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We consider a two-dimensional Ising model with a small impurity bond concentration. At the 
phase transition point weevaluate exactly the correlation functionr (R )= (u(O)u(R )) . In contrast 
to the pure Ising model, where r (R ) a R - 5 ( = t, the exponent (of the correlator turns out to be 
equal to zero when there are impurity bonds present. At distances R)r, a el'", where v 4  1 is the 
impurity bond concentration, r (R ) is a function which varies much more weakly than a power- 
law function. 

PACS numbers:05.50. + q 

1, INTRODUCTION 

The study of the critical properties of weakly disordered 
systems in the vicinity of the order-disorder phase transition 
point occupies an important place in the physics of unor- 
dered systems. Of special interest are here simple models of 
magnetic materials when there is some kind of disorder pre- 
sent. It has recently become clear' that weakly disordered 
magnetic systems may possess their own critical behavior 
differing from that of pure systems. If there are some impuri- 
ties with a concentration v( 1 present in the magnetic mate- 
rial, there appears close to the phase transition point a tem- 
perature scale rv a exp( - const/v) such that when rvgr( 1, 
r = ( T  - Tc)/Tc, one observes the critical regime of the pure 
system, while for r(rv there may occur a totally different, 
universal, i.e., Y-independent, critical regime with a critical 
exponent determined by the symmetry of the initial model, 
the type of disorder, and so on. This was demonstrated for 
the first time in Refs. 1 and 2, by the example of a rp4 model 
with a random mass. 

The two-dimensional (20  ) Ising model for which there 
is an exact analytical solution is a very convenient system if 
one wants to study the effect of impurities on critical behav- 
ior. We shall consider the 20 Ising model with impurity 
bonds 

where3 m a r ,  i.e., the long-wavelength degrees of freedom of 
the Ising model which are important near the phase transi- 
tion and which determine the critical behavior are described 
by the 2 0  fermion fields JI. In this sense the fields $(x)  are 
near the phase transition point the "relevant" variables of 
the Ising model in contrast to the initial u-variables. One can 
change to the continuous limit (1.3) in various ways, but in 
out opinion this problem is most simply solved if one starts 
from a formulation of the Ising model in terms of Grass- 
mann variables4 (see Sec. 2). In contrast to the Hamilton 
approach (as, e.g., in Ref. 3) the transition to the continuous 
limit in terms of Grassmann variables can be called Lagran- 
gian in the sense that in that approach both 2 0  coordinates 
remain on a par. The transition to the continuous limit itself 
consists in that in the phase transition point the localized 
degrees of freedom are distinguished from the long-wave- 
length ones while the latter are described by the Lagrangian 
(1.3). 

This is the reason why it is possible also to describe the 
Ising model with impurity bonds. In our earlier work5 we 
showed that the presence of impurity bonds leads to the ap- 
pearance of an interaction between the fermions in (1.3) and 
in the main order in the concentration Y the system is de- 
scribed by the zero-component Gross-Neveu model6: 

where the variables u = f 1 are given at the sites of a square (1.4) 

lattice (a = 1,2 ,3 ,4 ,  are the unit vectors of the square lat- where = cv (c- is a constant which depends on and 7) 
tice, 3= - 1, 4 - 2) and the bounds J , ,  are a random while in the final result one must put N = 0. This procedure, 
function of the coordinates: known by the name replica method,' is connected with the 

J with probability 1 - v 
fact that the free energ; of the Ising model has the form of a 

(1.2) sum over single-loop configuration,' and since in the expan- 
with probability v ' sion of the theory (1.4) each loop is proportional to N the 

condition N = 0 leaves in the free energy just the single-loop # J, v( l '  It is that near the phase transition diagrams The two-dimensional theory (1.4) is renormaliza- 
point the pure (2= Ising is to a 2D ble and renorma~ization-group methods9 enable us to evalu- 
of free massive fermions 

ate exactly the critical behavior (similar to how in the four- 
dimensional case the scalar p4 field theory is 

(l") renormalizable9~'). We showed in Ref. 5 that the singularity 
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in the specific heat which in the pure Ising model has the 
form c a ln(l/r) becomes weaker when 747,: c a In l n ( l / ~ ) .  

The aim of the present paper is the calculation of the 
correlation function r (R ) = (a(O)o(R )) at the phase transi- 
tion point, i.e., the calculation of the second critical expo- 
nent of the model. After this the remaining critical expo- 
nents are uniquely determined. It is well known that in the 
pure Ising model r (R ) a R - <, where 5 = 4. It turns out that 
impurities weaken the singularity so much that < tends to 
zero and r (R ) decreases more slowly, logarithmically: 

Our paper is organized as follows. We give in the second 
section the formulatidn of the pure Ising model in terms of 
Grassmann variables and after that we obtain in that lan- 
guage an expression for the correlation function 
r (R ) = (a(O)u(R )) . In the third section wedemonstrate how 
one can take in that expression the continuous limit, and 
after that we obtain (Sec. 4) the well known result ( = 4. We 
show in Sec. 5 how in the spirit of Ref. 5 one can generalize 
the calculations given here to the case where there are impu- 
rity bonds present and we obtain the result (1.5). 

2. THE CORRELATION FUNCTION OF THE SING MODEL IN 
THE GRASSMANN VARIABLE FORMALISM 

The transition to Grassmann variables is performed as 
follows (see, e.g., Ref. 4). It  is well known that the partition 
function of the Ising model can be written as a sum over 
closed-contour configurations on the 2D lattice: 

where A = tanh J, L ,  is the length of the contour 9 ,  and 
@ (9) is the phase factor of the close contour: 

Q (9) =n exp ( i  $1 ;, 
9 

here A p  is the angle through which the tangent vector has 
rotated along the path.8 Thanks to the phase factor (2.2) each 
closed contour enters with a weight ( - 1)" + ', where n is the 
number of times the contour intersects itself. One can check 
easily by a straightforward calculation that the same expres- 
sion (2.1) is obtained from the functional integral: 

Here the (a = 1,2,3,4) are the Grassmann variables speci- 
fied at the lattice sites and by definition have the properties 
(see, e.g., Ref. 4) 

h h 

while $ = $2. The matrices Pa and C have the following 
form: 

The Green function of the theory with (2.4) is defined as 
follows: 

G a R ( x ,  y )  = ( $ a ( x ) i j b ( y ) > .  (2.7) 

One can easily check by a straightforward calculation, using 
the Lagrangian (2.4), that the Green function (2.7) satisfies 
the equation 

We see that the matrix ?a plays the role of the matrix which 
induces a transition by one step in the dkection a .  If we 
introduce the one-step-transition matrix A (x j ' )  which by 
definition is non-zero for neighboring points: 

we can write Eq. (2.8) in the form 

As the functions occurring in Eq. (2.10) depends only on 
argument differences, the solution of that equation takes fol- 
lowing a Fourier transformation the simple form 

Using (2.6) and (2.9) we can easily check that 

[here p = ( p,q)]. Using this expression one shows easily that 
in the phase transition point, at A = A, = ~2 - 1, two of the 
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eigenvalues of the matrix 1 - A (p) vanish when p = 0. 
One sees easily f r ~ m  symmetry considerations that the 

random-walk matrix A (p) 1, = ,  is diagonalized in the so- 
called momentum representation-in the base of the vectors 
{S-4 ,S i9  S312,S-3/zj, where 

1 

exp (k ikn/4) FIG. 2. The contour 9, on the dual lattice. 

exp ($- ik3n/4) 
n 

eap ( i oo' ) =ioot, 
The corresponding transformation matrix has in this repre- 
sentation the form we can write the average 

1 1 1 1  
E e e3 

( o  (0) o ( R )  )=Z-' z o (0) o ( R )  e rp  {JZ  o.oi+,} 
= 6 e2 e6 $1, 8 = ei.14, ii = e-i.4. {of i,a 

in the form 
e3 e9 E9 

One checks easily that in the continuous limit ( p( 1), close to 
the phase transition point r -  (A - Ac)/Ac (1, the Green 
function, written in the momentum representation 

&f=Fj-l&6, 

acquires a 2 X 2 block which has the form of the Green func- 
tion of a free spinor particle: 

while the other components are of the order of unity and 
therefore do not fluctuate strongly (see, e.g., Ref. 5). Here the 
;p are 2 X 2 Dirac matrices and m = 2(A - A, )/Ac - r. 
Therefore, close to the phase transition point only two of the 
initial four degrees of freedom are important. We shall call 
these two degrees of freedom, which are described by the free 
spinor particle Lagrangian (1.3), the long-wavelength ones 
and the others the localized ones. We note that the Green 
function (2.1 I), (2.12) is exactly the same as the Green func- 
tion of the Ising model (1.1) which in the random-walk lan- 
guage is given by 

The summation is here over all contours 9 which connect 
the points x and y with a fixed direction a for leaving the 
point x and a fixed directionfl for entering the pointy, L ,  is 
the length and Q, (9) is the spinor phase factor (2.2) of the 
contour 9 (see, e.g., Refs. 8, 10). 

We find now the expression for the correlation function 
r (R ) = (a(O)o(R )) in theLagrangianformalism (2.4). Using 
the identity 

FIG. 1 .  Contour 9, connecting the sites 0 and R.  

where J ; ,  = J + i7~/2, if the bond (&a) lies on a contour 9, 
connecting the points 0 and R (Fig. l), and Jia = J in all 
other cases. It is well known that the 2 0  Ising model is self- 
dual (Kramers-Wannier symmetry "). In the dual variables, 
which we denote by the same letter cr, specified at the sites of 
the dual lattice, the partition function has the same form as 
in the original variables: 

while 7 and J are connected through the relation 

In the phase transition point J = 7." When we change to the 
dual variables in (2.14) we obtain the same expression, except 
that now J must, according to (2.16), to be replaced by - J 
on the bonds which intersect the contour 9, (Fig. 2). It is 
clear that the result is independent of the form of the contour 
Y o ,  so that in what follows we shall assume it to be the 
horizontal straight line connecting the points 0 and 
R (Fig. 3). 

Changing to the Grassmann variables we can write the 
expression for the correlator (2.14) as follows: 

FIG. 3. The configuration of the contour Po, considered in what follows. 
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Here A,., = - A, if the bond (x,a) is part of 9, and A,,, = A 
in all other cases. We shall in what follows designate bonds ,- - - - - - - - - - 
on a contour by (x,2), i.e., the site x of such a bond will be 
situated under the contour 9, (Fig. 3). Adding and subtract- 

+R 

ing in (2.17) the expression 
FIG. 5. Closed loops arising from the Green functions shown in Fig. 4. 

n C +x+2@ze, 
J" o 

we get 

In these expressions the summation and multiplication 
are over the points x pertaining to Yo, and the averaging is 
performed with the weight (2.4). 

3. TRANSITION TO THE CONTINUOUS LIMIT 

In this section we show that the evaluation of the corre- 
lation function (2.18) at the phase transition point is equiva- 
lent to taking an average: 

(we set the lattice constant equal to unity), where +(x) is a 2 0  
spinor field and the averaging is performed with the weight 

9=J s.(Jc(Vaq). (3.2) 

When expanding the product in (2.18) we get products 
of all possible Green functions which are attached by their 
ends to the contour 9, (Fig. 4). Using Eq. (2.8) we can sup- 
plement these Green functions by the bonds on the contour 
itself and instead of (2.18) we get products of all possible 
closed loops (Fig. 5). For instance, the fourth-order loop 

Here 17, is an n-th order loop: 

where 

One checks easily by straightforward calculation that in the 
phase-transition point 

where p,,, (x) are functions which for large x decrease faster 
than x- ' while 

To do this we use the exact lattice expressions (2.1 1) and 
(2.12) to yaluate the appropriate components of the Green 
function G (p): 

i sin q 
G" (P, q )  =G44 ( p ,  q) = 4[in2 (p/2) 

(q/2) ] 

(Fig. 6) will be by the expression + 1 (In,)  sinYp/2) +sinz (q/2) 
2 [sin2 (p/2) +sin2 (q/2) ] - 1, 

. . . f: pb (x,, x2) Gbc (x,, x,) Gd(x3, x4) Gdn (x4, x,) , (3.3) 
=,=I x,=i sin p 

G2' (P. I) =Gi2 (P. 9) = 4lsin2 (p/2) +sin2(q,2) ] . 
where here a,b, ... = 2,4, as by our definition of the Green 
function which make the loop (see Fig. 7, the exit and Here 1, = fi - 1. The functions in (3.5) are given by inte- 
entry can only occur vertically. Moreover, exit and entry in grals of the form 
the direction 4 are possible only at last the points x + 2 (see 
Fig. 7) and we inclide this condition also inthe definition of &l - 
the Green functions in (3.3). E(.)= -n jdpeipx 2x "-G(p.q), 

Just as in the calculation of the free energy of the Ising 
J 2n 
-R 

model, the average (2.18) can now be written as an exponen- 
tial: 

FIG. 4. Green functions, attached to the contour 9, arising from the 
expansion of the product (2.18). FIG. 6.  Fourth-order loop. 
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FIG. 7. Definition of the Green functions G " b ( x , ~ , )  forming closed loops 
of the product (2.18). 

while the off-diagonal Green functions G 24( p,q) and G 42( p,q) 
are written here with an additional weight exp( + iq). Inte- 
gration over q gives 

" d q  1 sin ( p / 2 )  g Z 2 ( p ) =  J r ~ " ( p ,  q ) =  --+ 
2  2 '"[ l+s in2(p /2)  1'" . s ign p,  

- X  

Substituting these expressions into (3.8) we get (3.7) for large 
X. 

We see that the functions G "(x - XI) and G 4 4 ( ~  - XI)  

contain a contact term which goes into operation when the 
pointsx and x' coincide. Indeed, when evalating the loop 17, 
there occurs yet another contact term due to the fact that 

The transition to the continuous limit consists just in sum- 
ming these contact terms which, firstly, lead to a linear di- 
vergence of each loop n,, and, secondly, can lead to the re- 
normalization of the coefficient ( - 2 )  for the 
"long-wavelength" Green functions 1/27~x. 

First of all we now verify that indeed the series 

does not contain a linear divergence (as should be the case at 
the phase transition point), and after that we show that the 
coefficient ( - 2) is not renormalized. It  is very simple to 
establish the first. The linearly divergent part of the series 
occurring in (3.4) is given by the expression 

Next, changing to the functions (3.9) we have 

410 Sov. Phys. JETP 56 (2), August 1982 

Substituting here (3.9) we see easily that 

To explain the second problem we substitute instead of the 
coefficient ( - 2) the factor - a and assume for the present 
that a # 2  and afterwards take the limit a-2 in the final 
result. Due to the diagonal (localized) Green functions G 22 

and G 44, loops consisting of "long-wavelength" Green func- 
tions G " and G 42 

R 

( - a )  5 dxl . . . dxnGX (x , -x , )  GL2 (x2-x3) .  . . GL2 ( x n - x i ) ,  
1 

(3.11) 

arise not only from the loop 

where all 2 must be replaced by G 24 and G 42, but from the 
higher-order loops in which there are some diagonal (local- 
ized) Green functions. One sees easily that as a result there 
arises for the loop (3.11) a coefficient ( - aA )" with 

The loops 17, consisting of G 24 and G 42 are non-vanishing 
only when n = 2k. To take into account the contact term 
(3.10) we integrate in the loops 17,, over k staggered varia- 
bles. Then 

Here f (x,,x,) is a regular function of x ,  and xz: 

We thus obtain loops consisting of the functions f and 
one sees easily that due to the contact term in (3.14) the coef- 
ficient of each function f i n  the loop is given by the expres- 
sion 

Substituting here (3.12) and taking the limit a-+2 we get the 
coefficient ( - 2)'. 

On the other hand, the expansion (3.1) has the form 
(3.4), (3.5) with continuous Green functions 
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In this case the expression for the loop (3.5) has the form 

If we now integrate over every other variable, we again ob- 
tain the above-mentioned series of loops which consist of the 
functions F (x,xf ) of (3.14) with a coefficient ( - 2)2 in front of 
each functionj We are thus led to the statement (3.1), (3.2) 
made at the beginning of this section. 

4. CALCULATION OF THE EXPONENT OF THE 
CORRELATION FUNCTION OF THE PURE ISING MODEL 

In this section we obtain the well known result 

I' ( R )  =R-'I4. (4.1) 

We showed in the preceding section that 

where 

In the even-order loop I7,, (odd-order loops vanish) we inte- 
grate alternatively over k points: 

Below we see that the main (logarithmic) contribution to this 
integral comes from integrating close to the endpoints of the 
interval [l,R ] when 

2 (xl/xz) ln (xz/xs) . . . (xhlxl) nzh = - J d q . .  . axh 
(~i-xz) ( x z - ~ ) .  . . (xA-x~) 

(4.5) 
In this integral we make the substitution 

x2/x1=eE~, x3/x2=eE2, ........, x k / ~ k - i = e ~ ' - ' ,  

after which we obtain 

We thus see that the integration over x, is logarithmic. The 
other integrals converge so that we could extend the integra- 
tion to infinity. Changing to the Fourier representation 

and substituting the expression for 17,, into (4.2) we get 

Thus r (R ) ZR -'I4. 

Before we go over to the impurity Ising model we make 
the following remark. The calculation of the exponent of the 
correlation function of the pure Ising model formulated in 
the form (3. I), (3.2) is similar to calculation made in Ref. 12 
where the authors started from the beginning from a Harnil- 
ton formulation of the continuous limit (1.3) and reduced the 
problem to calculating the average: 

(apart from the substitution 2-?r this is the average (3.1)). 
However, in such a formulation it is necessary, when ex- 
panding the exponential in integrals along the contour Yo, 
to go correctly around the pole (x - XI)-' of the Green func- 
tion. It then turns out that only the second-order loop gives a 
logarithmic contribution. However, because we are applying 
this in what follows to the impurity model, it was important 
to learn how to obtain the continuous limit of (3.1), (3.2) in 
the symmetric (Lagrangian) form, starting directly from the 
initial lattice formulation of the Ising model. 

5. CORRELATION FUNCTION OF THE SING MODEL WITH 
IMPURITY BONDS 

In the case of the Ising model with impurity bonds all 
we have said in Sec. 2, leading to Eq. (2.18), remains valid, 
with the sole difference that now the factor A depends on the 
coordinates and that we must add to the averaging in (2.18) 
averaging over the impurities: 

The averaging over the A,, after the expansion of the pro- 
duct in (5.1) is done in exactly the same way as for the evalua- 
tion of the free energy.' 

It  is well known that the free energy of the Ising model is 
given by an expression such as (2.1) where one must sum over 
the configurations of one closed c o n t ~ u r . ~  When there are 
impurity bonds present one must write this expression in the 
form 

i.e., one must average the A-product along a closed path. The 
fact that this averaging is non-trivial is connected with the 
fact that there are amongst all possible configurations of the 
closed contour in (5.2) configurations with overlapping 
paths. If, e.g., in one of the configurations the bond is 
passed through twice, this bond will occur with an addi- 
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FIG. 10. Four-fermion vertex (&)(&). 

FIG. 8. Diagram of second order in v in the free energy expansion. 

tional weight - (XI'. If we consider simultaneously two 
contacts as, e.g., in Fig. 8, we get an additional contribution 
of the form 

@ is the direction opposite to f l  ). Continuing thus we can 
construct a perturbation theory in terms of the number of 
contacts in the loop or in powers of v. 

We note that in the continuous limit under the condi- 
tion v( 1 we can take into account only two-fold overlapping 
of the contours. We can thus represent the n-th order of the 
perturbation theory as follows: n "doubled-up" bonds 
(bonds on which contact occurs) must in all possible ways be 
connected by free Green functions G @(x - x') in such a way 
that then only a single closed loop is formed (Fig. 9). If we 
now sum over the directions of these bonds and after that 
replace the lattice Green functions by the spinor ones (2.13), 
there occurs in the points of contact a "splicing" of Green 
functions, four-fermion vertices arise here (Fig. lo), and we 
get the n-th order of the perturbation theory of the Lagran- 
gian theory 

in the charge g = cv [c is a number depending on the quanti- 
ties J and 7 in (1.2)]. Here, a,b = 1,2 ,..., N are replica expo- 
nents and in the final result we must put N = 0. This last 
method, known as the replica method,' leaves in the pertur- 
bation theory only single-loop diagrams. 

FIG. 9. Example of a fifth-order diagram in the free energy expansion 

We note that there is in fact yet another effect of the 
overlapping of the contour which occurs at the level of the 
localized degrees of freedom. This effect is connected with 
the overlapping of the contour caused by the localized closed 
loops at each bond (Fig. 11). Taking these loops into account 
leads to a simple mass renormalization in the Green func- 
tion, i.e., simply to a shift in the phase transition tempera- 
t ~ r e . ~  We shall asssume that we are at the phase transition 
point of the impurity model and that the renormalized mass 
is zero. There are no other effects connected with the local- 
ized degrees of freedom to first order in v. In view of this, the 
transition to the continuous limit (taking the localized de- 
grees of freedom into account) in Eq. (5.1) proceeds exactly 
in the same way as in the case of the "pure" Ising model (Sec. 
3). 

In contrast to the free energy (5.2) we get in the present 
case from (5.1) a many-loop expansion in which vacuum 
loops, i.e., the loops not attached to the contour 9, (Fig. 5), 
are forbidden. However, by itself the averaging over the im- 
purities does not differ at all from the earlier problem. Due to 
this averaging there will now be a "splicing" of Green func- 
tions both inside separate loops and between different loops. 
It  thus looks ass if we had again Eq. (3.1): 

in which, however, the averaging occurs with the weight 
(5.4). However, now in the expansion of (5.5) the loops at- 
tached to the contour 9, should not, in contrast to the vacu- 
um loops, contain the replica factor N. This is attained by 
introducing the N X N replica matrix: 

and, in fact, instead of (5.5) we must average the quantity 

The calculation of the correlation function of the impurity 
Ising model thus is reduced to the following form: 

FIG. 1 1 .  Localized closed loops leading to mass renormalization. 
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---y-.-=--- 
FIG. 12. Diagram renormalizing the charge g. 

A 

The matrix A selects from the N replicas a single one for the 
closed contours on the contour 9,. All other closed loops 
vanish when N = 0. We note that in this case it is important 
that real spinors [by in (5.8) we understand the quantity 

occur in (5.8). The reason is that the problem formulat- 
ed in the language of complex spinors in fact gives the square 
of the correlator, while we must average the correlator itself, 
and not its square, over the impurities. 

As in (1.4), the theory (5.8) is renormalized (renormal- 
ization group method; see, e.g., Ref. 9). AS before5 the renor- 
malized charge is given by the diagram shown in Fig. 12. The 
corresponding equation has the form 

FIG. 14. Example of a diagram which does not contribute to the renor- 
malization of the matrix A.  

the fact that a(0) is not small]. The corresponding equations 
of the renormalization group have the form 

or (when N = 0): 

da - 1 ---- da ' - 2 a'g, - _ - - 1 
5~ dE 5-c a'g + - 31 ag. (5.14) 

One can easily solve these equations and they lead when we 
use the initial conditions (5.12), to the following functions: 

Here c = ln(A /A ') is the renormalization parameter When evaluating the correlator (o(O)a(R )) we are inter- 
and A and A ' are the old and the new length scales at small ested in distances R>r, a exp(l/v), i.e., length scales at 
distances. It  follows from (5.9) that which the critical regime of the impurity Ising model begins. 

We shall therefore in what follows be interested only in the 
g ( ~ ) =  (1 (5.10) asymptotic expression at &77/g,: 

n 
fi % 

h 
agog 

To renormalize the matrix A we write it in the form a )  " ( )  ln ( )  9 E m  (5.16) 

(5.11) In order to evaluate the correlator r (R ) we must now 
average the exponential (5.7), which depends on the renor- 
malized a ( c )  and a'(6 ) of (5.16), over non-interacting fer- 

where mions. When we expand the exponential we get again a sin- 

(5.12) gle-loop expansion. To second order we have 
a (0) =2, a'(0) =O. 

h 
1 "  

The renormalization ofA is done by the diagrams shown in 
J dxi dx2[a2- (cL')~]G'(x,-I~). (5.17) 

u 

Fig. 13. It  is important that the diagrams of higher order in a 
1 

such as the one in Fig. 14 are not logarithmic and therefore From (5.16) we find: 
do not contribute to the renormalization [notwithstanding 

A 

FIG. 13. Diagrams renormalizing the matrix A.  

One checks easily that due to the factors a(6 ) and a'(( ), 
leading in loops of higher order than the n-th to an additional 
decrease at large distances a 5 - ", all loops of higher than 
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second order converge. The main logarithmic contribution 
to r (R ) therefore comes only from the second-order loop 
(5.17): 

The calculation leads to the result 
1 r (R) ~ e x p  {- -[ln in R]' (In R) ('"*)-' '"('/*) 

4ngo 1 (5.19) 
(c=const- I ) .  

6. CONCLUSION 

We have studied in this and in earlier papers5 the criti- 
cal properties of a 2 0  Ising model with impurity bonds. We 
have shown that in accordance with general ideas about the 
critical behavior of weakly disordered the Ising 
model with impurity bonds changes in a narrow temperature 
range r, a exp( - l /v)g 1 near the phase transition point 
into another (universal) critical regime where, as compared 
to the "pure" Ising model, the singularities in the phase- 
transition point become weaker. The effect of the impurities 
turns out to be so strong that the exponent of the correlation 
function becomes zero. 

According to the scale-invariance hypothesis, the five 
critical exponents a of the specific heat, P of the spontaneous 
magnetization, Y of the correlation radius, < of the correla- 
tion function, and y of the susceptibility are connected by 
two relations (see, e.g., Ref. 10): 

Since for the Ising model with impurity bonds we now know 
three exponents, viz., a = 0, Y = 1, and 5 = 0, Eqs. (6.1) en- 
able us to determine the other two: y = 2 and P = 0. One 
can, independent of (6. I), by the method developed in this 
paper evaluate the spontaneous moment below the transi- 
tion point. One sees easily that the calculations in that case 
are similar to those for the correlator and the spontaneous 
moment has a "logarithmic" form, analogous to (1.5), where 
the inverse mass plays the role of the distance. 
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