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The masses of the nucleon, the A isobar, and the N *(JP = 3 - , T = I )  resonance as well as the 
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I. INTRODUCTION 

Quantum chromodynamics (QCD) is now becoming a 
universally accepted strong-interaction theory. Therefore 
one of the most interesting and most important problems of 
QCD is a model-free description of hadron mass spectra. 
The QCD sum-rule method, first proposed in Ref. 1, has 
made possible much progress in the description of meson 
properties. This method was extended in Ref. 2 to include 
baryons, and the first results were obtained there on the 
masses ofboth strange and ordinary baryons (see also Ref. 3). 
The present paper continues the investigation of the sum 
rules for baryons. We pursue simultaneously several goals. 
First, refinement of the sum rules obtained in Ref. 2, by tak- 
ing higher-power corrections into account, and demonstra- 
tion, by the same token, of the reliability of the values calcu- 
lated in Ref. 2 for the nucleon mass m, and the isobar mass 
m, as well as of residues in the quark currents p, and A,. 
Second, formulation of a new independent set of sum rules 
from which m, andp, can also be determined, and to check 
the consistency of these two methods of determining m, and 
p,. Third, calculations more definite than in Ref. 2, on the 
basis of the new sum rules, of the mass of the baryon reso- 
nance N *(JP = + - , T = 4). Fourth, demonstration of the 
self-consistency of the results, on the basis of a large overde- 
fined system of sum rules. Fifth, refinement of the ampli- 
tudes of the transition of a nucleon into quark currents, 
which determine the matrix element of the proton decay in 
the grand-unification theory and the asymptotic form of the 
nucleon electromagnetic form factor. Sixth and last, finding 
the magnitude of the quark-gluon condensate 
g, (01 iia,,(A /2)G i, u 10) from the conditions of best agree- 
ment of the sum rules. 

yon charge, isotopic spin, strangeness); p and v are the Lor- 
entz indices; a and fl are the spinor indices and will be - 
omitted hereafter; 7, = q, yo. 

The polarization operator (1) is calculated in the region 
q2 - - 1 GeV2 where, on the one hand, perturbation theory 
is still applicable, a, ~ 0 . 3 ,  but on the other the contribution 
of the nonperturbative effects connected with the structure 
of the QCD vacuum is no longer small. Nonperturbative 
corrections will be taken into account when the operator 
expansion is used. The operator ff,,(q) contains various 
structures (g,,, g,,B, y, y,, q,q,, etc). For the function at 
each structure in the polarization operator we write a disper- 
sion relation 

Expression (2) is written in simplified form, since it would 
actually contain a sufficient number of the subtractions ne- 
cessitated by the divergence of the dispersion integral. If 
however, we apply to (2) the Bore1 transformation proposed 
in Ref. 1, 

all the subtraction terms vanish and we get the equality 

I a f. (M') = -j e-""' Im f ( s )  d s .  
JI 

(4) 
0 

2. THE METHOD Relations (4), written for each of the structure functions of 
We describe briefly in this section the sum-rule method the polarization operator, are sum rules whose left-hand 

for baryons, define the notation, consider the properties of sides are calculated on the basis of quantum chromodyna- 
the baryon currents, and describe the sum-rule saturation mics, and the right-hand sides pheno&enologically. ~xd re s -  
procedure to be used subsequently. sions (4) offer the following advantages over (2): I) absence of 

We consider the polarization operator subtraction terms; 2) stronger suppression, due to the factor 

nw,aB(q) = i  5 e iqz (OIT{~ . ,a  ( x ) ,  ~ v , a ( O ) )  IO)d4x, exp( - s/M 2), of the contributioiGf the heavy intermediate 
( I )  states, so that (4) can be used to study the lightest resonances. 

where T, ,~  is a colorless spin vector made up of quark opera- We consider the following currents 7, with baryon quantum 
tors and having the quantum numbers of the baryons (bar- numbers: 
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where a, b, c, = 1,2,3 are the color indices, C = - C Tis the 
charge-conjugation matrix, and a,, = bi(y, y, - y, y,). The 
currents q and q t  coincide with the currents used in Ref. 2 to 
obtain sum rules for the case of the nucleon and the A isobar. 
The current q,, corresponds to isotopic spin T = ) and to 
total angular momenta J = -5 and 4, so that in the sum over 
the states, in the right-hand side of (4), 

Im lI,,(s)=n 6(~-M,~)(Olq,ln)(nl~~lO), r, (6) 

it is necessary in the case of the current q2, to take into 
account among the single-particle states the baryons with 
T = ) and J = + + , ) +- (nucleon, N * resonance with 
J P  = ) *, etc.). 

We consider first the calculation of the left-hand sides 
of the sum rules. As already mentioned, the strong-intt - ~ c -  
tion constant is quite small in the region lqI2- 1 GeV2 a n ~ ,  
neglecting a,, the principal diagram corresponding to the 
zeroth term of the operator expansion is the simple quark 
loop of Fig. la. The first term of the operator expansion 
(dimensionality d = 3) is proportional to the quark conden- 
state (o~$$Io) with $ = u or d (diagram e of Fig. 1). In the 
case of baryon sum rules, it is the most significant (see Ref. 

2), since it causes the appearance of structures that violate 
the chiral invariance and, in particular, determines the val- 
ues of the baryon masses. From among the operators with 
larger dimensionality, next in significance are the four- 
quark operators $r$$r$ (d = 6), whose contribution to the 
sum rules is described by diagram c of Fig. 1 and, as dis- 
cussed in Ref. 2, its importance is due to the presence of the 
large numerical coefficient - ( 2 ~ ) ~  compared with diagram a 
of Fig. 1. In the vacuum mean values of the four-quark oper- 
ators we shall use the factorization hypothesis (see Ref. I), 
i.e., in the sum over the intermediate states 

we shall retain only the contribution of the vacuum state, so 
that all the four-quark operators averaged over the vacuum 
reduce effectively to (01$$10)~. Besides the operators indi- 
cated above, there appear in the sum rules also two operators 
with dimensionality d < 6, namely g,$u,v (A "/2)G ;, 
$(d = 5) and G;,G;,(d = 4). The most important among 
them are the contributions of the vacuum mean vlaue of the 
operatorg,$u,, (A "/2)G;,$ (diagrams f of Fig. I), which are 
the corrections of first order in 1/M to the structures that 
violate chiral invariance. In the calculation of the polariza- 
tion operator 4 , ( q )  (the left-hand side of the sum rules) we 
shall, using the factorization hypothesis, take into account 
also the vacuum mean values of the following operators with 
dimensionality d>6 :  ( o $ ~ $ $ ~ $ G O )  (Fig. Id), 
(01 $ r$~  210) (Fig. lg), and ( o I $ ~ , $ $ I ' ~ $ $ ~ ~ $ ~ T ) )  (Fig. lh). 
The contribution of the gluon condensate (01 G;,  10) to the 
baryon sum rules was considered in Ref. 4 and, as already 
shown there, turned out to be relatively small. In our calcu- 
lations we shall use the method developed in Ref. 4. The 
contribution of the operators with dimensionality d > 6 was 
not taken into account previously. All the calculations will 
be carried out in the zero-mass quark approximation. It 
must be noted (see Erratum to Ref. 2) that consideration of 
operators with d>5 in the operator expansions calls also for 
allowance for the x dependence of the vaccum mean values 
of the fermion operators (01 E ,  (x)ug(0) 10). In our approxi- 
mation 

p:) <:y) 
where : : denotes subtraction of the perturbative part of the 
average over the vacuum. The last two terms of (7) were 
obtained using the factorization hypothesis. The x depen- 

\----) \----I dence of the vacuum mean value is represented in the dia- 
h grams as emission of a soft gluon by a quark with a small 

momentum. 
FIG. 1 .  Feynman diagrams for the polarization operator. The free ends We use in this paper the following notation for the cor- 
correspond to departure of a soft quark or a gluon to the condensate. relators: 
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(0 I liu 10)=(0 I dd lo>=-0,24 GeV: 

a=- (2 r~)~(O]  liu10>=0,546 GeV: 

=mOZ<OI iiu lo>, moz=0,8 GeV? 

In the calculation of the polarization operator we shall take 
into account the corrections -a," in the principal logarith- 
mic approximation. It can be shown that the currents 
vl,, v2, and v,d are renormalization-covariant, i.e., each of 
them is transformed into itself in transformations of the re- 
normalization group, and their anomalous dimensionalities 
are knowa5 This circumstance allows us to calculate the 
principal logarithmic corrections in the usual manner. 

We denote by y,, the anomalous dimensionality of the 
current vi,  and by y, the anomalous dimensionality of the 
operator 0, (0) in the operator expansion of the T product: 

The coefficients of the functions will then contain in the mo- 
mentum representation the factor 

where a,(q2) is the effective QCD charge at the point q2; p2 is 
the normalization point of the operator expansion. For the 
currents (5) we have5: y,, = - +, y,> = y,, = -& 

We take into account in the sum rules the anomalous 
dimensionalities of the following operators: $$, $$$$, a, 
n- 'G ', and g, $G ;2,, (A "/2)u,, $. For operators with dimen- 
sionality d > 6 the factorization hypothesis is not as accurate 
as, say, for a four-fermion correlator, so that it is meaning- 
less to take into account the anomalous dimensionalities of 
these operator, according to the results of Ref. 1 the anoma- 
lous dimensionalities do not violate the factorization hy- 
pothesis to within lo%, and for the operators $$$$ we can 
set y = 8/9.  The anomalous dimensionality of the operator 
g, $G :, (A "/2)u,, $ is small (see Ref. 6), and we shall there- 
fore set it equal to zero hereafter. The anomalous dimension- 
ality of the operator a,G is equal to zero, since this operator 
is equal, accurate to terms a f ,  to the trace of the energy- 
momentum tensor of the gluon field. In the numerical calcu- 
lations we shall assume a, (q2) = 4?~/91n( - q2/A '), A = 150 
MeV, p = 0.5 GeV. 

We proceed now to consider the right-hand (phenomen- 
ological) part of the sum rules. By virtue of the exponential 
suppression of the large masses, the dominant contribution 
in the right-hand side of (4) is that of the lowest hadron state 
in the channel with the given quantum numbers. The right- 
hand side of (4) will therefore take accurate account of the 
lowest baryon state (in the approximation of infinitely nar- 
row resonances), and all the remaining heavier states will be 
taken into account via a model. Namely, following Refs. 1 
and 2, we approximate the entire remainder by the contribu- 

tion of a continuum that starts at a certain thresholds, = W2 
and is determined by the simplest quark loop corresponding 
to the given structure function (i.e., by the diagrams a, b, and 
e, f of Fig. 1 for structures with odd and even numbers of y 
matrices, respectively). 

The amplitude product (Olq, IR ) (R )i,, 10) in (6) takes 
in the case of resonances with spin and parity JP = 3 * and 
+ * the form 

aipj+ajpa 
( O I ~ i ~ I ' / Z * ) ( i / ~ * l ~ ~ l O ) = - ~ i ~ j ~ ~ v ~ +  ( y p q v - ~ v q p ) q  

f (12) 
where MR is the resonance mass; 1, a ,  and are constants 
defined by the formulas 

Here v(q) is a spinor ((4 - MR )u(q) = 0, Eu = 2MR ); up (q) is a - 
spin-vector ((4 - MR)v, (q) = 0, u,v, = - 2MR, y,v, (q) 
= q, up (q) = 0). Since the current v,, actually corresponds 

by virtue of (5) to J = +, we have A ,  = a, = 0. 
The sum rules should be considered at values of the 

parameter M such that, on the one hand the contribution of 
the higher-power corrections to the rules is small, and on the 
other, the contribution of the model continuum is small. 
These two conditions determine the interval of the allowed 
values of M '. (This interval will hereafter be designated by 
the symbol R.) In the present paper we impose specifically 
the following restriction on the contribution made to the 
sum rules by the continuum and by the higher-power correc- 
tions that contain operators with dimensionality d >  6:l) 
The contribution of the continuum is < 30%; 2) the contri- 
bution of the higher-power corrections is < 30%. 

We introduce the measure S of the agreement of the sum 
rules. To this end we transfer to contribution of the contin- 
uum to the left-hand side and define the quantity 6 as fol- 
lows: 

whereF(M ') = A 'exp( - M / M  ') is thecontributionofthe 
resonance (the right-hand side of the sum rule), and f, (M ') 
andf;(M ') are the left-hand sides of those sum rules to which 
the given resonance contributes. 

It is easily seen that the relative disparity A of the sum 
rules in the region R is connected with S by the relation 
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We minimize with respect to the parameter S the dis- 
parities of the sum rules, and thus obtain the masses and 
residues of the baryons." The fact that several sum rules 
must be reconciled allows us to improve the accuracy with 
which the masses and residues of the resonances are deter- 
mined. 

The threshold Wof the continuum will not be specified 
beforehand, but will be determined from the condition of the 
best agreement of the sum rule in the region R. For each 
polarization operator we can, generally speaking, introduce 
two different continuums at structures with even and odd 
numbers of y matrices. The reason is that the contributions 
of resonance with different parities to a sum rule with an odd 
number of y matrices are of the same sign, whereas the sign 
of their contributions to sum rules with even numbers of y 
matrices are different. By the same token, the threshoi ' of 
the model continuum can generally speaking be different. 
these two cases. Since we are restricting the size of the contri- 
bution of the continuum to the sum rules, it exerts no signifi- 
cant influence on the calculated masses and residues of the 
baryons. Even though we require that the sum rules be in 
agreement only in the region a, the fact that the sum rules 
are satisfied also in the region where the continuum domi- 
nates indicates that, despite the crude model of the higher 
states, the continuum approximates them well enough, 
meaning that the correction to the baryon mass to account 
for the continuum is of the correct sign and order. The accu- 
racy of our results is thereby improved. 

3. THE NUCLEON 

The matrix elements between the states of a nucleon 
and of the vacuum differ from zero for both currents q,, and 
qw . Therefore the nucleon mass and its residues in the quark 
currents can be determined by considering the polarization - 
operators n,,(ql, i l l ,  ff,,(q,, r12) and n,v(772,1/2). It is clear 
that the agreement between results obtained from indepen- 
dent sum rules for these polarization operators can serve as 
an important check on the validity of the entire approach. - 

a) Sum rules for 17,,(q, ,ql ). The calculation of 
Z7,,(~, ,Gl ) with allowance for the diagrams shown in Fig. 1 
leads to the following equations: 

The letters labeling the polarization operators indicate the 
diagrams of Fig. 1 which were used in their calculation. 

Using the method expounded in Sec. 2, we write down 
the sum rules for the structures y,Gy, and y, y, (the contri- 
bution of the continuum has been transferred to the left- 
hand part): 

where on the left of the sum rules are indicated the structures 
for which they have been written, m is the nucleon mass, 
Dl = ( 2 ~ ) ~ p ~ ,  Wl and W2 are the thresholds of the contin- 
uum. 

The reconciliation of sum rules in the region R yields 
the following values for the mass and the residue of the nu- 
cleon: 

m=1,02=k0.12GeV, p,2=0.45+0.15~e~P - 
p,=0.66*0.11 G ~ V ~ .  (19) 

The scatter of the values of the mass and of the residue 
are due to the uncertainty of the continuum threshold and to 
the fact that at a fixed value of the threshold it is possible to 
choose different m and 0, without substantially increasing 
disparity of the sum rules. Figure 2 shows the M dependence 
of the left and right parts of these sum rules. The values of m 
and Dl [Eq. (19)] agree well with the corresponding value 
obtained in Ref. 2. The residuep, determines the amplitude 
of the proton decay in the SU(5) grand unification theory. Its 
value (17) confirms the proton lifetime calculations of Ref. 7. 

- 
FIG. 2. Plots of the sum rules of the polarization operator IZ,,,,(q,, 7,). In 
this and succeeding diagrams we use the following designations; solid 
line-right-hand part ofsum rules, the dashed line corresponds to the left- 
hand part of the sum rules for structure with odd number of y matrices, 
and the dash-dot line-for structures with an even number of y matrices. 
The following values were chosen for the mass and resitues of the nucleon 
and for the thresholds of the continuum: m = 1 GeV, P i  = 0.43 GeV6, 
and W, = W, = 1.5 GeV. 
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- 
b) Sum - rules for Z7,v(71,7,72). A contribution to 

Id,v(7;11,v2) is made only by states with spin 4 (nucleon), 
with a, = 0. The values of the residues a, and /3, can also be 
related to each other. We note to this end that the current 
v2, has the following property: 

Using (13), (20), an the Dirac equation, we obtain 

a2=4fizlm. (21) 

In the case of resonance with negative parity, we must 
replace m by - m in (2 1). 

Calculation of the polarization operator leads to the 
equations 

II,,"a=nfi:=o, 

These lead to three independent sum rules: 

From the sum rules (23) we obtain for the mass and 
residue of the nucleon 

m=1.03=t0.15 GeV, ~ i ~ z = 0 , 6 5 = t 0 . ~ 3  GeV6 (24) 

Figure 3 shows the behavior of the sum rules as a func- 
tion of M at the chosen values of the mass, residue, and con- 
tinuum. 

The residue&, which can be determined from (19) and 
(2419 

p2= (2.5-cO.8) . lo-' Gev3, (25) 
is of interest because it is connected with the constant f, in 
the asymptotic expression for the neutron electric form fac- 
tor. Namely (see Ref. 8), as Q '-03 the electric form factor of 
the neutron is given by 

FIG. 3. Plot a corresponds to the sum rules for the y, y, @ structure; b- 
for the y, y,, structure; c-for the q, y, 4 structure. The mass, residue and 
continuum threshold are: m = 1.05 GeV, B,az = 0.67 GeV6, and 
W, = 1.5 GeV. 

where the constant f, is determined by the part of the matrix 
element 

that is proportional to q,, . Separating from the current in the 
matrix element (27) the current corresponding to the isospin 
f, we can easily transform the left-hand side of (27) into 

where vZp is defined in (5) and we have used Eq. (21) (the 
terms proportional to y, are left out). Hence 

fo='/,fi2m-i=0.8~10-z GeVf (29) 

Substituting this value in (25) we obtain, say at Q2 = 25 
GeV2, 

P, (QZ),,,,p=.1.2 .10-2/Q' 

as agaiist the experimental value 

F n  ( Q 2 L P  =- IIQ', 

i.e., besides the difference in sign, the form factor calculated 
from the asymptotic formula is smaller than the experimen- 
tal value by almost two orders of magnitude even at Q = 25 
GeV2. - 

c) Sum rules for ff,,,(77,,~,7~). In contrast to the already 
considered sum rules, contributions to I ~ Z Z , ~ ( ~ ~ , ~ ~ )  are 
made not only by particles with spin 1, but also by particles 
with spin +. It is therefore necessary to choose structures to 
which only fermions with spin 1 contribute. Such structures 
can be chosen by using (1 1) and (12). They take the form 

~ ~ ~ ~ + q ~ r ~ ,  ypyv+ ' i3gWV. (31) 

The sum rules for these structures will be used in the calcula- 
tion of the nucleon mass. 

The calculated polarization operator ZIfi,(~2,772) is 
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1 Y - Y  2 ' 1 qwq, +z qZ q--+, 2 q 

Comparing the relations between the different struc- 
ture functions in the right-hand side with Eq. (12), we can 
readily seen that these relatio-ns are very close to those ob- 
tainable, for example, if the right-hand sides of the sum rules 
were to contain only a resonance with spin +. This means 
that the contribution of spin-42tates to the sum rules for the 
polarization operator IZpy(772,72) is strongly suppressed (by 
an order of magnitude or even more). Therefore the different 
corrections not taken into account by us, particularly the 
corrections -a,, may turn out to be important for the calcu- 
lation of this contribution. 

For the structures (25) we obtain from (26) the following 
sum rules: 

The right-hand side of the sum rule (33b) is positive, 
whereas the first (principal) term in the left-hand side is neg- 
ative. Several ways out of the resultant contradiction can be 
considered. The first, obvious and most likely, is that the 
sum rules (33) are of no great significance, since the contribu- 
tion of the unaccounted-for corrections -a, can exceed that 
of the accounted-for terms. We assume, however, that this is 
not the case, and attempt to satisfy the sum rules (33) in their 
present form. It is then clear that the second term in the left- 
hand side of (33b), which is proportional to amO2, should be 
large enough, i.e., parameter m: > 0.5 GeV2 is large. As will 
be shown below, this condition does indeed hold, so that we 
can attempt to satisfy the sum rule (33). The best fit leads to 
the following values of the parameters: 

(34) 
However, as seen from Fig. 4a, the left-hand side of the sec- 
ond of the sum rules, as a function M 2, is in quite poor agree- 
ment with the right-hand side, as well as with the left-hand 
side of the first sum rule. The second sum rule can be brought 
into agreement only by assuming that besides the nucleon 
contribution an important role is played in the right-hand 
side of (33) also by the contribution of the negative-parity 
resonance which enters in (33b) with a minus sign. 

If a negative-parity resonance with mass 1.5 GeV is tak- 
en into account explicitly, the agreement between the sum 
rules improves markedly. This is seen from Fig. 4b. The mass 
and residue of the nucleon do not change significantly in this 
case. If we now substitute the mass and residue, which are 
known from Secs. 3a and 3b, into the sum rules (33), we can 
obtain the mass of the resonance N 'I2, since its contribution 
to the sum rules is not small. The mass and residue of this 
resonance are found to be 

FIG. 4. a) Cascof one residue, and thresholds of the continuurns are 
m=0.9GeV,B: =0.52GeV6, W,=1.6GeV, W2=1.4GeV;b)caseof 
two resonances. Their parameters are c_hosen to be m = 1 
GeVB = 0.6 GeV6, m - = 1.5 GeV, 8 = 2.05 G ~ V ~ ,  W, = 1.6 GeV, 
W, = 1.4 GeV. 

498 Sov. Phys. JETP 56 (3). September 1982 V. M. Belyaev and B. L. loffe 498 



- 
m-=1.5 GeV, p-2=0.25GeV. (35) 

The conclusion obtained in this variant should not, of 
course, be regarded as important. All that matters is that 
even in this case, which to some extent is extreme, the mass 
and the residue of the nucleon remain practically the same as 
before, and the mass of the resonance with J P  = 4- turns out 
to be large enough. If we consider seriously the variant with 
allowance for the resonance R - with J P  = 4-, the same res- 
onance would have to be taken into account also in the sum - 
rules for Z7,v(?7,,i,) and ~, (T , I , ,T , I , ) .  The good agreement 
between these sum rules without allowance for the reso- 
nance R - shows that its residue in the current 7, should be 
small compared withp,. This is not surprising, since it has a 
natural explanation within the framework of the constituent 
quark model, in which R - consists of quarks situated in a p  
wave. 

4. THE RESONANCE N3'* 

As seen from (1 1) and (l2), only resonances with spins 4 
contribute to the sum rules at the structures g,,G and g,, . 
From (32) and (12) we obtain the following sum rules for a 
resonance with spin +: 

where M, and x, = ( ~ T ) ~ R ,  are the mass and residue of the 
resonance N' - . 

The fact that the sum rule (36) should be saturated with 
a resonance with negative parity follows from the sign of the 
second sum rule. The mass and residue of the resonance from 
(36) are found to be 

MR=1.75*0.25 GeV, X~~=20-100 GeV! (37) 

Figure 5 shows the behavior of the sum rules for this 
resonance. The large scatter of the resonance N 3'2- in mass 
and in resonance is due to the fact that the region fl is very 
small. 

5. THE A ISOBAR 

As shown in Ref. 2, the current r],d with isospin T = + is 
the most suitable for the calculation of the A-isobar mass. 
The polarization operator 17,v(77A,? ) is of the form 

FIG. 5. The mass and residue of the resonance N "'- are chosen to be MR 
= 1.6 GeV, 60 = GeVb; W, = 1.6 GeV, W, = 2.2 GeV are the thresh- 

olds of the continuums. 

From the signs of the polarization operator at the struc- 
tureg,, it follows that a resonance with positive parity, i.e., a 
A isobar, will predominate in theg,,G andg,, sum rules. The 
sum rules for A are 
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FIG. 6. A isobar. M, = 1.35 GeV, 1 = 2.5 GeV6, W ,  = 2.1 GeV, 
W2 = 2.2 GeV. 

where 1, = (2.rr)'RA, and MA is the A-isobar mass. 
From the sum rules (39) we obtain the following mass 

and residue: 

M~=1.37*0,12 GeV, XAz=2.3*0.6 GeV? (40) 

These values are also in accord with those obtained in Ref. 2 
(to be sure, the residue A, ' turns out to be smaller by a factor 
1.5). Figure 6 shows the behavior of the sum rules for the A 
isobar. 

6. RECONCILIATION OF THE SUM RULES 

In the preceding section we investigated the sum rules 
for different baryons. The most interesting case is that of the 
nucleon. It is not trivial at all that by using different sum 
rules of different polarization operators for the calculation 
we obtain the same value of the nucleon mass. The residues 
obtained from these sum rules also agree with one another 
and with the results obtained earlier in Ref. 2. 

Thus, even if no account is taken of the sum rules (33) 
which have low accuracy, in the case of a nucleon with four 
free parameters (m, P,, P,, mi)  we have five sum rules that in 
good agreement as functions of M '. 

Another check on the sum rules is also - possible. 
We write the sume rules for II,,(v2,v2) at the structures 

q,,q,i and q,q,, saturating them with resonances having al- 
ready known residues and masses obtained in the preceding 
sections: 

FIG. 7. The masses and residues of the resonances are the following: 
m =  1 GeV,P$ =0.4GeV6,m, = 1.7GeV,Xi =60GeV6,m- = 1.5 
G ~ v , B ~ -  = 0.25 GeV.6 The thresholds chosen for the continuums are 
W, = 2.1 GeV and W, = 1.6 GeV. 

If we represent graphically the agreement with the sum 
rules (see Fig. 7), it can be seen that accurate to 15-30% the 
right-hand side agrees with the left. We note here that the 
substituted masses and residues are already those obtained, 
and are not adjusted for a best fit. We have thus shown that a 
large number of sum rules can be transformed into one an- 
other at a relatively small number of free parameters, there- 
by verifying convincingly the validity of our analysis. 

7. ESTIMATE OF 4 
Even earlier, in Sec. 3c, we advanced argument favoring 

the assumption that mi is relatively large and positive. In 
this section we show that the value of mi can be obtained 
from other sum rules. To this end we shall use Eqs. (23) and 
(39), since these sum rules contain mi with a relatively large 
weight, and the region f2 is not small. 

We shall vary the quantity mi in the sum rules (23) and 
(39) and reconcile these sum rules in the best fashion at each 
fixed value of mi. The mismatch parameter S will vary in 
this case. If we plot 6(mi) we obtain the picture shown in Fig. 
8, from which it is seen that mi = 0.6-1.1 GeV2. In all the 

FIG. 8. Plots obtained from the sum rules (23) (a) and from the sum ruler; 
(39) (b). 
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preceding calculations we used the value mi = 0.8 GeV2, a 
good choice in accordance with the result of this section. 

8. CONCLUSION 

The present investigation of the QCD sum rules for bar- 
yons has shown that it of these sum rules, the masses of the 
nucleon, of the A isobar, and of the resonance with 
JP = + -, T = 4 as well as their residues in the quark cur- 
rents. Allowance for higher-power corrections hardly 
changes the results, which agree with those obtained earlier 
in Ref. 2 and, within the limits of the calculation accuracy, 
with experiment. At the same time, the calculated masses 
were found to be systematically 10-1596 higher than the 
observed ones, possibly indicating that the quark condensate 
(0l$$l0) = - (0.24 GeV)3 assumed in the calculation is 
somewhat ( -  20%) overestimated. It was shown further that 
a large number of independent sum rules are in good agree- 
ment with one another and lead to the same results for the 
masses and the residues. On the basis of the sum rules, we 
determined the value of the quark-gluon condensate 

and obtained the residues that determine the proton decay 
amplitude in the SU(5) grand unification theory, and the 
asymptotic value of the electric form factor of the neutron. 

"The mass and residue errors cited below correspond to the condition 
A -a,,, (A,,, is obtained with account taken of the uncertainty of the 
contribution of the continuum; as a rule A,,, - 10%). 
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