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The influence of the nonlinear effects on the surface impedance of a conductor located in a 
constant magnetic field H oriented parallel to its surface is investigated in the case when the skin 
effect has the anomalous character. It is assumed that the time taken by an electron to traverse the 
skin layer is much shorter than the mean free time and the period of the electromagnetic wave. 
The reflection of the electrons by the surface is considered to be nearly diffuse scattering. The 
corrections to the surface impedance that stem from the following nonlinear currents are estimat- 
ed: the current that is cubic in the field of the fundamental wave (the first harmonic), the current 
produced by the fields of the first and second harmonics together, and the current produced by the 
electric field of the first harmonic and the magnetic field of the rectified radioelectric current. 
Normally, all the three corrections are of the same order of magnitude. In certain cases the 
influence of the homogeneous magnetic field produced in the interior of the sample by the radio- 
electric current predominates. The nonlinearity can be significant even when the magnetic field of 
the wave is much weaker than the field H. 

PACS numbers:73.25. + i 

A finite-amplitude wave incident on a conductor 
changes the effective conductivity of the conductor at the 
wave frequency. This makes the reflection and absorption 
coefficients dependent on the wave amplitude. Such self-ac- 
tion effects have been experimentally observed in metals and 
semimetals in a number of investigations under the condi- 
tions of both the anomal~us' .~ and the normal3 skin effect. In 
Ref. 3 theoretical calculations of the fundamental-wave-am- 
plitude dependence of the absorption and the amplitudes of 
the higher harmonics under normal-skin-effect and wr(1 
(where o is the wave frequency and T is the relaxation time) 
conditions are also performed which are in good agreement 
with experiment. But no theoretical analysis of the various 
mechanisms leading to the dependence of the surface imped- 
ance on the wave amplitude under anomalous-skin-effect 
conditions has so far been performed. 

In the present paper we study the influence of the non- 
linear effects on the surface impedance of a conductor locat- 
ed in a constant magnetic field H oriented parallel to its 
surface under anomalous skin effect conditions, when the 
following inequalities are satisfied: 

where S is the skin depth, v, is the Fermi velocity, and r, is 
the Larmor radius. We consider the magnetic field H to be 
nonquantizing. Furthermore, we shall assume that the time 
of transit of the electrons through the skin layer is much 
shorter than the mean free time and the period of the electro- 
magnetic wave, i.e., that 

where R is the cyclotron frequency. The reflection of the 
electrons by the sample surface is considered to be nearly 
diffuse scattering. 

In our situation the self-action effects turn out to be due 
to the change that occurs in the effective conductivity as a 
result of the influence on the electron motion of the magnetic 
fields produced in the conductor by the incident wave. In 
this case not only the magnetic field of the fundamental 
wave, but also the magnetic field of the second harmonic, as 
well as the magnetic field of the rectified (radioelectric) cur- 
rent, is important. 

NONLINEAR CONDUCTIVITY IN A MAGNETIC FIELD 

Let the electromagnetic field have the form 

E(r, t)  =E(k,, o i )  exp (ik,r-hit) -I- . . . 
+E (kn, oN) exp (ikNr-ioNt) , 

H(r, t)  =H(k,, o,) exp (ik,r-ioit) + . . . 
+H (kN, oN) exp ( ikd - iu~ t ) ,  

where k,(lk,ll ... k,lly. 
Let us find the nonlinear current jhN'(r, t ) produced at 

the frequency w = w, + w,  + ... + w,, by the electromag- 
netic field (3) in an unbounded conductor: 

Let us write the kinetic equation for the electron distri- 
bution function f in the form 

at  af atl a j  a/ 
-+v-+--+eE(r,t)v- 
at  ar d t  at, a E 

1 a/ I J I  

( 
f - f o  +e E , ( ~ , ~ ) + - I v x H ( ~ , ~ ) I , )  dp,=--l 

C T 

where t, is the time of the motion along the trajectory in the 
constant magnetic field H (the field H is directed along thez 
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axis), E is the energy, p, is the component of the momentum 
along the z axis, and f, is the equilibrium distribution func- 
tion. 

For the derivative dt,/dt we have 

The nonlinear current can be computed by finding from 
the kinetic equation (5) the corresponding correction 
f ( N t ( t l ) e r k r - i ~ '  to the distribution function: 

Let us define the nonlinear conductivity tensor 
(N) 

(Jaa,a. ... rrN(kt, a t ;  kz, 02; . . . k ~ ,  ON) 

by the following relation: .. 
j:N) (k, O) =P (kt, ol ,  a l ;  kz, 02, a2; . . . k ~ ,  ON, a ~ )  

( N )  X CJaa,a, a ,(ki, a,;  k2,02;. . . ~ N I  ON) (8) 

h 

whereP(k,, w,, a,; k,, w,, a,; ... k,, w,, a,) is the operator of 
symmetrization with respect to the frequencies, the wave 
vectors, and the vector indices (sum over all transpositions). 

Let us introduce the tensor A LN,i,..,N, such that 

By solving the kinetic equation (5) by the iterative pro- 
cedure, we can establish the following recursion formulas, 
which allow us to compute the components of the tensor dN) 
in the leading approximation in the parameter 6 /r, charac- 
terizing the anomalousness (we assume that 1 k, I -6 - I ) :  

*'I' aa,a2 , ,aN ( k t ,  k,, . . . , k1; 0 1 ,  02,. . - 7 01) 

for N>1>3, and 

(2) Aaa,,,..,,.(k,, k , ;  o,.o,)= 

The function A thla2...aN(kl; 0,) has the form 

where E, is the Fermi energy andp is the radius of curvature 
of the trajectory in p space. All the quantities in the inte- 
grand in (12) are taken at the v, = 0 stationary-phase points, 
which are numbered by the index s. We shall assume that 
there are only two such points on each trajectory (i.e., that 
s = 1,2). For a convex Fermi surface the formula ( 12) can be 
transformed into the form 

where n, is the unit vector along the normal to the Fermi 
surface, K (9) = K (p, 0 = ~ / 2 )  is the Gaussian curvature of 
the Fermi surface, and p and 19 are the azimuthal and polar 
angles of the vector n, (the polar axis coincides with they 
axis). 

Let us note that the nonlinearity in the present situation 
is due to the Lorentz force (this is due to the fact that the 
force eE is v , / d  times weaker than the Lorentz force). 

The formulas (1 1) and (13) are generalizations of the 
formulas (2 1) and (22) in Ref. 4, in which the nonlinear con- 
ductivity diby(k,, w; k,, w) at the frequency of the second 
harmonic is obtained. From the formulas (12) and (13) it fol- 
lows that, as in the linear theory, the contribution of the 
longitudinal fields to the transverse current is insignificant. 

Here we neglect that part of the nonlinear conductivity 
dN' which undergoes geometrical-resonance oscillations, 
and describes the anomalous penetration of the field, since 
we can, in the electromagnetic-wave-reflection problem, 
considered in the leading approximation iii the parameter 6 / 
r,, neglect the anomalous penetration effects (except in the 
situation when the Fermi surface has sections the diameter 
of whose orbit does not depend onp, (Ref. 5) and in the case 
of resonance at the extreme frequencies w = l.f2,,,, (where 1 is 
a whole number) when wr 2 r,/S (Ref. 6). 

If the Fermi surface is closed, then the integrand in (13) 
can have a singularity when n, = 0. Analysis shows that this 
singularity should be integrated in the sense of the principal 
value. But when N>3, for certain components of the tensor 
A :AI aN, e.g., for the component A !Jzz, this singularity can- 
not be integrated even in the sense of the principal value. 
Naturally, all the components of d:', ,N are in fact finite. In 
the present case it is necessary to correctly take into account 
the contribution to the nonlinearity of the electrons near the 
elliptic reference points with orbit diameter 
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2 r ( p , )  6 3  ( ( ( o f  it-') /Q  1 '+I), 

to which the stationary-phase method is inapplicable. We 
shall not dwell here on the investigation of this quite compli- 
cated problem, since below we shall need only the compon- 
ents d', and a(!;,, , for which the formulas (9)-(13) give as- 
ymptotically exact expressions in the closed-Fermi-surface 
case as well [the integrand in (13) does not have a singularity 
at all]. 

The explicit expressions for the components d:lx and 
a!?,, have the form 

where 

If, on the other hand, the Fermi surface is open, but the 
trajectories are closed and the inequality 

2 r ( p , )  > G ( l  ( o + i ~ - ' ) / Q 1 ~ + 1 )  

is satisfied for allp,, then the relations (9)-(13) give for all the 
components of the nonlinear conductivity tensor d~~,.,,, as- 
ymptotically exact expressions that are valid in the leading 
approximation in the parameter S /r,. 

THE NONLINEAR CORRECTIONS TO THE SURFACE 
IMPEDANCE 

Let an electromagnetic wave of frequency w, whose 
electric field vector is perpendicular to the constant magnet- 
ic field Hllz, be incident normally at the surface of a conduc- 
tor occupying the half-space y > 0. We shall assume that the 
Fermi surface (like any other constant-energy surface) has a 
symmetry plane perpendicular to H (for example, this can be 
a sphere or a corrugated cylinder with axis parallel to H). 
Let, moreover, R ( p,) = const. 

On account of the symmetry of the Fermi surface, the 
linear-conductivity component u,, = 0. Therefore, in the 
present case the electric field of the linear approximation in 
the conductor will have only an x component (we have in 
mind only the transverse components, since the longitudinal 
components can be neglected). As can be seen from (12) and 
(13), the nonlinear-conductivity components d~~,,., also 
vanish. Consequently, the electric fields and the currents, 
both linear and nonlinear, will be perpendicular to H. (It is 
clear that the vanishing of the components a::;.,,, , which has 
been proved by us for an unbounded medium, is connected 
only with the symmetry of the Fermi surface, and, conse- 
quently, it will occur also in the case of the semifinite con- 

ductor, at any rate, when the scattering of the electrons by 
the sample surface is isotropic.) 

In the linear theory the surface impedance gL (w) is de- 
fined by the relation 

(17) 
where E "'(0, w) and H'"(0, w) are the amplitudes of the elec- 
tric and magnetic fields of frequency w at the surface of the 
conductor, as computed in the linear approximation. In 
third-order perturbation theory, there arises at the frequen- 
cy of the incident wave a nonlinear current j '3'( y, 0) that 
emits some additional electromagnetic field at the same fre- 
quency. Let AE (0, w) be the amplitude of the electric field, 
emitted by the currentj '3'( y, w), at the surface of the conduc- 
tor; AH (0, a ) ,  the amplitude of the magnetic field. 

In the nonlinear theory the surface impedance <,(a) 
can be defined similarly to (17): 

where E (0, w) and H (0, w) are the amplitudes, computed with 
allowance for the nonlinear effects, of the electric and mag- 
netic fields of fundamental frequency at the surface of the 
conductor. 

The surface impedance c,,(o) introduced in accor- 
dance with (18) will describe in the usual fashion the electro- 
magnetic-wave reflection at the fundamental frequency (i.e., 
will determine the amplitude and phase of the reflected wave 
at the frequency w). 

Setting 

and taking account of the fact that 

we obtain from (1 8) for the nonlinear correction to the im- 
pedance the relations 

The strength AE (0, w) of the secondary field emitted by the 
nonlinear current j '3'( y, w) can be found, using the reciproc- 
ity theorem. As a result, we shall have 

A % N L ( ~ )  --- - 4n CL(o)  
tL (a> 

c ( E ( l )  ( O , o )  ) jdy j (3 )  ( y ,  o ) E ( i ) ( y ,  
(20) 

where E "'( y, w) is the electric field in the conductor as com- 
puted in the linear approximation. 

The nonlinear current j '3'( y, w) can be represented in 
the form of a sum of three terms 

i'" ( y ,  o) ~ j , ' ~ '  ( y ,  o )  + j j 3 )  ( y ,  0 )  +j3(') ( y ,  a ) ,  (21) 

where j j3 ' (  y, w) is the current that is cubic in the field of the 
first harmonic, jj3'( y, w )  is the current produced by both the 
field of the first harmonic and the field of the second har- 
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monic, and ji3)( y, w) is the current produced by the electric 
field of the first harmonic and the magnetic field of the recti- 
fied radioelectric current. 

Below we estimate and compare the contributions of 
the individual terms in (21) to the surface impedance. We 
shall assume that the surface scattering of the electrons is 
close to diffuse scattering, or, more exactly, that the reflec- 
tivity factorp, which depends on the glancing angle a ,  differs 
significantly from unity when a - (S /rH)'I2, but that 
p(a = 0) = 1, p(a) decreasing smoothly from 0 to values 
-(S /rH)'I2 a s a  is varied. (The going to unity of the reflectiv- 
ity parameter p(a = 0) normally occurs in the case of elec- 
tron reflection by a metal surface.') It  is known from the 
linear that, in the present case, we can actually con- 
sider the problem in infinite space if we are not interested in 
factors of the order of unity. But the linear-conductivity ten- 
sor aaD of the unbounded medium should then be replaced 
by a modified tensor CUD (see, for example, Ref. 9). The dif- 
ference between a,,, and aaD lies in the fact that in the ten- 
sor aaD the factor describing the cyclotron resonance is tak- 
en into account only at those u,, = 0 stationary-phase points 
for which the orbit in real space can be a resonance orbit. 

Here we also shall, in computing the nonlinear current 
j '3'( y, w), consider infinite space, assuming that the fields are 
established by a current sheet lying in they = 0 plane, and 
modifying in the indicated manner the resonance factors in 
the linear and nonlinear conductivities. Let us express the 
nonlinear currentj '3'( y, w) in terms of the value of the ampli- 
tude of the electric field of the linear approximation on the 
current sheet, which field we identify with the field E "'(0, o) 
at the metal surface. We must note here that, as follows from 
the results of Refs. 4 and 10, there are additional limitations 
on the applicability of such an approach in the nonlinear 
theory. It is shown in Ref. 10 that the nonlinear conductivity 
of a semifinite conductor can differ significantly from the 
conductivity of the infinite medium even when the surface 
reflection of the electrons with glancing angles - (6 /rH)'12 is 
close to diffuse reflection (the case of nearly diffuse reflection 
considered in Ref. 10). Since p(a  = 0) = 1, the distribution 
function f 'I' of the first approximation in the field is a contin- 
uous function, i.e., there is realized in it a continuous transi- 
tion from the volume electrons (i.e., the electrons that do not 
collide with the surface) to the electrons that are diffusely 
reflected from the surface. For Or>  1 in the vicinity of the 
resonance w = In,  where I is a whole number, the gradients 
of the distribution function f "' are large in the region of the 
variables t , ,  p,, E ,  and y that separates the volume electrons 
from the electrons that are diffusely scattered. As a result the 
region in question makes a significant contribution to the 
nonlinear conductivity at the frequency of the second har- 
monic, since the second-order-in the field--distribution 
function can be expressed in terms of the derivatives of the 
function f ' I ) .  It turns out that this contribution to thew = I 0  
resonance increases more rapidly, as the parameter O r  in- 
creases, than the nonlinear conductivity of the unbounded 
medium if wr>(rH/S ) ' I2  (Ref. 10). Thus, near the w = 1 0  
resonance the condition of applicability of the approach 
based on the reduction of the problem to one in infinite space 

should be the satisfaction of the inequality 

OTG ( T H / ~ )  ''Y (22) 

If it is valid, then the character of the cyclotron-reso- 
nance singularities of the nonlinear response of the semifin- 
ite conductor (under our assumption about the character of 
the surface reflection) is the same as in the case of the un- 
bounded medium. 

Furthermore, it follows from the results of Ref. 11 that 
we must, in computing the currentjJ3'( y, 0) produced by the 
fields of the first and second harmonics together, correctly 
allow for the reflection of the electrons by the surface in the 
vicinity of the odd resonance o = (I + A)L? if Or)  1.  This is 
due to the fact that there are in the present situation two 
characteristic lengths: S,, the skin depth at the frequency w, 
and S,, the skin depth at the frequency 2w, with S,<S,. 

Let us now proceed to estimate the nonlinear correc- 
tions to the surface impedance. Let us represent the Fourier 
transform E "'(k, o) of the field of the first harmonic in the 
form 

o E'"(0, o)  
E(' )  ( k ,  o )=i -  6i2e1 ( M i ) .  

c L(o)  

Let us define the skin depth 6,  at the frequency w by the 
relation 

It follows from (23) that the function e,(k ) satisfies the 
normalization condition 

On reducing the problem to one in infinite space, we obtain 
for el(k ) with allowance for the modification of the linear- 
conductivity tensor the expression 

e , ( k ) = - -  k2-- 
Ikl X 

(26) 
Let us first consider the contribution of the current 

jl3'( y, w). Expressing it in terms of the tensor element a(!3?,, , 
and taking (1 5) and (23) into account, we obtain for the corre- 
sponding nonlinear correction ( A [ ,  (w)), after some 
transformations the expression 

where LS 

l,=n rib dk ,  dk, dir,0 (h-h,- h,--k, 
-m 

Ikl pi=--- lkol 
k  F,=- 

2 '  
F,= Ikl+k21. 

2 
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It follows from (28) and (26) that the quantities I ,  de- 
pend only on the parameters wr and R /a ,  i.e., 

Im=I?" (UT, Qlw). (29) 
It  is not difficult to verify that the coefficients lm remain 
finite at all values of the magnetic field, even when or-+ w . 
We should, in estimating them, take the following circum- 
stance into account. As is well known, weakly damped short 
cyclotron waves, whose existence was predicted by Kaner 
and Skobov," can be intensely excited in a metal. Math- 
ematically, this is manifested in the fact that the function 
e,(k ) (more exactly, the functions that are analytic continua- 
tions of e,(k) into the entire complex plane from the real 
positive and real negative semiaxes) can have in a definite 
range of magnetic-field strengths poles lying close to the real 
axis. The dispersion equation for the cyclotron waves in our 
case has the form 

k3r iR (a) =0, (30) 

where the sign minus (plus) corresponds to the root with 
Rek>O(Rek<O).  

It follows from (30) that slowly decaying cyclotron 
waves exist when the following inequalities are satisfied: 

For the wave vector Re k (w) of the cyclotron wave and the 
damping constant Im k (w) we obtain 

where 

(In the dimensional variables (Re k (o) 1 = 6 ; ', 
IIm k(w)l = R / 3 S , . )  

As can be seen from (32), the cyclotron-wave damping 
constant is nonzero even at T = co, which is due to the sur- 
face scattering of the electrons. In the absence of slowly de- 
cayingcyclotron waves e,(k )is a smooth functionof the wave 
vector k. 

Taking the foregoing into account, we can easily esti- 
mate the integrals I ,  in (27). As a result, we obtain 

When the inequalities (3 1) are satisfied, the dominant contri- 
bution to the correction (AS, (o)/SL (w)), to the surface im- 
pedance is made by the cyclotron waves, and the coefficient 
c, -A -'> 1. At the odd resonance w = (I + i)R, the coeffi- 
cient c, increases in proportion to the parameter R r  as the 
latter increases. At points far from the resonance and also at 
the even resonance o = 10, we have Ic, 1 - 1. 

Let us now estimate the contribution (ASNL (w)/gL (w)), 
of the electromagnetic field of the second harmonic to the 
correction to the surface impedance. The Fourier transform 

E "'(k, 20) of the field of the second harmonic can be found 
from the equation 

8nio 8niw [ k2 --s(k, 2w)] E") (k, 20) = - 1") (k, 20), 
C' cZ 

where - 
j") (k, 20) = J dk, dk26 (k-k,-k,) a(') (k,, o; kz, o )  

-DO (35) 

6 ( k ,  h) and &2'(k1, w; k,, w) are the modified linear and 
nonlinear conductivities at the frequency 2 4 6  and G(" differ 
from the corresponding quantities for the unbounded medi- 
um in that the resonance factors cthi - 4iT (sw + i ~ -  I ) )  are 
replaced by R (sw), s = 1, 2). 

It is not difficult to verify that, if the inequalities (3 1) are 
satisfied, then the Fourier transform E '2'(k, 20) has spikes at 
k = + Re k (20) and k = + 2Re k (w) [Re k (20) is the wave 
vector of the cyclotron wave at the frequency h ,  and in the 
dimensional variables (Re k (20) ( = 6 ; ' ] . The spikes at 
k = + Re k (20) correspond to the excitation of a free wave; 
those at k = + 2Re k (w), of an induced wave, which stems 
from the cyclotron waves of fundamental frequency. These 
spikes do not overlap. In other words, the synchronism con- 
dition Re k (2w) = 2Re k (w) is not fulfilled for the cyclotron 
waves, since, in fact, Re k (h) = Re k (a). 

Finding E"'(k, 2w) from (34), we can easily compute the 
nonlinear current jj3)Cy, a) and estimate the corresponding 
correction to the surface impedance. (We shall, in computing 
the contribution of the current jj3)Cy, w) to the impedance, 
assume that 8, -a,, an assumption which is valid at points 
far from the resonance w = (I + 4)R and at the resonance 
o = 10. But if 6,<S,, then, as has already been noted above, 
we must correctly allow for the reflection of the electrons by 
the sample surface.) We find in the present case that the 
correction (Ac, (o)/CL (w)), is of the same order of magni- 
tude as (AS,, (@)/SL (41,. 

In the second approximation in the amplitude of the 
incident wave there arises, besides the current at the frequen- 
cy 2w, a rectified radioelectric current j"'( y, 0) flowing in the 
skin layer in the direction parallel to its surface. In our situa- 
tion the radioelectric current j"'( y, 0) will have only an x 
component, for which we easily obtain from (14) the expres- 
sion 

eZ c '" drp - k 
j ( Z )  (y, 0) = --.- J - n J dk, dkzei(kl+kl'v- 

4 n b H  K ( q )  
- m 

lk,l 

XE(')'(k,, w )  E(" (kz, o)). 
(36) 

The radioelectric current j "'( y, 0) produces an additional 
constant magnetic field H "'( y, 0). The magnetic field H "'( y, 
0) depends on how the radioelectric-current circuit is closed 
(actually, the sample is bounded). We shall assume that the 
radioelectric-current circuit is closed on the half-space y > 0 
(generally speaking, this is determined by the experimental 
conditions). Consequently, 
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0 

Let us represent the magnetic field H"'( y, 0) in the form 

H ( 2 )  ( y ,  0 )  =&I(') ( y ,  0) + A H ( ' ) ,  (38) 

where AH'2' = H"'(UJ, 0). The characteristic variation scale 
of the function a"'( y, 0) is 6,. Substituting (36) into (37), we 
obtain for the strength AH"' of the additional magnetic field 
in the interior of the sample the expression 

where 

The (k, + k2)-' singularity in (40) is integrated in the sense 
of the principal value. 

Substituting (26) into (40) and (40) into (39), we find after 
some transformations that 

where 

The dimensionless function S (or ,  0 /w) depends resonantly 
on the magnetic field, its characteristic value being of the 
order of unity. It  follows from (42) that S (wr,R /w = 2/ 
1 ) = 1 1/27 (for 0 /w = 2/1 the coefficient A, = 0). It is also 
not difficult to show that the functions (wr, R /w) can change 
its sign near the w = 10  resonance if the parameter R r  is 
sufficiently large. Indeed, the coefficient A,)A > 0 when the 
inequalities R>w - lR>r- '  are satisifed. Consequently, in 
the present case the second term in the curly brackets in the 
formula (42) can become dominant, i.e., the function S (or ,  
R /w) can become negative, whereas at resonance S (wr, R / 
w = 1/1) = 1 1/27 > 0. The expressions (41) and (42) are for- 
mally obtained in the case of the cylindrical Fermi surface as 
well when the effects of the anomalous penetration are ne- 
glected, but in the present case we must, generally speaking, 
take the effects into consideration. As can be seen from (42), 
the slowly decaying cyclotron waves (if they exist) make to 
the field a contribution of the same order of magnitude as the 
skin component E 'I) (  y, w), H 'I)( y, o) of the electromagnetic 
field. 

The magnetic field AH '2) produced in the interior of the 
sample by the radioelectric current has been experimentally 

observed in bismuth in the radio-frequency region where 
or( 1 by Babkin and Dolgopolov.'3 Its existence is, as stated 
in Ref. 13, indicated by the observed alternate-field-ampli- 
tude-dependent shift, along the magnetic-field axis, of the 
radioelectric-current-related size-effect lines relative to the 
radio-frequency size-effect lines. In Ref. 13, besides describ- 
ing the experimental investigation, Babkin and Dolgopolov 
also derive expressions for the radioelectric current and the 
current at the second-harmonic frequency under conditions 
of anomalous skin effect (i.e., with allowance for the effects 
of the anomalous penetration) and the simultaneous satisfac- 
tion of the inequalities wr(1 (low frequencies) and Or)  1 
(strong magnetic fields). They, moreover, assume that the 
Fermi surface is a cylinder whose axis is parallel to the mag- 
netic fields H and H'"( y, w). 

It is not difficult to compare our results with the results 
obtained in Ref. 13. Taking into consideration the formula - 
(12), we can verify that, in the situation considered in Ref. 13, 
the expresions derived by us for the smooth part of the non- 
linear conductivity oFAX at the frequency 2w and at zero fre- 
quency essentially coincide with the expressions obtained in 
Ref. 13. (There are, however, discrepancies in the numerical 
coefficients. The formulas (7) and (9) in Ref. 13 evidently 
contain some errors, which are partially corrected in Ref. 
14.) Originally, it was asserted in Ref. 13 that, according to 
calculations, the secondary magnetic field A H"' coincides in 
direction with H. But in Ref. 14 it is asserted that, according 
to calculations, A H'2' and H are oppositely directed. 

As can be seen from the expressions (41) and (42) ob- 
tained by us, for wr< 1 and Rr, 1 the function S (WT, 0 / 
w) > 0 (since1 1, 11, ((1) and, consequently, the field A H"' 
coincides in direction with H. This is in accord with the 
experimental data obtained by Babkin and ~ o l g o ~ o l o v , ' ~ ~ ~ ~  
since they observed a shift of the size-effect lines for the ra- 
dioelectric current relative to the radio-frequency size-effect 
lines and toward the region of lower intensities of the mag- 
netic field H. (Although the anomalous-penetration effects, 
which we neglected in the derivation of (41) and (42), are 
important in the case of the cylindrical Fermi surface, it can 
be shown that allowance for them does not change the sign of 
A H"' when wrg 1 and Or>  1.) 

Let us now estimate the effect of the magnetic field 
H"'( y, 0) on the surface impedance. Let us represent the 
magnetic field H "'( y, 0) in the form (38), and consider first 
the contribution due to the fieldfi"'( y, 0). As can be verified, 
the corresponding correction to the impedance has the same 
order of magnitude as the correction given in (33). The effect 
of the homogeneous magnetic field AH"' can be taken into 
account by replacing H by H + AH'". Finally, we obtain 

When the inequalities (31) are satisfied, the coefficient 
2 -A -', 1; in the remaining case 121- 1 (as has already been 
noted, we exclude from consideration the range of magnetic- 
field strengths near the odd resonance w = (I + 1)R when 
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L?T> 1). Expanding the second term in (43) in a series in pow- 
ers of AH '2', we obtain 

For 07) 1 we find that at frequencies far from the resonance 

If w -0 and or> 1, then, as can be seen from (44) and (45), all 
the three terms in the nonlinear current j'3', namely, the 
term cubic in the field of the first harmonic, the term due to 
both the field of the first, and the field of the second, harmon- 
ic, and the term produced by the electric field of the first 
harmonic and the magnetic field of the radioelectric current, 
make contributions to the surface impedance that are of the 
same order of magnitude, with 

It  is not difficult to see that a similar situation will obtain in 
the WT( 1, 07% 1 case. 

For W T ) ~ T )  1 the dominant contribution of the non- 
linear correction to the surface impedance at frequencies far 
from resonance is connected with the influence of the homo- 
geneous magnetic field A H  "': 
A L L  (a ,  H )  - AH(') dgL (a ,  H) o I H(') (0, 0) 1 '  - -- 

CL(O,H) G ~ ( O , H ) '  dH SZ H~ 
(47) 

For 07) 1 we obtain for the correction to the surface imped- 
ance at frequencies close to the even resonance o = 10  the 
following estimate: 

A G ~ ~  (07 H )  - o I H(') (0, O) l Z  
cL (a,  H) O-ZSl+iz-' Hz 

9 

this correction being, as can easily be seen, due to the field 
AH "'. An exception is the situation in which weakly damped 
cyclotron waves are excited, i.e., in which the inequalities 
(3 1) are satisfied, if, moreover, I -  1. In the present case the 
corrections to the impedance that stem from the nonlinear 
currents j,"', jj3', and j,'3' are of the same order of magnitude. 

We should note the following quite interesting circum- 
stance. If weakly damped cyclotron waves are not excited, 
then the formula (43) for the nonlinear impedance is, as is 
easy to see, valid when the inequality 

which guarantees the applicability of the perturbation the- 
ory in terms of the highly inhomogeneous fields, which 
change over distances -S1,2, is satisfied. As follows from 
(47) and (48), the satisfaction of the inequality (49) is not a 
sufficient condition for the expansion of the expression (43) 
in a series in powers ofA H '2', i.e., for the transition from (43) 
to (44), to be justified. The condition of applicability of the 
perturbation theory in terms of the homogeneous field AH '2' 

is, generally speaking, more rigid than (49), but its fulfill- 
ment is not required, since the field  AH'^' is taken into ac- 
count exactly. In other words, situations are possible in 

which the formula (43) describes a sharp change in the sur- 
face impedance (according to the foregoing, thi3 :.an occur at 
frequencies far from a resonance when wr>flr%l and at 
frequencies close to the even resonance o = 10 if Or> 1 and 
the inequalities (3 1) are not satisfied). In such cases 

The nonlinear impedance f ,  (o, H ) introduced by the 
relation (18) characterizes the reflection of the electromag- 
netic wave at the frequency of the fundamental harmonic. 
Since Ic, 1 < 1, I < L  1 < 1 and the amplitude of the reflected 
sound harmonic4.' ' 

E"' (0, 20) -I;, (H"' (0, 0) )'/H, 

we can verify that the nonlinear impedance <,, (0, H ) also 
characterizes the energy dissipation in the sample (the ener- 
gy that can be carried away by the second and higher har- 
monics is negligibly small). This was demonstrated earlier by 
Dubovskii15 for the normal skin effect at low frequencies, 
i.e., at frequencies satisfying the condition wr< 1. 

Above we assumed that the sample is acted upon by an 
electromagnetic field of constant amplitude for an infinitely 
long time. In practice, to prevent strong overheating of the 
sample, fairly short pulses are often used. It should be noted 
that the results obtained by us are not always applicable 
when the pulsed regime is employed, since in this instance 
the radioelectric current will depend on the time, and its 
screening should, generally speaking, be taken into account. 
Let, for definiteness, the pulse have a rectangular shape. Let 
us denote its duration by t,. Clearly, the formula (43) for the 
nonlinear impedance will remain valid if t , ) ~  and tp>to, 
where to is a time interval such that the normal skin effect 
obtains at frequencies -t ; ' (in other words, over the time 
period to the magnetic field of the rectified current pene- 
trates into the metal to a depth much greater than r,). If the 
pulse is short, i.e., if ?,>t, BT, where ?, is a time interval such 
that the anomalous skin effect obtains at frequencies -? ; ', 
then a homogeneous field does not exist in the interior of the 
sample (at distances -r ,  from the surface). Consequently, 
in such a situation the second term in the formula (43) should 
actually be discarded. 

It follows from the estimates obtained by us for the non- 
linear corrections to the impedance that the nonlinearity can 
be quite substantial in weak magnetic fields (it was precisely 
in weak magnetic fields that the dependence of the surface 
impedance of the wave amplitude was observed by Cochran 
and Shiffman' and Gantmakher2). We must, however, bear 
in mind that these estimates are applicable when H 2 H,,  
where the field H, is determined from the condition 

In metals with skin depth S - cm at frequencies o/ 
277- 10 GHz, for or 2 1 the field H, - 10 Oe. In bismuth, H, 
-0.01-0.1 Oe in the radio-frequency region.*.14 As a rule, in 
such fields fir < 1. Consequently, we see that, as the magnet- 
ic field H decreases and approaches the region of fields 
H-H, from the right, the nonlinear corrections (for a fixed 
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value of H '"(0, o)) increase. It can also be shown that, as H 
decreases further and crosses into the region H < H, ,  the 
nonlinear corrections begin to decrease rapidly (if, of course, 
the condition JH"'(0, o)) < H, is fulfilled; otherwise the sam- 
ple may go over into the current stateI4.l6), i.e., the nonlin- 
earity manifests itself most strongly at H -H,. 

We have not considered here the nonlinearity connect- 
ed with the warming up of the sample. Estimates similar to 
those presented in Refs. 14 and 17 show that even at frequen- 
cies w -  1010-10'1 we can, by using short pulses, realize in 
the typical metals, as well as in the bismuth-type semimetals, 
at temperatures 1-4 K, situations in which the nonlinearity 
due to the Lorentz force is quite strong, i.e., IH"'(O, 
w ) J  -H>  H,, but the warm-up is negligible. The effect of the 
warm-up decreases further with decreasing frequency. 
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