fluctuations melt 
the lattice, and the phase transition occurs at a point far from 
the "old" supercritical region n(T)  > n:(T). The mean-field 
approximation does not possess a region of applicability 
right up to T-E,.  Neglecting the quantum fluctuations, we 
find from (16) that 

The roton gap is a solution of the cubic equation 

cZ=Eo2f a2+ 2a&, a=7nTm/12eFp,. 

In (36) we have retained only those terms which depend on 
the field amplitude a2. It is now convenient to choose the 
active variables in the form 

The minus sign in the definition of Z is connected with the 
fact that the transition occurs at n > n:. From (36) we find in 
these variables that 

Let us, to begin with, consider the supercritical region, 
where the mean-field approximation is applicable to the con- 
densate phase. We obtain 

575 Sov. Phys. JETP 56 (3). September 1982 A. M. Dyugaev 575 



Let us compare this value of SF2 with SF, for the homogen- 
eous phase, which is metastable at points deep in the super- 
critical region. For the homogeneous phase rl = O,X< 1, and 
we can approximately solve the cubic equation (37): 

On account of the smallness of S 2, the values of SF2 and 
SF, are close; therefore, it is natural to expect that the transi- 
tion will occur at Z,) 1, when the qunatities SF, and SF2 are 
equal. In order to give an estimate for Z,, let us first of all 
find the value of Z, at which the new phase first appears. In 
the variables 7 and Z, the equation for the equation for the 
optimal 7, has the form 

2 
Z= (1-6') q: + - . 

qo6 
Taking the smallness of 6 into account, we obtain the solu- 
tion to this equation in the vicinity of the threshold for ap- 
pearance of the new phase: 

The estimate for Z, has the form Zc > Z,; in fact, Z, turns 
out ot be large: 2,-7. This enables us to approximately 
solve the equation (37) for X, and obtain for F a  simplified 
expression that is applicable in the vicinity of the transition 
line: 

The expansion (40) for small v2 coincides with the general 
expression (1 7): 

By rewriting (40) in the form 

we can give a more accurate estimate: Z ,3 = 32/S2, and Z, 
andZ, are close. Now from the relation Zc = - 6 :/a2l3 we 
can find the transition line: 

Since Z, ) 1, T3 is low; T, is equal to E, only in the uninterest- 
ing region m/pF < where the largeness of Zc is can- 
celed out by the smallness of m/p,. Thus, the T 2  term in (41) 
can be neglected when T < E ~ .  The melting point of the lattice 
is low, i.e., as low as T,: 

for m-p,, T , - ~ ~ ( 1 0 - ~ - 1 0 - ~ ) .  
2. Let us estimate the jumps that occur in the principal 

characteristics of the system on the melting curve. The pion- 
field jump af = a2I3zc/2 increases like T~ ' , .  For compari- 
son, let us give the value of a2  on the melting curve in the 
Thomas-Fermi approximation: a2(n = nJ = a2l3z,/ 

(1 - S2), . The factor-of-two discrepancy between these two 
values is due to the fact that, on the transition line, only one 
half of the pions drop out into the condensate; the other half 
is in the gaseous phase, and has a roton gap (T. Although 
the thermal fluctuations shift the transition line a great dist- 
nace away from n:, the quantity a2 increases with increasing 
T. The jump in the roton gap is large on the transition line: 

For comparison, we give in (43) the value of [ : in the mean- 
field approximation. The density of the classical pion gas in 
the background of the condensate can be found from the 
formula (3 1) .  Since, according to (43), the roton gap increases 
discontinuously by a factor of four, the density of the epicon- 
densate pions decreases by a factor of two on the transition 
line. This is a manifestation of the pion-number conservation 
law discussed above. 

3. The p and S jumps are small on the transition line: 

Let us recall that the dominant term in the expression (22) for 
the entropy is - T 'I2  or T; therefore, AS<S. The sound ve- 
locity u2 depends only on the parameter Z, and not on n and 
T separately: 

The expression (44) gives the implicit dependence of u2 on 
the density and the temperature. It follows from (44) that the 
curve Z = const are constant-compressibility lines, sincex, 
andx, depend only on Z. The melting curve Z = Z ,  is such a 
line; therefore, the compressibility is constant on it. Since the 
quantitiesx, andx, are small on this curve, the sound veloc- 
ity jump is also small: 

Let us give the function u: in the vicinity of the thresh- 
old Z z Z , :  
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5 
uz2 (Z) = - uo2 

14 

4. It follows from the formulas (41) that the critical den- 
sity is already two times higher than n,(O) at a temperature 
T-0. I&,. Since the analysis is based on the assumption that 
(n -'n,)/n: < 1, we cannot consider the high-temperature 
region T >  0. I&,. The energies of the crystalline and homo- 
geneous phases are close; therefore, the lattice melts at T ~ E ,  
in the region where the neutrons are still degenerate. The 
system does not undergo any drastic changes on the melting 
curve: the jumps in all the thermodynamic characteristics 
are small. 

We were not able to obtain the analytic solution in the 
region of medium T. The melting curve for these Tin Fig. 1 
was obtained through extrapolation from the low- and high- 
temperature regions. Since cancellation of the contributions 
of the classical and quantum fluctuation to the free energy 
occurs here, allowance for even the weak effects that are lost 
in the Thomas-Fermi approximation can greatly affect the 
character of the transition. 

7. ANALYSIS OF THE APPROXIMATIONS MADE 

To determine the region of applicability of the theory, 
let us write down the diagrammatic equation for the roton 
gap: 

We took only the first two diagrams into account. The next 
terms are important in the vicinity of the singular points on 
the sphere I kl = k, when k = k,. Here the singularities of 
the two D functions are closer to each other, and these dia- 
grams are large. Let us determine the 'ITT scattering ampli- 
tude r,, for the case in which in one channel the momentum 
transfer k = 0 and in the two others k- k,: 

There is no need to compute the quantity L (0) in (46): it is 
connected by an identity with the function @: 

The equation for the gap f '(kt)={ : now has the form 

The correction is a maximum, and is equal to 5/42, 
when @ ' = - co . This number determines the scale of the 
anisotropy of the roton gap 2; the cause of its smallness is 
the same as for the quantity, 6 2: the first two diagrams in (45) 
are proportional to the total A, which is large; the correc- 
tions contain the small quantity A,. Let us now give a sym- 
bolic estimate, unrelated to this smallness. Since the region 
k- k, is integrally small, and 6 2, averaged over the broad 
range of angles of the vector k, enters into all the equations, 
we should compare the third diagram in (45) with the second 
fork#k, .For  T=O, when 

the third diagram is small. Then A,L (k - k,)< 1, and the lad- 
der approximation can be used to computer',,. The quanti- 
ty 6 has its minimum value at the transition point, where 
f 2-(m/pF)3. Therefore, for the theory to be applicable at 
T = 0, it is sufficient that the weak inequality m/p, < 1 be 
satisfied. In the classical case, the corrections are small if 

2 > ( ~  /E,) (m/~ , )"~ .  Substituting the minimum value of6 
on the transition line into this inequality, we arrive at the 
criterion ~ ~ & , ( r n / ~ , ) " ~ .  Then, as can be seen from (21), the 
pion concentration c, is again small. 

8. CONCLUSION 

1. In the paper we have considered the effects connected 
with the appearance in a neutronic medium of soft pion exci- 
tations near the phase transition point. The material then 
differs greatly from the normal Fermi liquid. The main re- 
sults of the paper are not related to the smallness of the adia- 
baticity parameter m/p,. This parameter is "expelled" from 
the theory by the transformation of the n and T scales. At 
T(E, the neutrons constitute a cold active medium. Their 
activity is manifested in strong striction effect. Allowance 
for the nucleon-nucleon repulsion at small distances will en- 
hance this effect even more. In a dense neutron gas the inho- 
mogeneous spin structure cannot be strongly pronounced, 
since even in second-order perturbation theory in terms of 
the condensate field a total-density modulation is imposed 
on the system, and this results in an energetically highly 
disadvantageous situation. The difference between the ho- 
mogeneous and crystalline phases is purely superficial: their 
energies are close, which results in a small melting point for 
the lattice. Even at points deep in the supercritical region a 
temperature of several MeV is enough to destroy the lattice. 
A classical analysis is then suitable for the pion gas. The state 
of the pion-excitation gas changes abruptly on the melting 
curve. In the homogeneous phase, the system is in a precon- 
densate state, a fact which manifests itself in the high occu- 
pation numbers n, of pions with k-k,. This essentially 
means that there is short-range order in the homogeneous 
phase. In its properties, the homogeneous phase resembles a 

577 Sov. Phys. JETP 56 (3), September 1982 A. M. Dyugaev 577 



dirty metal with magnetic impurities. The mean-field ap- 
proximation cannot be used to describe its properties, and 
perturbation theory cannot reveal the difference between a 
dense gas and a liquid in which there is short-range order. 

2. Allowance for the finiteness of the system may lead to 
the appearance of qualitatively new effects. In a finite system 
the pion condensate is not a classical, but a quantum, object. ' 
The pion-field fluctuations does not now have such a strong 
influence on the phase transition, since the long-range inter- 
action due to the soft-pion exchange is inevitably cut off at 
distances of the order of the nuclear dimension. Further- 
more, since the energies of all the phases of the material are 
close, even a small surface energy can lead to the lifting of 
this degeneracy. The surface effect is not a weak one: the 
correction -A - ' I 3  should be compared not with unity, but 
with the parameter S '. There exist in an isotropically sym- 
metric medium (i.e., in a medium in which N = Z ) P-conden- 
sate phases in which the spin and isospin densities are modu- 
lated, but the total density is a constant': spiral pion-field 
structures. The striction effect is less important for these 
structures, and they can be highly developed. An effect simi- 
lar to the above-considered thermal effect can manifest itself 
in a finite system. The equation for the roton gap can have 
solutions for which A - 1/R 2,  where R is the nuclear radius. 
The result then depends on the relationship between 
(n - n,)/n, and 1/R *. Such a solution corresponds to a co- 
herence state of the entire system, and is a low-lying collec- 
tive level with pion quantum numbers. 
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