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We investigate the properties of the inhomogeneous domain-type magnetic structure (DS phase) 
produced in magnetic superconductors such as HoMo,S, in the region where superconductivity 
and magnetism coexist. We show that the superconducting critical current in the DS phase 
decreases to zero when the temperature is lowered to T $  (the supercooling temperature of the DS  
phase). The wave vector of the magnetic structure decreases at the same time with increasing 
current flowing through the sample. We investigate the behavior of the DS in a magnetic field, 
obtain the phase diagram in the (H,T) plane. In the region where the field penetrates, the DSphase 
is substantially altered: new peaks 2nQ (n is an integer) appear in the neutron scattering, and the 
wave vector Q decreases with increasing field. 

PACS numbers:74.30.Ci, 74.60.Jg, 74.70.Lp, 75.30.K~ 

I. INTRODUCTION 

The great interest in the coexistence of superconductiv- 
ity and magnetism is due to the fact that the interaction of 
these two competing order parameters leads to the apper- 
ance of new states, in which the magnetic ordering and the 
superconducting pairing are transformed in such a way that 
they can coexist. From this point of view, greatest interest 
attaches to the situation first considered by Anderson and 
Suhl,' wherein in the absence of Cooper pairing ferromagne- 
tic ordering should appear at the point 8, ( T, , where T, is 
the critical temperature of the superconducting transition. 
Anderson and Suhl have assumed that 8, is a second-order 
phase transition point for the magnetic subsystem. Under 
these assumptions, they have shown' that supeconductivity 
transforms the magnetic interactions in the system in such a 
way that what appears at the second-order phase transition 
point TM =: 8, is not ferromagnetic ordering but an inhomo- 
geneous magnetic state with large wave vectors Q>c; ', 
where 5, is the superconducting correlation length 
(6, = hv,/?rA,, A, is the superconducting gap that would 
exist in the superconductor at T = 0 in the absence of local- 
ized moments (LM), and A,--, 1.76 T,, and v, is the Fermi 
velocity of the electrons). In the inhomogeneous state, the 
directions of the magnetic moment in space change so rapid- 
ly that the exchange field of the LM is effectively averaged 
out over the superconducting correlation length, and the su- 
perconductivity is capable of surviving under these condi- 
tions even at a relatively large absolute value of the exchange 
field. 

Anderson and Suhl took into account only exchange 
interaction (XI) of conduction electrons and of localized mo- 
ments. Blount and Varma, as well as a few others (see Ref. 2 
and the literature cited there) have shown that an inhomo- 
geneous magnetic structure appears in a superconductor 
also in a model in which only the electromagnetic interaction 
(EI) of the electrons and of the LM is taken into account. 

To describe real compounds such as HoMo,S, and 

ErRh,B, it is necessary to take into account both mechan- 
isms whereby the electrons and the LM interact, and also 
consider the magnetic anisotropy (MA), which restricts 
greatly the possibilities of changing the directions of the mo- 
ments in space. The problem of determining the structure of 
a superconducting phase with inhomogeneous magnetic or- 
dering and the regions in which it exists, with allowance for 
the XI, EI, and MA, assuming a second-order phase transi- 
tion at the point 8, in the absence of superconductivity was 
solved in Ref. 3. 

The quantitative results of Ref. 3 were obtained for a 
sufficiently dirty superconductors with electron mean free 
path I satisfying the condition Q - '(1(6,, (8, vF2/N (0))'12, 
where flex is the contribution of the long-range part of the 
exchange interaction to the energy of the ferromagnetic state 
of the system per LM, and N (0) is the density of the electronic 
states per LM. 

The main results of Ref. 3 reduce to the following state- 
ments. 

(a) Below the point TM there appears in the supercon- 
ducting phase an inhomogeneous magnetic structure with 
wave vector Q. The value of Q is the result of a compromise 
between the energy of the inhomogeneity of the magnetic 
subsystem, on the one hand, and the energy of the interac- 
tion of the superconducting and magnetic subsystems on the 
other. The former reaches a minimum at a small value of Q, 
while the latter, which includes the XI and the EI, tends to 
increase Q. If OeX is not very small compared with the analo- 
gous contribution 8, of the electromagnetic interaction, the 
interaction between the superconducting and magnetic sub- 
systems is determined mainly by the exchange term. More 
accurately, the electromagnetic contribution can be neglect- 
ed if the condition 8, SO, (A, Q ) - 2  is satisfied, where A, is 
the London penetration depth. The XI, however, of necessi- 
ty governs substantially the characteristics of the magnetic 
subsystem, inasmuch as in real compounds 8, is of the order 
of or somewhat larger than O,, . The small role of the EI in 
the interaction between the superconducting and magnetic 

430 Sov. Phys. JETP 56 (2), August 1982 0038-56461821080430-11$04.00 @ 1983 American lnst~tute of Physics 430 



FIG. 1 .  Magnetic structure of the main type in superconductors of the 
type ErRh,B, and HoMo,S,. 

subsystems is due to the small value of (A, Q ) - 2 z a l d A  i, 
where a is a parameter that characterizes the rigidity of the 
magnetic system and is of the order of the interatomic dis- 
tance. 

(b) The magnetic anisotropy localizes the change of the 
direction of the moments inside the domain walls. As a re- 
sult, the inhomogeneous magnetic structure in the supercon- 
ducting phase takes below the TM point the form of a one- 
dimensional plane-parallel domain structure (Fig. 1). The 
structure wave vector Q = r /d,  where d is the domain thick- 
ness, decreases with decreasing temperature. This change is 
small and its order of magnitude is Q Z ( ~ { ~ ) - " ~ .  (2n + l)Q 
peaks where n is an integer, should appear in the case of 
neutron scattering. In an ideal domain structure, the intensi- 
ty of the peaks is proportional to (2n + in a single crys- 
tal and to (2n + in a polycrystal. 

(c) The domain structure is transverse because of the 
electromagnetic part of the energy of the magnetic subsys- 
tem. The direction of Q in the plane perpendicular to the 
direction of the magnetic moment inside the domains de- 
pends on the anisotropy of the parameters a and u,. The 
domain has 180-degree walls only if the vector Q is not per- 
pendicular to the easy plane of the crystal. 

(d) The magnetic moment inside the domains is smaller 
than the value that would be present in a ferromagnet in the 
absence of a superconducting pair, but this difference is very 
small and is of the order of The supeconductivity 
has likewise practically no influence on the structure of the 
domain walls. 

(e) At 8, < 0 Y ~ Z  T:, v, N '(0)/aTM the superconduct- 
ing phase with the domain structure (DS phase) remains sta- 
ble down to zero temperature. If 8, > BE, a first-order 
phase transition takes place from the DS phase into the nor- 
mal ferromagnetic phase FN with decreasing temperature. 
In Ref. 3 we determined the points Tc2 of the first-order 
transition, the supercooling point TfJ of the DS phase, and 
the superheating point T gJ of the FN phase, the point T 2' 
practically coinciding with TM. 

(fj The influence of the magnetic structure of the DS 
phase on the superconducting-condensation is similar to the 
influence of magnetic impurities, for which the magnetic- 
scattering time T, is defined by 

where [ ( x )  is the Riemann function and s(T) is the relative 
average localized moment chosen such that s(0) = 1 (see Ref. 
9). 

(g) Above the TM point the magnetic-moment fluctu- 
ations have a ferromagnetic character everywhere with the 
exception of a very narrow region near TM. In crystals with 
easy-axis anisotropy the magnetic fluctuations are sup- 
pressed by the long-range part of the dipole interaction. 
Therefore the self-consistent field approximation for the 
magnetic subsystem yields in this case not only qualitative 
but also quantitative results. 

The results (a)-(g) agree with the experimental data for 
HoMo6S, (Ref. 4-6). The parameters obtained for this com- 
pound are T,, = 1.8 K, TM = 0.7 K and T,, ~ 0 . 6 5  K. Neu- 
tron-scattering investigations of HoMo6S, polycrystals have 
shown that when they are heated from the low-temperature 
region only the ferromagnetic phase is observed, in accord 
with the conclusion (e). The intensity of the ferromagnetic 
peak decreases with rising temperature, as should be the case 
for a second-order transition, and the assumption that the 
transition at the point TM is of second order is fully applica- 
ble to this compound. The behavior of an inhomogeneous 
magnetic structure to which a magentic field is applied was 
investigated in Refs. 4-6. We shall therefore consider below 
theoretically, within the framework of the same assumptions 
as in Ref. 3, the influence of a magnetic field and of a super- 
conducting current on the DS phase, and compare the theo- 
retical conclusions with the experimental data. 

The results of the investigation of neutron scattering in 
polycrystals and single crystals of ErRh4B4 (Refs. 7 and 8) 
contradict the conclusions (b) and (c), and indicate that in the 
absence of superconductivity the transition into the ferro- 
magnetic phase is apparently of first order (of the singlet 
ferromagnetic transition type). Therefore the theory of Ref. 
3 and the results cited below are not applicable directly to 
ErRh4B4. 

In Sec. I1 below we investigate the properties of the DS 
phase under conditions when a superconducting current of 
density j flows through the sample. This current should lead 
to a decrease in the superconducting order parameter A.  
Therefore, by passing current through HoMo6S, samples in 
the region of the existence of the DSphase one can observe a 
decrease of the wave vector Q with increasing superconduct- 
ing current. We shall calculate the function Q (j) for thin 
films, in which the action of the magnetic field of the current 
on the DS phase can be neglected. Under the same conditions 
we shall obtain the dependence of the critical superconduct- 
ing current jc (T)  in the DS phase and show that j drops to 
zero when the temperature decreases from TM to the DS- 
phase supercooling point T 5. 

In Secs. I11 and IV we shall investigate the effect of a 
magnetic field on the DS phase in thin films of thickness L 
small compared with the London penetration depth A,. We 
shall obtain for the films the region of existence of the DS 
phase in the (T,H ) plane and consider the change induced in 
the magnetic structure by the field. 

In Secs. V and VI we shall find the region of existence of 
the DSphase in the (T,H) plane for bulky samples and calcu- 
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late the lower critical field H,, , as well as the depth of pene- 
tration of the field in the DS plane. In all our calculations we 
consider dirty superconductors with a mean free path satis- 
fying the condition (8exv~/N(0))"2)l>Q -'. The condition 
l>Q - '  means that we exclude from consideration dirty su- 
perconductors with mean free path approaching the inter- 
atomic distance. 

II. EFFECT OF A CURRENT ON THE SUPERCONDUCTING 
PHASE WITH INHOMOGENEOUS MAGNETIC ORDERING 
(DS PHASE) 

A. Eulenberg equations and their solution 

We consider a system of electrons within the framework 
of the BCS model. The localized magnetic moments, which 
are regularly located at the crystal-lattice sites will be de- 
scribed within the framework of the mean-field approxima- 
tion. In accordance with conclusion (a) it suffices to take into 
account the action of only the exchange field on the conduc- 
tion electrons. Within the framework of these approxima- 
tions, the Hamiltonian of the electron system is 

where $(r) are spinor operators, a are Pauli matrices, A (r) is 
the superconducting order parameter, g is the effective-in- 
teraction parameter of the electrons and phonons, s, de- 
scribes the mean value of the localized moment at the site i ,  
O<s, < 1 the term &P, describes electron scattering by non- 
magnetic impurities, and we assume the scattering potential 
to be pointlike. In (1) we have neglected the anisotropy of the 
electron velocity on the Fermi surface, assuming this aniso- 
tropy to be small. 

We consider next a magnetic structure with wave vec- 
tors Q ( 2 ~ n ' / ~ ,  where n is the LM density. According to ( I ) ,  
the electrons are acted upon by the components of the ex- 
change field with wave vectors of order Q and wave vectors 
of order 2 ~ n ' / ~ ,  since the LM lattice is discrete. The action of 
the LM on the superconductivity is neglected (see Ref. 3), so 
that the exchange field h depends on the continuous variable 
r and h(r)' = h, s(r), where h, = n I (O), 1(0) = .f f(r)d 3r and 
8- =h,ZN(O). 

Our problem is to find the self-consistency equations for 
A (r) in the presence of a superconducting current. Knowl- 
edge of this equation yields the functional of the free energy 
of the system, minimization of which enables us to determine 
all the characteristics of the DS phase (see Ref. 3). 

The Green's functions for superconducting electrons 
satisfy a system of equations of the Eulenberg type2 

where the symbol a = f characterizes the direction of the 
spin of the functions G and 3, where v is the velocity on the 
Fermi surface, and averaging over the angles R denotes aver- 
aging over the direction of the velocity v on the Fermi sur- 
face. Equations (2) were written for the case when the mo- 
ments inside the domains are directed along one axis (z), i.e., 
within the domains we have s, = s, = 0 and s,(r) 
= s,(r + 2d) = s and s,(r + d) = - s,(r) = - s, where 2d is 

the period of the domain structure. 
In the presence of a superconducting current, the pairs 

have a c.m.s. momentum 29, and the solution of Eq. (2) must 
be sought in the form A * (r) = A (r)e * 2iqr, where q is deter- 
mined by the given current densty j: 

Actually atj#O we can replace w in (2) by w + i(v.q) and seek 
the solution of (2) in the form A +(r) = A -(r) = A (r). 

Just as in Ref. 3, we obtain the solution for the case of a 
dirty superconductor when the conditions ( h ~ ) ~ <  1, A, r< 1, 
Ql>1 and v, qr(1 are satisfied. In Ref. 3 it is shown that 
under these conditions we can neglect the coordinate depen- 
dence of A at j = 0, and Eqs. (2) can be easily solved by ex- 
panding h (r), g(v,r), and f * (v,r) in Fourier series. 

4h0s sin (Qrn) 
g(v, r) = r, gk (v) eiQ", h ( I )  = C hkeiQrk= -C 3.1 

k k h-U 
2n+1 

and analogously for f * (v,r) and A (r). The condition (hr)'< 1 
ensures smallness of the harmonics f ,'; , g,, and A, with 
k #O, and the use of perturbation theory in terms of these 
harmonics, makes it possible to write down equations for the 
quantities g,(v) and f $ (v), and for the component A, with 
k = 0 which will hereafter be designated A. This solution 
method can be used also in the presence of current, and as a 
result we obtain from (2) 
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where in the derivation of (5) we used also the conditions 
Q b  1 andAr( 1. From (5) it follows that at ( h ~ ) ~ g  1 and qv,  r 
( 1 we can replace fo(v) andgo(v) in the right-hand side of (5a) 
by fo and go, respectively. After this replacement and after 
introducing the parameter u = G,/A we obtain equations for 
fo, go, or for u in the form 

of o-Ago=-fogo/~,,,, f ~ ~ + g , , ~ =  1, (64 

(6b) 
Relation (6) which connects o with A, is similar to the corre- 
sponding relation for a superconductor with magnetic im- 
purities (see Ref. 8), for which the scattering time is equal to 
7,. Thus, at ( h ~ ) ~ g  1,474 1, and (Ql ) - I (  1 we obtain theself- 
consistency equation for the parameter A: 

The superconducting part of interest to us of the free-energy 
functional of the system is obtained by multiplying the left- 
hand side of (7a) by AN (0) and integrating from 0 to A. As a 
result we obtain for the complete functional of the system 
Y(s,Q,A,q,T) at T(T, (Tcl and at a specified current den- 
sity j the expression 

1 eAo2 
F, (A) = - N ( 0 )  A' ln -, e=2.718, 

where the functional 9, (Q,s,T) was obtained in Ref. 3 , e  is 
the energy of the ferromagnetic state per LM, 4 s )  is the LM 
entropy, and 11 is the surface energy of the domain wall (see 
Ref. 3). It  is easy to verify from (3) and (7) that 
j = 2edFi,,, /dq. Therefore the equilibrium values of the pa- 
rameters A, Q, q and s are obtained from the condition that 
the total functional (8) be a minimum at the given value of the 
current j. 

B. Dependence of the wave vector of the magnetic structure 
on the current, and the critical current in the DS phase 

Minimization of the free-energy functional (9) with re- 
spect to q, A, and Q yields the dependences of A and Q on the 
j in the implicit form 

4x 
g ( x )  =e-""/" 9 (x) =I - - 7; (3)nAO0,,s'(T) Q t  ( T )  ='----7 

3n' 2 ~ 4  (TI I 

j (x) =2,98jco [ ~ - a g - ~  ( x )  9-"' ( x )  ] I h c p  ( x )  g-3 (x) , 
(10) 

a(T) =7b ( 3 )  ho2s2 ( T )  ~TCUFQO ( T )  A,, 

jCo=1.7IeN(0) A? ."up, 

wherej, is the critical current that would flow in the system 
at T = 0 in the absence of the LM. It is equal in practice to 
the critical current in a nonmagnetic superconducting phase 
at temperatures Tcl % T >  T M .  

A plot of the functionj(x,a)/ j, for several values o fa  is 
shown in Fig. 2. The value a,, = 0.168 corresponds to the 
temperature Tc2, and a ~ 0 . 2 6  to the temperature T Fj. The 
dashed curve in this figure shows the function Q (x)/Qo. In 
the temperature interval from TM to T,, , the value of Q (j) 
decreases by approximately 15% when the current is in- 
creased from zero to the critical value j,(a). With further 
decrease of the temperature from Tc2 to TFi the total change 
Q with increasing current decreases and vanishes as Tti .  
Therefore the optimum conditions for observing the Q (j) de- 
pendence are realized near the temperature T,, , where the 
change of Q is still large enough and the current j, is approxi- 
mately half the value of j,. At small j/jc the wave vector 
decreases quadratically withj, and a noticeable decrease of Q 
takes place only in the current interval from 0.5jc to j,. 

The dependence of the critical current j, on the tem- 
perature, i.e., on the parameter a ,  is shown in Fig. 3. In the 
considered case of a dirty superconductor with (hr),( 1, the 
value of the critical current does not depend on the direction 
of j relative to the direction of the magnetic moment inside 
the domains or relative to the direction of the wave vector of 
the magnetic structure. 

To decrease the action of the magnetic field of the cur- 
rent on the magnetic structure it is necessary to choose a 
sample in the form of a thin film and direct the current such 
that the influence of its magnetic field be a minimum. The 
influence of the magnetic field on the DS phase is considered 
below, and it follows from this consideration that the small- 
est effect is produced by a field perpendicular to the magneti- 
zation inside the domains and parallel to the hardest-magne- 

FIG. 2. Dependence of superconducting current and of the magnetic- 
structure wave vector Q on the parameter x (see the text). 
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a,, = l168 

FIG. 3. Dependence of the superconducting critical current on the param- 
eter a (see the text and Eq. (10)). 

tization axis. In this geometry the value of the field H should 
be less than 2(D + 8, ).A,,/h,p,, where D is the anisotropy 
parameter andp, is the magnetic moment at the site for the 
hard magnetization direction. This condition leads to a re- 
striction on the plate thickness L at a given current densityj, 
i.e., to the condition 

L<0.186hoc (A0.t) -'" (v,ep,n) -' ( j , / j )  (D+O,,) /0,,, 

where c is the speed of light and e is the electron charge. 

Ill. INFLUENCE OF MAGNETIC FIELD PARALLEL TO THE 
MOMENTS INSIDE THE DOMAINS ON THE STRUCTURE OF 
THE DS PHASE IN A THIN PLATE 

A. Region of existence of the DS phase in the (H, T )  plane 

The most interesting and strongest influences of a mag- 
netic field on the DS phase manifest themselves under condi- 
tions when the magnetic field is directed along the magnetic 
moment inside the DS-phase domains and if the magnetic 
field penetrates fully into the sample. We therefore investi- 
gate first the behavior of a sample in the form of a plate 
whose thickness L is small compared with the London pene- 
tration depth A, in the DS phase (the value of A, in the DS 
phase will be obtained below). We consider a plate cut in 
such a way that the moment inside the domains lies in the 
plane of the plate and is directed along the x axis (the [ I l l ]  
axis in HoMo,S,). We shall disregard the influence of the 
boundary conditions on the magnetic structure of the DS 
phase. To this end, the structure wave vector Q (which is 
parallel to the z axis) should lie in the plane of the plate, or 
the plate thickness L should be much larger than the domain 
thickness d = r / Q ,  if the vector Q does not lie in the plane of 
the plate. 

We obtain now the region of the existence of the DS 
phase for such a plate in the case of a field parallel to the 
direction of the moment inside the domains, i.e., a field di- 
rected along the x axis. Under the influence of the field, the 
thickness of the domains with magnetization along the field 
( + s) increases, and opposite to the field ( - s) decreases. We 
denote these thicknesses of such domains by d (1 + 6). The 
Fourier expansion of the average value of the moment s, (z) is 
then 

+ (-1) " sin(nn6) cos (nQz) ) .  (11) 
Expression (1 1) does riot Lake into account  he tinite thick- 
ness of the domain wall. It  is shown in Ref. 3 that the influ- 
ence of the domain walls on the superconductivity can be 
neglected, and we are at present likewise not interested in the 
contribution of the walls to the neutron scattering. There- 
fore expression (1 1) is sufficient for our purposes. We neglect 
the orbital effect of the field on the superconductivity by 
virtue of the condition L<il,, and we must take into account 
only the action of the exchange field h$x (z). 

In part I we solved the problem for a rapidly alternating 
exchange field in the presence of a current. We now consider 
the problem without a current, but in the presence of a con- 
stant exchange field h = h ~ 6 .  Allowance for this field re- 
duces to replacing in (2)-(6) the real variable o by the com- 
plex variable2 = o + ih. In the self-consistency equation for 
A, instead of integratingfo(o) along the real axis o we must 
calculate the integral of the functionsfo(z) along a path paral- 
lel to the real axis and shifted above it by an amount h. The 
result of the integration does not depend on h (and A does not 
depend on h ) so long as this integration path does not cross 
the singular points of the function f (z). The singular points of 
f (z) correspond to zeros of dz/dfo, while the functionfo(z) is 
determined by Eqs. (6a), i.e., by the equation 

At AT, > 1, the singular point off (z) closest to the real axis is 
located at z = iA [l - (AT, )-213]312, and so long as h < h, 
= A [ 1 - (AT, )-213] 213 the quantity & does not enter in the 

self-consistency equation for A. This means that the para- 
magnetic susceptibility of the electron system is zero in weak 
fields, and the functional of the free energy of the system 
takes the form 

HZ 
F ( s ,  Q,  A, 6, T )  =-0s'-To ( s )  +q (s ,  T )  Q/n - - - 

8n ~llHs6 

There is no superconducting solution at h > h,. 
We have noted above that the magnetic structure of the 

DSphase acts on the superconductivity in analogy with mag- 
netic impurities for which the magnetic-scattering time is 
equal to r,. We see now that this analogy is not complete, 
since in our system the parallel paramagnetic susceptibility 
xe,,, is zero, and in a superconductor with magnetic impuri- 
ties it differs from zero at any value of the parameter AT,. 
The reason why these two systems differ is that a supercon- 
ductor with magnetic impurities is completely isotropic in 
spin space, whereas in the DS phase there is a preferred di- 
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rection parallel to the moment inside the domains. Therefore 
the paramagnetic responses of these two electron systems to 
the constant field are different. In a superconductor with 
magnetic impurities, the ferromagnetic susceptibility of the 
electrons is isotropic, while in the DS phase it is anisotropic. 
We shall see below that the paramagnetic electronic re- 
sponse of the DS to a perpendicular field differs from zero 
Cjust as the response of a superconductor with magnetic im- 
purities), i.e., in the DS phase we have x p,,, = 0, but xeVl > 0. 

Minimizing the functional (1 3) with respect to the varia- 
bless, Q, A and S we can determine the equilibrium charac- 
teristics of the DS phase and the region of the existence of 
this phase, as functions of the magnetic field and of the tem- 
perature. 

Minimization with respect to S can be effected without 
taking into account the last term in (13), since it is small 
compared with the sixth term relative to the parameter 
A /u, Q 4 1. Therefore S = pll 11 /20,,, The magnetic sus- 
ceptibility of the localized moments in the DSphase in a thin 
plate is xll = pi n/20, and the electronic contribution to 
the susceptibility is negligible small compared with the LM 
contribution. Thus, the susceptibility xll in the DS phase 
does not depend on the temperature in the entire region of 
existence of the DS phase. 

On minimizing with respect to s, the third and last 
terms of (13) can also be neglected, and the parameter s is 
determined by the first two terms of the functional (13). 
These same two terms determine the equilibrium value of 
s (T)  in the ferromagnet in the absence of a field and of super- 
conductivity, and we arrive at the conclusion that in the DS 
phase the value ofs(T) hardly differs from the moment in the 
ferromagnetic phase in the absence of superconductivity and 
of a magnetic field. 

Minimization with respect to A and Q leads to equa- 
tions for the equilibrium values ofA (T,H ),Q (T,H ) and of the 
free energy F ( T , H )  in the form 

4x 'h 
A (T ,  H )  =A.r-nxfi, Q (T, H )  =Q.e-"'" ( 1 - %) GI" (ti), 

where x = (T, A )-' is defined by the equation 

(15) 
(a) DS-phase supercooling line. The function F(x)  has a 

maximum at x = 0.68. Therefore the region of existence of 
the DS phase is determined, as a function of T and H, by the 
conditions 

According to (16), the DS-phase supercooling line in the H,T 

FIG. 4. Region of existence ofthe DSphase in the (H, T )  plane in thecase of 
a field parallel to the moment direction in the domains. The temperature 
scale is the normalized mean values(T) of the moment in the ferromagne- 
tic phase in the absence of superconductivity and of a magnetic field. 
Curve 1-DS-phase supercooling line, 2-line of DS -+ FN, first-order 
transition curve 3-FN-phase superheat line, curve 4 separates the super- 
conductihg phase with homogeneous magnetic ordering from the phase 
with inhomogeneous magnetic order (in the mean-field approximation). 
Curve 5 shows the region of establishment of a clearly pronounced domain 
structure ( 1  1). 

plane consists of two segments defined by the relations 

pllH=20,,  (Ao lho)  e-""/' (1-x' /J)  %, 

( 17a) 
F ( x )  = a ( T )  G (pl lH/20ezs  (2') ), 

They intersect at the point with coordinates 

The resultant DS-phase supercooling curve in the (H,T) 
plane is shown schematically in Fig. 4, curve 1. In the same 
figure, the temperature scale is taken to be the equilibrium 
value of s (T)  in the ferromagnetic phase without supercon- 
ductivity or an external field, while s is reckoned to the left 
from the point TM, where s = 0, to the point s = 1, which 
corresponds to T = 0. Figure 4 corresponds to the situation 
A ,/h, 4sc2 . 

(b ) First-order DS + FN transition line. To obtain the 
first-order transition line it is necessary to equate the equilib- 
rium free energy (14) of the DS phase to the energy of the 
normal ferromagnetic phase, which corresponds to the mini- 
mum of the functional 

9 ( s ,  T )  =-0s2-To ( s )  --plIHs-U2/8n (18) 

with respect to the variable s. At low temperatures, where 
s)A,,/h,, the first-order transition line is determined by the 
relation 

pllHs ( T )  ='/,N (0) Ao2e-nx/2 

and in the region of small s(T)<(N (0)A we obtain 
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where I is the effective localized moment at low tempera- 
tures T S  TM . The first-order transition line is shown by 
curve 2 of Fig. 4. The latent heat of the DS -+ F N  transition 
in the region s(T))Ao/ho amounts to 

and the parameter x is given by (19b). 
(c) Superheat line of normal ferromagnetic phase FN. 

This line is determined by the equation ha s(T,H ) = A0/2, 
where s(T,H ) is the equilibrium value of the moment in the 
FN phase in the absence of a field, i.e., the value of s that 
minimizes the functional (18). This line passes through the 
point H = 0, s (T)  = Ad2ho; at small H the value ofs(T) in- 
creases linearly with increasing H and takes the asymptotic 
valuepll H = be (A0/2h0)3 at s(Ao/2ho. The FN-phase su- 
perheat line is shown by curve 3 of Fig. 4. 

(d ) Line separating the superconductingphases with ho- 
mogeneous and inhomogeneous magnetic ordering (the 
phases S and DS). We determine now the line on which a 
domain structure appears. To the right of this line in Fig. 4 is 
located the s-phase with homogeneous magnetic ordering 
s,#O in a magnetic field H >  0, and on the line itself there 
appear Fourier components s, #O. The functional of the free 
energy takes, accurate to terms of second order in s,,, the 
form (see Ref. 3) 

From (22) we obtain so = pII H /20,, and the line of transi- 
tion into the inhomogeneous magnetic state takes the form 
s(T) = 3'l2s0, accurate to terms of higher order in so4 1. The 
line at which the inhomogeneous magnetic structure appears 
(the second-order transition line) is shown by the line 4 in 
Fig. 4. Near this line, the magnetic structure takes the form 
s, (z) -sine, z with Q & (nZA00, /4a2u, 8 ) (Ref. I), and 
this structure goes over into a domain structure when the 
temperature or the field is decreased. In the domain struc- 
ture, the domain width n(1 - S )/Q should be large com- 
pared with the domain-wall width a/s(T) (see Ref. 3 at TM 
- T<TM). There exists therefore a transition region 

between the sinusoidal solution and the domain structure. 
This transition region is given by the relation pll H 
= 28, [s(T) - aQ (T)/n ] and is shown by the dashed curve 
5 of Fig. 4. At H = 0 it passes through the point s (T)  z (a/ 
[0]J/3. In the transition region, the parameter Q varies quite 
rapidly from the value Q, to the value given by (14). 

Thus, Fig. 4 represents the region of the existence of a 
superconducting phase with an inhomogeneous magnetic- 
order parameter in the (H,T) plane for a parallel field. The 
forms of the curves 1-4 are determined by the parameters 
A,/h, ands,, = 0.208(Ao/ho)(u, Q,/A,)'/~, and Fig. 4 shows 
the situation 1 >SF; >Ao/ho. In principle the DS phase can 

remain stable down to T = 0 (if s,, > 1) or remain metastable 
down to T = 0 (s,, < 1, but sa = 1 . 2 6 ~ ~ ~  > 1). In any case, 
however, the DS phase exists only in fields pII H 
< 20, Adha. 

B. Dependence of magnetic structure of the DS phase on the 
parallel field 

It follows from (14) that the wave vector Q of the do- 
main structure decreases with increasing field at a given tem- 
perature. According to Fig. 4, the maximum changes in the 
field from zero to values of the order of 20, Adhop , ,  are 
possible at temperatures determined by the condition 
s (T)zAdho .  The parameter S increases in this case from 
zero to a value on the order of unity when the DS-phase 
stability limit is reached. The quantity G 'I2(S), which de- 
scribes the dependence of Q on H at a given temperature 
(6 = plI H /8,, s(T)), is shown in Fig. 5, from which it is seen 
that when the parameter S increases from zero to 0.5 the 
change of Q is approximately 20%. Such a change can be 
easily discerned in experiment. 

When S is changed, according to (1 l),  the relative inten- 
sities of the component nQ in the neutron scattering also 
change. In particular, in the presence of a magentic field 
there appear peaks 2nQ, which are missing at H = 0. For the 
intensity of a peak nQ in a single crystal we obtain from (1 1) 
the expression 

I, ( H )  1- (-1) " cos nn6 
,-= , 6 =  ~ l l H  

1, (0) 2 nZ 20,,s (TI 
. (23) 

The dependence of the relative intensity of the peaks on the 
value of the parallel fields can also be detected in experiment 
by neutron scattering. We note that the value of s (T)  can be 
obtained from data on the temperature dependence of the 
neutron-scattering amplitude. The parameter 0,, can be cal- 
culated if the susceptibility of the plate in the parallel mag- 
netic field is known (see I11 A above). 

IV. EFFECT OF FIELD PERPENDICULAR TO THE 
MAGNETIZATION INSIDE THE DOMAINS ON THE DS PHASE 
IN A THIN PLATE 

In this section we investigate the behavior of the DS 
phase in a field perpendicular to the magnetization inside the 
domains. We consider as before the case when the field is 
parallel to the surface of the plate and disregard orbital ef- 
fects, assuming that the plate thickness is L(A, and consid- 
ering fields H(H r2 (0), where H 2 (0) is the upper orbital 
critical field. 

In the system considered by us, the electrons are acted 
upon by an exchange field h,(r) = ha s,(r) that varies in 
space, and by a constant exchange field h, = h ~ ,  perpendi- 
cular to it (the magnetic field is directed along thez axis). We 
shall show below that the component s, is small, and will 
disregard the change of the s, component inside the domains 
on account of the appearance of the s, component. Thus, the 
moment inside the domains is characterized by the quanti- 
ties s, = f s and s,. 

We start with the Gor'kov equation for the Green's 
function 
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We must take into account the action exerted on the 
superconductivity by the exchange fields h, and h,(r) and 
the scattering of the electrons by nonmagnetic impurities. 
The field h,(r) contains the Fourier components (2n + l)Q 
with n = 0, 1,2, ... . The equations for the function G are of 
the form 

G (r, ; 0 = ,  ~-'--8,-'+^h, 

.=("+ " 1 ) .  Go-l= ("+-I 

G* G- O G-- O * ) ,  % = ( O  hz h f ) .  O 

(24) 
We change over to the momentum representation in terms of 
the difference r - r' and introduce the Green's function 

G (p, r) = J drr r r ' G  (r, T, r+rl, 0). 

The operator 6 -' takes then the form 

ioFh,+g (p) 
-io*h,+g (p) 

where { ( p) = E( p) - E~ and E( p) is the electron energy. 
The procedure for solving Eqs. (24) and (25) is similar to 

that used in Refs. 3 and 10. We expand the Green's function 
G ( p,r) in a Fourier series in the variable r, with Fourier coef- 
ficients Z!( p,n). The Fourier component n of the Green's 
function is small in the parameter ( h , ~ ) "  and we confine our- 
selves to terms of second order in h, in the equation for the 
mass operator of the zeroth component of the Green's func- 
tion. In this case the discarded terms are small in the param- 
eter (h, T),. The equation for the zeroth component of the 
Green's function Z! ( p,O) is 

q=nQ, G , - ' ~ O  (P, 0) =1, (26b) 

with only the zeroth component of the Green's function re- 
tained in the last term of the right-hand side of (25a) (the 
higher components are small in terms of the parameter Ih, I /  
vFQ), while in the right-hand side of (25b) we Ieave out the 
last term, since it is small in the parameter (Ql ) - I .  We write 
the solution for the function Z! ( p,O) in the form 

(274 
and then Eq. (26b) takes the form 

(27b) 
Substituting (27) in (26a) and integrating first with re- 

spect to the angle variable of the momentum, and then with 
respect to energy, we obtain equations for a , ,  and A ,,, : 

and analogous expressions with the substitutions A ,  tt A,, 
w, c+ w,, h, ++ - h, . We note that for our problem the so- 
lution of the Gor'kov-Nambu equations is simpler than the 
solution of equations of the Eulenberg type because in (27b) 
it is easier to carry out first integration with respect to the 
angles and then with respect to energy. 

We introduce the variables u,,, = o,, /A ,,, and, using 
the small parameter TA ( 1, we obtain 

The solution of (29) is of the form u ,,, = u + iv, where u 
and v are real numbes. At small h, (A the self-consistency 
equation for A takes the form 

where the function f (x) is defined in (7), whileF (0,x) at x( 1 is 
given by the integral 

and P(0,x) = n/8 + 4x/105 + 0 (x2). Integrating (30) with 
respect to A we obtain the functional of the free energy of the 
system at x <  1: 

where D is the anisotropy parameter. It is seen from (32) that 
the paramagnetic susceptibility of the electrons in a perpen- 
dicular field is different from zero and is proportional to C (0, 
x) in full analogy with the behavior of a superconductor with 
magnetic 
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In the case of small x( 1 and arbitrary fields h, <A we 
obtain accurate to terms of order x, the self-consistency 
equation for A :  

which corresponds to the free-energy functional 

a (34) 
where K ( y) and E ( y) are elliptic functions. 

Minimization of (34) with respect to s,, s, Q, and A 
yields their equilibrium values. For the susceptibility of this 
system we obtainx, = pfn/(Oex + D ), it is less than the par- 
allel susceptibility in a ratio (1 + D/B,)-'p:/pi. The re- 
gion of existence of the DSphase in the (H, T )  plane at smallx 
(in practice from Tc2 to TM) is determined by the same rela- 
tions as in the parallel field, if 8,, is replaced by O,, + D and 
the slope of the line separating the phases DS and S is de- 
creased by a factor 0. 

The quantity Q decreases with increasing field, and at 
small x this function takes the-form 

A plot of the function Q(S,)/Q (0) is shown in Fig. 5. In the 
region of the existence of the DS phase, the quantity S, varies 
from zero to a value on the order of unity, and the maximum 
decrease of Q with increasing field is approximately 15-20% 
in the temperature interval from Tc2 to TM. Thus, the influ- 
ence of the perpendicular field on the wave vector of the DS 
phase is much weaker than that of the parallel field even at 
D = 0. The magnetic-field interval of the existence of the DS 
phase is also anisotropic, and for a perpendicular field at 
small x it is larger in the ratio (1 + D /8ex)-Lp,, /p, . 

We have neglected above the orbital effects, as can be 
done if H  s ' ( H  (0). 

Neglecting the action of the perpendicular magnetic 
field we can calculate now the field dependence of the mean 

value Q (H )for polycrystalline samples. As a result we obtain 

UP 

Q (If) /Q  (0) =IS,-, 5 GIh (x; dx, where 6,= p, ,H/20.2  ( T )  . 
0 

The function Q (S , ) /Q  (0) is plotted in Fig. 5. 

V. LOWER CRITICAL MAGNETIC FIELD H,, IN THE DSPHASE 

We consider now a bulky sample and obtain for it the 
lower critical magnetic field Hc, , which determines the ap-. 
pearance of a vortex structure in the DS phase. We confine 
ourselves to an investigation of superconductors with A,)( 
whereR, is the London penetration depth of the field in the 
nonmagnetic phase S a t  temperatures T,  < T 4  Tc, , and 6 is 
a correlation length or order (go[ ) ' I 2 .  We shall show below 
that magnetic fields with Fourier components (vectors) of 
the order A ,  ' take part in the formation of the vortex struc- 
ture of the DS phase. If 2,  >{, the response of the DS phase 
to these fields is approximately the same as the response to a 
constant field. Let the constant magnetic field be directed 
along the z axis. The electrons are then acted upon by a con- 
stant exchange field h,, a magnetic field B = curl A directed 
along the z axis, and a rapidly oscillating exchange field 
h(r) = (h,(r), h,(r), h,(r)) of the domain structure. To deter- 
mine the field Hc, it is necessary to find the functional of the 
free energy of the superconductor in the presence of such 
fields. 

Calculations similar to those performed in Sec. IV yield 
the equations 

These equations are generalizations of Eqs. (6),  (12), and (29), 
and have been obtained under the same assumptions. At h, 
( A  the self-consistent field equation takes the form 

FIG. 5. Dependence of the magnetic-structure vector Q on the magnetic 
field at a given temperature. 

where the notation is the same as in (30). Integrating with 
respect to A,  we obtain from (37) the functional (32), in which 
x = x ,  + x,, while C (0,x) must be replaced by 
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The paramagnetic susceptibility of the electrons is now pro- 
portional to the function C(x,,x2), and is different from zero 
in the presence of the perpendicular field h,(r) = (h,(r), 
h,(r),O), that intermixes the states with different values of the 
spin projection on the direction of the field h,. 

At slow spatial variations of the fields h, and B (r), the 
free-energy functional (32), (38) remains valid for volumes in 
which this field be regarded as constant. Summing over the 
space occupied by the superconductor, we arrive at the den- 
sity of the total functional of the Gibbs free energy 

I-4x/3n c + V (r) H 
[A r - - V (r) ] - , z=xi-t x2, 

8nhL2 e n 

calculated accurate to terms A2 at an arbitrary phase A. In 
(39) the quantity A and the function p(r) are the modulus and 
the phase of the above parameter, i.e., A (r) = A  exp(ip(r)), 
and the parameter D is the anisotropy energy when the direc- 
tion of the moment is along the z axis. 

If the vortex filament is located at the origin along the z 
axis, then the phase p(r) satisfies the equation 

[rot Vq(r)]  ,=n6 (r).  (40) 

Minimizing (39) with respect to s,(r), we obtain the equilibri- 
um value of s, in the form 

s,(r) =pB(r)l{28,,[1-C(~i, x2)] +2np2n+D). (41) 

Minimization of the functional (39) with respect to A(r) and 
p(r) yields the Maxwell equation 

Substituting (41) in (42) we get 
' 

This expression shows that the magnetic flux is quantized in 
the usual manner 

Using Maxwell's equation (42) and (43), we obtain for 

the energy difference between a superconductor with and 
without a vortex the expression 

By setting (44) equal to zero we obtain 

The quantity 2, determines also the penetration depth for a 
field parallel to the surface in the case of specular reflection 
of the electrons from the surface. 

It is seen from (45) that the field H,, decreases when the 
superconductor goes over into DS  phase, and that for a field 
parallel to the easy plane this decrease near the point TM is 
approximately fi. 

VI. REGION OF EXISTENCE OF THE DS PHASE IN A BULKY 
SAMPLE 

We have obtained earlier the region of existence of the 
DS phase in a plate of thickness L(R, with the magnetic 
field parallel to the plane of the plate. We now consider the 
behavior of a bulky sample of thickness L)R, in a magnetic 
field parallel to the surface. 

In the bulky sample, the magnetic field penetrates into a 
surface layer having a thickness on the order of 2,. We con- 
sider superconductors in which 2,>g and the condition 
[H r ' /H F2 (0) ] 2( 1 for the smallness of the orbital effect is 
satisfied. 

1f 2, $6, the magnetic field destroys the superconduc- 
tivity in the surface layer when the exchange field exceeds 
here the critical value. Since the destruction of the supercon- 
ductivity in the surface layer is accompanied by destruction 
of the superconductivity in the entire sample, curve 1 of Fig. 
5 is the boundary of the coexistence of the DS phase with 
respect to a parallel field both in a plate and in a bulky sam- 
ple (for a perpendicular field, just as in the case of a plate, the 
corresponding results are obtained by replacing 6,, by 6,, 
+ D ) .  

It is easily seen that the thermodynamic first-order 
transition field H,, obtained for the plate, describes also the 
first-order transition DS +FN in the surface layer, since the 
energy of the superconducting currents in the DS  phase is 
negligibly small compared with the energies that determine 
the transition. Indeed, the term H 2 / 8 ~  in (18) is small com- 
pared with the term pHs in the energy of the FN phase on the 
entire line of the DS -+ FN first-order transition. It is ob- 
vious also that curve 3 of Fig. 4 for the superheat field of the 
FN phase is valid also for the bulky sample. 

The line 4 of Fig. 4, which separates the DS and S 
phases, retains its form in the surface layer of the bulky sam- 
ple, but inside the superconductor, in the Meissner state, it 
becomes vertical. 

The magnetic structure changes under the influence of 
the field in those sample regions in which the magnetic field 
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penetrates. At H < Hcl this change will be observed only in a 
surface layer of thickness X,, while in the vortical state the 
magnetic structure changes also in those regions where the 
vortices are located. The character of the change of the 
structure, just as in the case of a plate, depends on the direc- 
tion of the field relative to the direction of a moment inside 
the domains. 

VII. MAIN CONCLUSIONS AND COMPARISON WITH THE 
EXPERIMENTAL RESULTS 

1. In a thin plate of thickness L(/Z,, for a field parallel 
to the surface, the magnetic susceptibility of a superconduc- 
tor in the DS phase is x = p2n/(0, + D ), where p is the 
moment and D is the magnetic-anisotropy parameter for the 
given field direction. Therefore measurements of the mag- 
netic susceptibility in the DS phase yield the exchange pa- 
rameter 0, that determines the most significant characteris- 
tics of magnetic superconductors. 

2. In a thin plate, the wave vector of the magnetic struc- 
ture decreases appreciable under the influence of a magnetic 
field parallel to the surface and to the direction of the mo- 
ment inside the domains (see Fig. 5), and peaks 2nQ appear in 
the neutron scattering, where n is an integer (see Eq. (23)). In 
the case of a field perpendicular to the direction of the mo- 
ments inside the domains, the wave vector of the magnetic 
structure Q decreases insignificantly with increasing field, 
and the distribution of the intensities of the neutron-scatter- 
ing peaks is independent of the field. 

3. In a thin plate the supercooling magnetic field of the 
phase H ',"I is equal to approximately 2(0, + D )Adh& near 
TM, and decreases with decreasing temperature (Fig. 4). 

4. In a bulky sample, the changes of the magnetic struc- 
ture are observed where the magnetic field penetrates. The 
region of existence of the DS phase under the condition A, 
)g takes the same form as in a thin plate. 

5. The field H,, in which vortices appear in the DS field 
near T,,, remains approximately the same as in the nonmag- 
netic S phase, and with decreasing temperature the field Hcl 
decreases insignificantly. The depth of penetration of the 
field decreases on going into the DS phase by a factor 
(1 + 4?rX)"*. 

6. The superconducting critical current j, in the DS 
phase decreases to zero with decreasing temperature from 
T, to T $  (Fig. 2). The wave vector of the magnetic struc- 
ture decreases with increasing superconducting current. 
This decrease is most noticeable near the point T,, . The Q (j) 
dependence is such that in weak currents the change of Q is 
negligible and becomes observable in practice only when j 
approaches the value j,. 

The action of the magnetic field on the superconducting 
phase with inhomogeneous magnetic order was investigated 
so far only in polycrystalline samples of HoMo,S,. Lynn et 
al. investigated neutron scattering as a function of the mag- 
netic field in the region of existence of an inhomogeneous 
magnetic structure.4s6 In HoMo,S, the inhomogeneous mag- 
netic structure vanishes in fields above 0.5 kOe. In the same 
compound, a decrease of the wave vector of the magnetic 
structure was observed upon application of the field, and this 
change amounted to approximately 20% when the field in- 
creased from zero to 0.2 kOe at 0.67 K. This Q (H) depen- 
dence agrees with our conclusions too. For the curve of Fig. 
5 for the polycrystalline sample we determine 13, = 0.8 and, 
takings(T) ~ 0 . 5  from Fig. 8 of Ref. 6, we obtain the estimate 
0,, ~ 0 . 2  K. Ishikawaet al. " estimated the suppression of T, 
due to exchange scattering in HoMo,S,. These data yield the 
close estimate 0,, ~ 0 . 1 5  K. Taking N (0) =: 3 eV- ' (Ref. 1 l ) ,  
we obtain h , ~ 2 0  K. In a parallel field the inhomogeneous 
structure vanishes then if 

@,, ~ 9 p , ) .  This value agrees with the previously given field 
value (0.5 kOe) above which the peaks of the inhomogeneous 
structure are no longer observable. 

In HoMo,S, the upper critical magnetic field H (0) is 
approximately 3 kOe (Ref. 12), and the condition for neglect- 
ing the orbital effects, used by us in the calculation of H ?', is 
satisfied. 

In conclusion, the authors thank I. 0. Kulik and the 
participants of the seminar of V. L. Ginzburg for a helpful 
discussion of the work. 
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