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Magnets are considered in which it is possible to separate two antiferromagnetic sublattices so placed relative 
to each other that the molecular field of the spins of the first sublattices at the second, and vice versa, is zero. 
In an analysis beyond the framework of the molecular-field theory, when fluctuations are taken into account, 
an exchange interaction appears between the spins of one sublattice via the other and couples the sublattices. 
Effects that can result from this interaction are considered. Experimental data are discussed on the garnet 
Mn3Cr,Ge30,,, which is a substance of the type considered. 
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1. INTRODUCTION 

The magnetic ordering of the manganese spins (c 
sublattice) and the chromium spins (a sublattice) in the 
garnet Mn3Cr2Ge301, is antiferromagnetic. l p 2  The sym- 
metry relative to the placements of the a and c sub- 
lattices of the garnet is such that the molecular field 
produced by the manganese a t  the chromium, and vice 
versa,  is zero. Therefore, notwithstanding the fact 
that the exchange interaction between Mn and C r  i s  not 
small,' the manganese and chromium sublattices a r e  
not coupled in the molecular-field approximation, and 
the interaction between them does not influence the 
magnetic properties of the substance. Neutron-diffrac- 
tion data show that the magnetic structures of the sub- 
lattices a r e  in fact the same a s  in the single-sublattice 
garnets Mn$bGe3012 and Cd3Cr2Ge3012; both calorime- 
t r i c  and neutron-diffraction data show the presence of 
two distinctly pronounced phase transitions a t  
TlN=5. 1 K(Cr) and T2,=3.9 K (Mn) (Refs. 1 and 2). 

There a re ,  however, certain data that contradict the 
undistorted-sublattice picture. Thus, for  example, 
T, and t,, a r e  approximately half the Nbel tempera- 
tures  of the single-sublattice garnets. Since the in- 
trasublattice interactions changes extremely little 
when magnetic atoms a r e  replaced by nonmagnetic ones 
in the second s u b l a t t i ~ e , ~  it is clear that the intersub- 
lattice interaction is responsible for the lowering of the 
Nbel temperature. 

The above garnets a r e  not the only example of anti- 
ferromagnetism with sublattices in a zero  molecular 
field. This situation obtains on a l l  so-called antiferro- 
magnets of the second kind. In this case the sublattice 
contain the same atoms. Our analysis pertains also to  
this case. 

The interaction between sublattices comes into play 
in the theory once we go outside the framework of the 
molecular-field theory, when account is taken of the 
fluctuations of the sublattice magnetization. The atoms 
of one sublattice can interact with one another not only 
directly (we define a s  direct the interaction via the oxy- 
gen ions), but also indirectly, by polarizing the second 
sublattices (this indirect exchange was f i r s t  considered 
for magnetic impurities in the interstices of a ferro- 
magnet in Ref. 3). It turns out that this interaction can 

become significant. It causes, in particular, the sys-  
tem energy to depend on the relative directions of the 
sublattice antiferromagnetism vectors even in the pure 
exchange approximation, i. e .  , a magnetic anisotropy 
of sor ts  appears; the Nbel temperatures become lower 
than in single-sublattice substances. In addition, when 
certain relations a r e  satisfied between the parameters,  
a specific unique magnetic structure with noncollinear 
ferromagnetic ordering can ar i se  if certain relations 
between the parameters a r e  satisfied. The main r e -  
sults and the possible methods for their  experimental 
verification a r e  given in the Appendix. 

Neutron-diffraction data show that the chromium spins 
a r e  collinearly arranged, and those of manganese in a 
more complicated form. Unless otherwise stipulated, 
the actual type of the magnetic structure i s  of no im- 
portance to us and we assume the simplest model with 
collinear ordering in both sublattices. The Hamil- 
tonian of the system i s  

Here S, and I i  a r e  the spins of the f i r s t  and second sub- 
lattices a t  the si tes r i .  The subscripts f and g mark 
the upward and downward spin directions in the ground 
state. As seen from (I ) ,  we neglect the intrasublattice 
interaction of the spins having the same direction in the 
ground state. This simplifies the equations without 
changing anything qualitatively. Naturally, V i  > O  and 
Ui, >O; in garnets usually J i ,  >O.  The atoms of both 
sublattices a r e  assumed located in s i tes  of primitive 
cubic lattices displaced relative to one another by the 
vector (a/2, a/2, a/2), where a is the lattice constant. 
This model describes quite accurately the body-cen- 
tered antiferromagnet of second kind Ca3Fe2Ge,012 and 
describes qualitatively more complicated structures.  

If J  were larger than V and U, the situation would be 
that typical of iron garnets: the intersublattice interac- 
tion would suppress the intrasublattice interaction and a 
collinear ferrimagnetic order  would se t  in (the mag- 
netic atoms in iron garnets a r e  usually in a and d sub- 
lattices, and the a-d interaction i s  severa l  times stron- 
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ger than the remaining ones). This means that we must 
assume that J <  J, -max(V, U). It should be emphasized 
that this is the only restriction we impose on the ex- 
change-interaction parameters. It i s  therefore not ex- 
cluded that garnets of this type can be obtained only 
using manganese and chromium. It is also possible 
that symmetrically placed sublattices a r e  contained not 
only in garnet structure. Therefore, assuming the 
condition J < J ,  satisfied, we consider various possible 
relations between the parameters of the Hamiltonian. 

2. WEAK INTERACTION I N  ONE OF THE 
SUBLATTICES 

We consider f i r s t  the case when the direct  interac- 
tion in one of the sublattices (to be definite, the second) 
can be neglected; an exact criterion will be indicated 
below. At T <<TI, the spins of the second sublattices 
therefore interact and polarize the f irst .  i. e . ,  via ex- 
change of virtual spin waves. The effective Hamil- 
tonian of the second sublattice can be obtained in the 
usual manner in second order perturbation theory in 
J/V<< 1 ,  by averaging over the state of the f i r s t  sub- 
lattice. We obtain 

Here K " . ~ ( O ,  q) is the static correlator of the compo- 
nents a and 0 of the spins of the f i r s t  sublattice, and 
J(q) is the Fourier transform of Jij. 

At T 6 T,, we can neglect KC*(O. q) and, leaving out an 
inessential constant in x,,, we have 

- J Z ( c l )  K (0, q) exp (iq (r,-r,) } (I,"I:+I,"I,'), (3) 
q,t,>*t 

the static correlator of the transverse spin component 
being (this expression can be easily obtained, for ex- 
ample, from the equations of Ref. 4) 

The first  te rm of (3 )  (the effective single-ion aniso- 
tropy) was f i r s t  obtained by I v a n o ~ , ~  and the spin inter- 
action was obtained in Ref. 3, where the effects of this 
interaction on impurities in metamagnets were con- 
sidered. We note that the equations of Ref. 3 for the 
effective potential a r e  outwardly different from (3), but 
can be recas t  in this form. The Hamiltonian (3) was al-  
so  obtained in a recent paper. 

The magnetic structure of the second sublattice is 
determined by the value of the vector q ,  for which the 
effective potential V,, , (q) = J2(q)K(0, q)  is a maximum. 
It i s  easy to verify that for the lattice considered by us  
this value is zero, i. e . ,  a collinear ferromagnetic or -  
dering in the xy plane i s  established in the second sub- 
lattice. The resultant molecular field magnetizes the 
f i r s t  sublattice, whose average spin is 

Thus, a t  the temperature 

FIG. 1. Magnetic structure for a square lattice at U <  Uo. The 
spins I a r e  at the sites marked by light circles. The solid and 
dashed arrows show their orientations at U =  0 and at J, > J(0) 
> (u(o)v(o))'I respectively. 

a ferrimagnetic order of sor t  is produced (since J>O). 
The corresponding magnetic structure for a square lat- 
tice i s  shown in Fig. 1. 

This phenomenon can be qualitative understood a s  
follows. If the spins of the f i r s t  sublattice a r e  de- 
flected by an angle p from the z axis and a molecular 
field a t  the spin Ii is produced, then'the change in en- 
ergy is 

A, and A, a r e  constants of the order of unity). 

The maximum energy gain A Em,, - J2 /V  i s  reached a t  
cp - J/V. Since the azimuthal angle i s  arbitrary here,  
such a "polaron" can rotate freely about the z axis, 
meaning anisotropy of the "easy plane" type. The 
overlap of the polarized clouds leads to indirect inter- 
action and, a s  shown above, to ferromagnetism of the 
spins I. The dependence of the angle p and of the angu- 
l a r  momentum on the temperature is given by the usual 
formulas of the molecular-field theory. 

The conclusion that the ferromagnetic ordering in the 
second sublattice is ordered is not connected, in our 
opinion, with the concrete type of lattice. The point i s  
that this i s  the only type of ordering for which the ro- 
tations of the spins of the f i r s t  sublattice a r e  such that 
the molecular fields produced a t  each of its spins I and 
their neighbors from the f i r s t  sublattice a r e  additive 
(see Fig. 1). Naturally, the energy gain is then a max- 
imum. 

It is concluded in recent papers7p8 that if the inter- 
action between the sublattices is not of the Heinsenberg 
type but is anisotropic in the spin space -JyfI 4S:, an- 
tiferromagnetic ordering is produced in the second 
sublattice and the interaction energy is very large,  
V,,, - (6J)'/d (d is the magnetic anisotropy in the f i r s t  
sublattice, 6J  is the interaction anisotropy). We can- 
not agree with this conclusion. It i s  clear that no indi- 
rect  exchange can yield a value la rger  than J ,  i. e .  , 
than the value obtained if al l  the neighbors of the spins 
Ii and Ij were to magnetize them in the same direction. 
Yet the cited V,,, of Refs. 7 and 8 yields a value la rger  
than any constant of the Hamiltonian (1). Divergence of 
V,,, a s  d-0  is obtained in Refs. 7 and 8 because of the 
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divergence of K(0, q) a t  q =qo = (n/a, n/a, n/a) and a s  
d -0. But an infinite correlator  means a Hamiltonian 
that is invariant to homogeneous rotations of the spins 
of the f i r s t  sublattices, s o  that this sublattice i s  not 
polarized and there i s  therefore no indirect exchange. 
This manifests itself formally in the fact that J2(qo) =0 ,  
and therefore V,,,(qo) is likewise zero. An attempt 
was made in Refs. 7 and 8 to get around this fact by 
assuming that the molecular field 

is ze ro  (the spins S a r e  directed along the z axis), and 
the quantities Jar(q,) and JaY(qo) differ from zero,  and 
i t  i s  this which makes the quantity analogous to  J2(qo) 
different from zero. But these assumptions a r e  con- 
tradictory, the spins S cannot be directed along the z 
axis; they will be directed along x o r  y, for  in this 
case the produce a molecular field a t  the spins I, and 
the energy of this s tate i s  therefore lower. Naturally, 
the spins I have here a ferromagnetic order.  Thus, 
the divergence of V,,, a s  d - 0 means an incorrect  
choice of the ground state in Refs. 7 and 8, and not the 
presence of an anomalously strong interaction. 

The spin-wave spectrum can be obtained with the aid 
of the classical equations for  the oscillations of the 
magnetization. Leaving out the standard calculations, 
we present the final answer: 

where wl(q) differs from the frequency SZl(q) of the 
oscillations in a single-sublattice magnet by the 
presence of the gap wl(0) = J(0) I. This is understand- 
able: in the presence of a field H there appears in the 
spectrum of the antiferromagnet a gap proportional to 
( H V ( O ) ) ~ ~ ~ ,  and since the f i r s t  sublattice is acted upon 
by the molecular field H-J2(0)/V(0) produced by the 
second sublattice, it is quite understandable that wl(0) 
- J(0). 

The second branch is activationless, with a quadra- 
t ic  dispersion law a t  smal l  momenta. This branch is 
due to oscillations of the spontaneous moment, and 
therefore the maximum energy w,, of these excitations 
turns out to be of the order  of the indirect-exchange 
energy J2(0)/V(O) which causes the appearance of the 
spontaneous moment. 

We note that there a r e  no s ta tes  in the energy inter-  
val  from w,(O) to w,,. 

We have neglected in this section the direct  exchange 
in the second sublattices. It is now c lear  that this i s  
permissible if the direct  exchange is smal ler  than the 
indirect one: 

In the next section we shall consider the situation when 
the energy U is of the order of o r  la rger  than the in- 
direct-exchange energy. 

3. FLUCTUATIONALLY INTERACTING 
ANTIFERROMAGNETIC SUBLATTICES 

As  already noted, in Mn,Cr,Ge,O,, both sublattices 
a r e  antiferromagnetically ordered. This means that 
inequality (8) is not satisfied for  this substance, the 
direct  exchange i s  large enough, and we must consider 
i t s  influence on the ground state of the magnet. As- 
sume that the interaction of the sublattices distorted 
their magnetic structure weakly compared with the 
single-sublattice structure,  s o  that a smal l  moment 
was prodcued in each of them (Fig. 1 shows such a 
structure fo r  a square lattice). If cp and I) a r e  the 
angles of deviation of the sublattice spins from the z 
axis, then the energy change per  atom i s  

(Al,A2,A3 a r e  constants of the order  of unity). It i s  
seen from (9) that if U(0) exceeds a certain cri t ical  
value U,, -J2(0)/V(0), then A E >O, no distortion takes 
place, and structures of single-sublattice magnets a r e  
realized. This is precisely the situation in 
Mn3Cr2Ge,012. A simple calculation shows that 

If the intersublattice interaction l ies  in the interval 
Jo >J(O) >(U(0)V(0))''2, the structure shown schemat- 
ically in Fig. 1 i s  produced, and a t  J (0)  2 Jo we have, 
a s  already noted, collinear ferrimagnetism. 

We consider hereafter in this section the case of un- 
distorted structures,  and for  perturbation theory to be 
valid we assume that J(O)/V(O), J(O)/U(O) << 1. In the 
molecular-field approximation the sublattices a r e  not 
coupled and the spin orientations in them a r e  arb i t ra ry .  
However, we shall show presently, the quantum correc-  
tions to the ground-state energy depend on the mutual 
orientations of the spins, and lead to the onset of a so r t  
of magnetic anisotropy. These corrections a r e  made 
necessary by the fact that the Nee1 ground state,  a s  is 
well known, does not correspond to an  exact solution of 
the Hamiltonian H, of (1). 

We consider now the nonlinear-antiferromagnet model 
described in the Introduction. The angle between anti- 
ferromagnetism axes of the sublattices will be desig- 
nated y. F o r  the system-energy correction necessi- 
tated by the interaction we have in second-order per-  
turbation theory 

Here T i s  the temperature, and KaB(w,, q)  and Q~'(w,, q)  
a r e  the corre la tors  of the spins S and I in the tempera- 
ture diagram technique. F o r  example, 

The tensor KaB (as well a s  QaB) i s  diagonal if the z 
axis is directed along the sublattice ferromagnetism 
axis, with KSc =Qcc =0 ,  and the t ransverse  components 
a r e  equal. We therefore have 
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Here K(w, ,  q )  is the correlator of the components 
S* = (SX * i S Y ) / G ,  and Q(wn,  q )  is similarly defined. 

At the low temperatures of interest  to u s  K ( w n ,  q )  can 
be obtained from ( 4 )  by replacing CZi(q) with wz + S2f(q). 
Since the correlators K  and Q  a r e  positive i t  follows, 
a s  seen from ( 1 3 ) ,  that the energy is a minimum if the 
antiferromagnetism axes a r e  parallel. In this case 
both transverse spin components interact. On the 
other hand if the axes a r e  perpendicular, the only in- 
teracting component i s  the one perpendicular to the 
plane containing the antiferromagnetism axes. It is 
this which leads to the dependence of the energy on the 
angle. 

Summing over the frequencies in the usual manner, 
we obtain 

For  the model with a primitive cubic lattice we have 

In a real  situation VS2, U12, and JSI a r e  quantities of 
the same order.  As  seen from (15) ,  compared with 
these quantities A i s  a smal l  quantity of the order of 
1/S or  1/1, and i s  natural for  the quantum correction; 
A has also a numerical smallness connected with the in- 
tegration over the momenta. The numerical coefficient 
depends on the type of lattice. For  Ca3Fe,Ge30,, we 
have S  =I = %, and J(0)S - V(0)S - 10 K ,  s o  that A is of 
the order of several  tenths of a degree. In other anti- 
ferromagnets of the second kind this quantity can be 
even larger.  

The magnetic structure of the Mn sublattice in 
Mn,Cr,Ge,O,, i s  such that a threefold axis i s  present. 
If it  i s  parallel to the z axis, the susceptibility tensor 
for this sublattice i s  diagonal, with QXX = QYY = Q1. The 
properties of the susceptibility tensor of the C r  sub- 
lattice a re  the same a s  in the model considered above. 
Taking this into account we obtain 

where y i s  the angle between the threefold axis and the 
antiferromagnetism axis of the chromium. 

Depending on the sign of the sum in ( 1 6 ) ,  the aniso- 
tropy i s  of the %asy axis" o r  "easy plane" type. To 
determine the sign of this sum we need a calculation 
that takes into account the rather complicated structure 
of the Mn sublattice (24 atoms in the unit cell,  12 sub- 
lattices). This question deserves a special treatment. 

In Mn,Cr,Ge,O,, the value of A i s  of the order of 
several  hundredths of a degree, i. e . ,  it  i s  equal to  o r  

somewhat larger than the one-ion anisotropy energy. 
Therefore the quantum effect considered by us should 
influence substantially the orientation of the antiferro- 
magnetism vectors of the sublattices and make this 
orientation different from that in single-sublattice gar-  
nets. In garnets with large J the anisotropy can in- 
c rease  substantially, since it i s  proportional to J 2 .  

The anisotropy A should lead to a gap in that spin- 
wave spectrum branch which corresponds t o  relative 
oscillations of spins of different sublattices. To ob- 
tain the spin-wave dispersion law we use the diagram 
technique of Vaks, Larkin, and Pikin (Ref. 9)." We 
denote the parts  of K ( w n ,  q )  and Q(w, ,  q )  that a r e  i r r e -  
ducible in the interaction J by K ( w n ,  q )  and Q(w,,  q ) .  The 
relation between them is 

and the same holds for Q ( w n , q ) .  The spin-wave spec- 
trum is given by the equation 

where K ( w ,  q) and g ( w ,  q )  a r e  the analytic continuations 
of the correlation functions to rea l  frequencies. 

The expressions used above for  K(w, ,  q )  and Q(w, ,  q )  
agree with the zeroth approximation of the self-consis- 
tent-field method f o r k  and g. Substituting them in ( 8 )  
we obtain expressions for the frequencies in this ap- 
proximation: 

At T,, << T << T,, (this interval exists i f  V >> U) the spin- 
wave frequency i s  S2,(q). With decreasing temperature, 
a t  T << T,,, the sublattice interaction causes, a s  seen 
from ( 1 9 ) ,  an increase of the velocity of the spin waves 
in this branch. 

To calculate the corrections to  the spectrum we must 
go outside the framework of the zeroth approximation of 
the self-consistent-field method. Since the intrasub- 
lattice interactions couple only oppositely directed 
spins, it becomes necessary to  introduce correlators 
with lower indices (y and f3 (a, f3 = f ,  g), which deter-  
mine the equilibrium orientation of the spins ST, and ST, 
in ( 1 2 ) .  Introducing for  the correlators K,, the par ts  
C,,, that a r e  irreducible in V, we find from Dyson's 
equation that 

Since A - J 2 ,  we discard t e rms  proportional to higher 
powers of J  in the dispersion relation ( 1 8 ) ,  and there- 
fore also in the correlation functions. F o r  example, in 
the denominator of ( 2 0 )  we have discarded terms con- 
tkining products of the irroducible correlators of spins 
of different sublattices. 

The diagrams for Z,, a re  obtained from the diagram 
shown in Fig. 2(a) by connecting two arbitrary vertices 
S- and S+ by effective-interaction lines. The entire no- 
tation is the same a s  in Ref. 9, except for the factor 
T-', which we have introduced in ( 1 2 ) ,  s o  that 
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The contribution of the diagram in which the interac- 
tion line joins simple vertices is cancelled out in (18) 
by the quantum correction to the sublattice magnetiza- 
tion (a similar cancellation appears in the calculation 
of the temperature dependence of the excitation spec- 
trum in Ref. 9). The correction of interest to us stems 
from a diagram in which the interaction line enters a 
triple vertex. The correction to Cff equals 

2;:' (a,,  q) =-G,+'(a.)L,,, 

The expression for c::' is perfectly analogous. The 
diagram for Cfg and Cgf i s  shown in Fig. 2(b). Sincethe 
vertices S;i and S:, can be connected only by the inter- 
action V ,  we have 

Using (20)-(23) we obtain from (18): 

From (22) and (23) it can be seen that 

One of the branches determined by (24) has a gap equal 
to 

and the second is activationless, with a linear disper- 
sion law at small momenta 

We proceed now to the question of the N6el tempera- 
tures. Since V,,,(q = n /a )  = 0, the indirect exchange does 
not influence the Nee1 temperatures in the molecular- 
field approximation. On going beyond the framework of 
this approximation, the situation changes. It is  known 
that correlation effects influence the N&el t e m p e r a t ~ r e . ~  
The interaction V,,, between the sublattices, causing 
an additional correlation between the spins, changes the 
Nee1 temperature compared with the values in single- 
sublattice garnets. Near TIN the spins of the first  
sublattice interact and magnetize the paramagnetic 
spins of the second sublattice. The corresponding 
effective potential 

has the ferromagnetic sign. Near T,, the spins of the 
second sublattice interact via spin waves with the first: 

FIG. 2 .  Diagrams for the 
corrections to Bff (a) and 

a 2, (b). 

As shown in the preceding section, these correlations 
also contribute to the ferromagnetism. It is therefore 
natural that both N6el temperature a re  smaller than in 
single-sublattice substances. 

The correlation increments to the Nee1 temperatures 
can be calculated in the manner used for  a ferromag- 
net. The relative change of these temperatures in the 
lowest order in J/V<< J/U << 1 is 

where 

The difference between the coefficients between (30) and 
the first  term in (31) is connected with the fact that in 
the second case Vtf, = O .  The second term in (31) is of 
pure quantum-mechanical origin. It has no analog in 
(30), for in this case the interaction, a s  seen from (28) 
is purely static. 

For  aprimitive cubic lattice 

It can be seen from (33) that 6(T,) i s  always nega- 
tive, and the sign of 6T2, depends on the spin S. At 
S >$ we have 6T2, <O. In Mn,Cr,Ge,O,, we have S = s, 
s o  that both Nee1 temperatures should decrease. The 
complicated magnetic structure does not change this 
conclusion. The point i s  that the coefficient preced- 
ing the first  sum in (31) is approximately six times 
larger than the coefficient of the second at S = 5/2, and 
the values of the two sums should not differ greatly (for 
a primitive cubic lattice they differ by only 20%). 
Therefore 6T2, < O  for the manganese-chromium garnet. 

Thus, in accord with experiment, the interaction be- 
tween the sublattices lowers the transition temperature. 

4. ANTIFERROMAGNON SCATTERING BY SPINS IN  
A ZERO MOLECULAR FIELD 

At temperatures T,, << T << T,, the scattering of the 
antiferromagnons of the f i rs t  sublattice by the para- 
magnetic spins of the second sublattice leads to damp- 
ing the latter spins. The distinguishing feature of this 
scattering i s  that it is effected by degenerate-ground- 
state spins which, unlike the usually considered sub- 
stitution impurities, do not participate in the oscilla- 
tions of the antiferromagnetic sublattices. 

In fourth-order perturbation theory the self-energy 
operator of the correlation function K(w,,  q) is 
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where 

and the four-spin correlation function i s ,  according to  
Ref. 9, 

Here G, = G(w,), b =IB,(yI/T); B, is the Brillouin func- 
tion, the quantity y in G and B, is proportional t o  the 
magnetic field, which we se t  equal to ze ro  a t  the end of 
the calculations; h' i s  the derivative of b with respect  
to y/T. 

The spin-wave damping i s  proportional t o  the imagi- 
nary part  of the analytic continuation of E(w,, q) to r ea l  
frequencies, and i s  determined by the third te rm in (36). 
In the case of greatest  interest ,  of low frequencies 
w << S V(O), the damping y = Imw turns out to be 

9, is the volume of the unit cel l  and u=  9(q)/q is the 
velocity of the waves. 

The damping calculated by us was found to be propor- 
tional to the square of the frequency, whereas scat ter-  
ing by large magnetic inhomogeneities leads to the clas- 
s ical  Rayleigh damping y -w4. The scattering mecha- 
nism considered by u s  i s  much more effective a t  low 
frequencies. Even a smal l  number of magnetic impuri- 
t ies  landing in the interst ices of an antiferromagnet and 
hence located in a ze ro  molecular field can lead to a 
spin-wave damping that is la rger  than usual, and to 
broadening of the magnetic-resonance line. We note 
that the damping (37) does not contain the sma l l  factors 
such a s  T/Tl, which a r e  typical of magnon-magnon 

' 

damping. 

A quadratic dependence of the damping on the fre-  
quency i s  observed a lso  in phonon scattering by degen- 
erate centers. lo*" 

5. LOW DENSITY OF MAGNETIC ATOMS IN  ONE 
OF THE SUBLATTICES 

It i s  known that in s t ruc tures  of the garnet type i t  is 
easy to change the composition of the a and c sublat- 
tices, by replacing the magnetic atoms with nonmag- 
netic ones. At low density of the magnetic atoms,  the 
direct  interaction can be neglected. The type of mag- 
netic order established in the system of magnetic im- 
purities i s  determined by the energy of the indirect ex- 
change a t  distances much la rger  than the lattice con- 
stant a. We express  the energy V,,, of (3) in the r- 
representation 

where K(r )  is the Fourier  transform of K(0,q). At 
r >>a we have K(r )  - r-'eia@ and 

As  can be seen from (39), V,,, is proportional to the 
interaction energy of two systems of charges,  distr i-  

buted with densities J(R, - r l ) e iw l  and J(R, - r,)e'aorz 
near  the points R, and R,. The total charge 
Z,J(R- r)eiaor near  each point is equal to the mole- 
cu lar  field acting on the spin I,, i. e . ,  t o  zero. The 
interaction energy of such charges a t  large distances 
is determined by the lowest nonzero multipole. The 
energy averaged over the angles of the vector R,-R, 
relative to the multipole axes  is ze ro  in a l l  cases. The 
interaction considered leads therefore to spin-glass o r -  
dering in the impurity system. 

The dependence of V,,, on R is determined by the type 
of magnetic structure.  If i t  constitutes a layered anti- 
ferromagnet with ferromagnetic ordering layers,  then 
the ''dipole moment" differs from ze ro  and therefore 
V,,,-K3. This  result  was obtained in Ref. 3 by direct  
integration. In our model with "checkerboard" order ,  
the f i r s t  nonzero order  i s  quadrupole and Ve,,-R'5; for  
Mn3Cr,Ge3012 we have V,,,-R-3. 

Besides the indirect exchange there is a l so  the di- 
pole-dipole magnetic interaction. In Mn,Cr,Ge,O,, i t  i s  
weaker than the dipole interaction due to  indirect ex- 
change. Fo r  substances where only the higher multipoles 
differ from ze ro  the situation is more  complicated. If 
J2/V(0) exceeds the energy V,,, of the dipole-dipole in- 
teraction of the nearest  neighbors in the lattice, we can 
neglect, a t  not too low impurity densities, the dipole- 
dipole interaction energy of impurities spaced on the 
average r, -n-lI2 apar t  (n i s  the density) if it is lower 
than their  indirect-interaction energy (the correspond- 
ing cri ter ion for  the density can be easily written 
down). In this  case  the characterist ic  spin "quenching" 
temperature,  which determines, for  example, the posi- 
tion of the maximum heat capacity, is 

(1 is the number of f i r s t  nonzero multipole). With de- 
creasing density, the average dipole interaction den- 
sity a t  the average distance becomes la rger  than 
V,,,(r,) (if no layered antiferromagnet is considered). 
Such sys tems have been named dipole glasses and have 
T, -n. 

In the manganese and chromium garnets  the quantity 
J2(0)/V(0) is severa l  t imes  la rger  than V,,,, s o  
that a situation is possible in which the dipole interac- 
tion is negligible. To  be su re ,  a t  such not too low den- 
s i t ies  the direct  interaction of the second neighbors in 
the lattice can become important. A definite answer to 
this  question can be obtained only by experiment. 

6. CONCLUSIONS 

The sublattice interaction leads thus to the following 
effects. 

1) In substances with antiferromagnetic sublattice the 
spin-wave spectrum of the sublattice with the higher 
NBel temperature should change on going from the vapor 
into the antiferromagnetic phase of the second sublat- 
tice, on account of the indirect exchange. 

2) In the temperature range the spin-wave damping is 
anomalously large and depends quadratically on the 
frequency, and the magnetic-resonance line broadens. 
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3) Because of the quantum effects considered in this 
paper, the orientation of the sublattices should not 
correspond to the direction of their single-ion aniso- 
tropy axes. The gap in the spin-wave spectrum also 
changes. 

4) It would be of interest to select the components in 
the a and c sublattices such that the canted structures, 
considered in the second and third sections, a r e  real- 
ized. The presence of such structures can be detected 
by neutron diffraction and by the field dependence of the 
magnetization. 

5) It i s  of interest to study the thermodynamics of a 
system of magnetic impurities located in the inter- 
stices of an antiferromagnet. 

I am grateful to V. P. Plakhtii for acquainting me 
with the existence of an antiferromagnet with "non- 
coupledw sublattices, thereby stimulating the per- 
formance of this study. Numerous discussions with 
him and with V. I. Sokolov of the experimental data on 
the magnetic symmetry on the garnet Mn3Cr,Ge30,, 
were very useful. I am grateful to S. V. Maleev for a 
discussion of the question of antiferromagnon damping 
by degenerate centers. 

"1t would be incorrect, generally speaking, to obtain a spin- 
wave dispersion law with the aid of the classical equation for the 
angular momentum, by adding E,, to the expression for the 
energy, since the quantum correction to the equations of mo- 

tion can be of the same order a s  to the energy. In our case, 
however, this approach yields the same results a s  the rigor- 
ous analysis that follows. 
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