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The singularity of a surface quantity (capacitance of a double layer near a surface) in the vicinity of the 
temperature of transition of a superionic conductor into a state with a charge density wave (CDW) is 
investigated phenomenologically. The equation that must be satisfied by the electric potential in the bulk of 
the crystal and the boundary conditions is found within the framework of the Landau theory. Accordingly, a 
regular procedure is pro@ for findiig the asymptotic form of the potential at the transition point. The 
procedure leads to a satisfactory approximate solution (confirmed by numerical calculations) for the case of 
"low" surface charge densities. An investigation of the first integrals of the principal equation shows that the 
second derivative of the surface capacitance at the point of the volume transition into the CDW state is 
discontinuous. The results are compared qualitatively with those of experiments on a crystal in which a CDW 
presumably exists. 

PACS numbers: 73.20.Cw, 66.30.H~ 

INTRODUCTION 

The considerable attention paid a t  present to the in- 
vestigation of the so-called superionic crystals (SC) o r  
solid eiectrolytes is due not only the possibility of their 
extensive use,' but also to the variety of their proper- 
ties that a re  of general physical interest. A super- 
ionic conductor is an example of a system that is char- 
acterized, on the one hand, by an anomalously high 
ionic conductivity o a t  temperatures far  from the melt- 
ing point (the record a t  room temperature is 
= 0.44(51- cm)" of the crystal o! -RbCu4C1,G, Ref. 3; one 
usually speaks of melting of one of the sublattices, the 
cation one in the case of the SC AgI, Ag,S, RbAg41,, and 
others), and on the other by the presence of distinct 
attributes of a crystal structure defined by an ordered 
anion sublattice (Refs. 3 and 4). 

Since the subsystem of disordered actions is highly 
"friable," the SC can be in a spatially inhomogeneous 
state under certain conditions. This phenomenon was 
observed several years namely, an x-ray struc- 
tural investigation of ionic crystals of the 8-aluminum 
type has made i t  possible to identify reflections corre- 
sponding to a two-dimensional superstructure ("micro- 
domainsv in the terminology of Refs. 6-8), with a char- 
acteristic period 40-50 A, and the superstructure was 
found to be stable a t  T s 400 K. A two-dimensional 
modulated phase with a quasimacroscopic period was 
recently observed in the superionic crystal 0 - LiAlSiO, 
in the temperature interval 430 "C T Q 490 "C (Ref. 9). 
Finally, observation of an incommensurate (one-dimen- 
sional) superstructure in the superionic phase of the 
A&S crystal a t  T >450 K was reported in Ref. 10 (the 
experiments were performed up to a temperature 
T=570 K). 

Perrot  and ~ l e t c h e r "  have experimentally demon- 
strated the existence of a heat-capacity anomaly at 
T = 620 K in the superionic crystal AgzS, but a t  that 
time i t  was impossible to confirm the phase transition 
by x-ray diffraction. On the basis of the experiments 
of Cava and ~cwhan , ' '  it can be assumed that the tem- 
perature T,= 620 K determines the phase-transition 

point below which the SC Ag,S is in a spatially inhomo- 
geneous state characterized by the presence of an in- 
commensurate superstructure, whereas there is no 
periodic inhomogeneity above T,. 

The character of the transition into the highly con- 
ducting phase of SC was treated by the author in Refs. 
12 and 13, where i t  was shown that under certain con- 
ditions the homogeneous state in the SC becomes unsta- 
ble and a charge-density wave (CDW) i s  produced. The 
macroscopic description of such a transition i s  based 
on introducing, besides the strain tensor 

u,= (au,ia~,+a~,ia+,) 12, 

where u is the displacement vector of the medium, a 
new variable, namely the local density p of the electric 
charge, with the homogeneous state corresponding to 
p G O  and u,, = 0. The use of the quantity p a s  an inde- 
pendent variable reflects a distinguishing feature of SC, 
namely the presence of an easily deformed system of 
mobile ions. In the isotropic-SC model, with which we 
shall deal hereafter, the free-energy density, with the 
principal terms taken into account, can be represented 
in the form 

F='/zpcp+'lzK~,~2+~(~,x-'/~Ga~i~)Z+'~~~~Z+'/zg(Vp)L+1/~Dp'-~~p~~~, (1) 

where K >0, >O is the elastic modulus, and g >O, 
D >O, X, v a re  phenomenological parameters. The first  
term in (1) determines the Coulomb energy of the in- 
homogeneous SC, and the last describes the interaction 
of the strains with the charge fluctuations. Strictly 
speaking, the case considered admits of the appearance 
in F of an invariant cubic in F, and this could lead to a 
first-rather than second-order transition. We, how- 
ever, shall use F in the form (1) a s  the first  step in the 
description of the transition of the SC into an inhomo- 
geneous state (the presently available datag'" do not 
identify the order of this transition precisely). 

Recognizing that the Coulomb potential cp satisfies the 
Poisson equation 

AT=-4np/s, (2) 

where & is  the dielectric constant of the SC, and intro- 
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ducing one-dimensional (along the z axis) fluctuations 
of u,,(z) and p(z) in the form of Fourier expansions in 
the one-dimensional vector k, we obtain, after inte- 
grating F over the volume and excluding the strains, 
the following expression for the free energy per unit 
surface perpendicular to the z axis: 

where 

and account is  taken of only terms of second order in F. 

If the condition p -1 can be realized in some tem- 
perature range, this corresponds to instability of the 
SC to fluctuations p,, with wave vector k ,=(4n/~g) ' '~  
(Refs. 12, 13), i. e . ,  to the appearance of a superstruc- 
ture-a static CDW (and an associated strain wave). 
According to the results of Ref. 14, the dielectric con- 
stant of a crystal in the superionic state can be anoma- 
lously large, and accordingly the wave vector ko of the 
superstructure can be small enough, i. e . ,  the resultant 
inhomogeneity can be macroscopic. We assume 
throughout that this is the case, and use a macroscopic 
approximation. 

One of the important problems in the physics of SC is 
the study of the surface properties, particularly the 
surface capacitance. Naturally, the question ar ises  of 
the character of the singularities of this and of other 
measured quantities in the vicinity of the temperature 
of the volume transition into the state with the CDW. 
The present paper i s  devoted to this question. It is 
shown within the framework of the Landau theory that 
the second derivative of the surface capacitance is dis- 
continuous a t  the indicated transition point (i. e. ,  it has 
a singularity of the bulk-heat-capacity type). This re- 
sult agrees qualitatively with experiment15 (see Sec. 5 
below). 

1. BASIC EQUATIONS AND BOUNDARY CONDITIONS 

We consider a SC bounded by a f ree  plane surface 
z =0  and assume that the inhomogeneous distributions 
of cp, p and u,, a re  one-dimensional, i. e . ,  they depend 
only on the coordinate z. In this case the total f ree  
energy of the crystal per unit surface can be repre- 
sented in the form 

where the integrand is of volume origin, and the two 
last terms in (5) comprise the pure surface contribu- 
tion and have respectively the meaning of the Coulomb 
energy of the charges p, located on the surface proper 
(see Ref. 16) and the energy determined by the interac- 
tion of the pure surface charges with the bulk ones 
p(0); 2, is the chemical potential of the charged "liquidn 
and q is a constant. 

Varying 3 with respect to u,, and taking into account 
the definition of the SC s t ress  tensor u,,= 63/6u,,, a s  

well as  the fact that at equilibrium da,,/dz = 0 ,  i. e .  , 
u,, = 0 since there a re  no surface s t resses ,  we obtain 
the first  equation that relates u,, with p and cp: 

It is necessary to vary with respect to cp and p indepen- 
dently. Equating the variation of $with respect to 6cp 
to zero, we obtain the Poisson equation 

and the first  boundary conditions 

Varying the f ree  energy (5) with respect to p, we arr ive  
a t  the equation 

where we have used the fact that a t  equilibrium theelec- 
trochemical potential 2, is constant and is in fact 
equal to 2,. The terms of (5) outside the integral sign 
yield then the second boundary condition 

This method of deriving the equations and the boundary 
conditions is analogous to  that used by Kaganov and 
Omel'yanchuk. l7 

Introducing the dimensionless coordinate and potential 

we rewrite Eq. (9) with allowance for (6) and (7) in the 
form 

with boundary conditions 

@'(0) =-4, @"'(O) ==has, I @ (m) 1 <m, (12) 

where 

and the primes denote everywhere derivatives with re- 
spect to 5. 

Within the framework of the Landau theory we must 
put 

P = - I + ~  (T-T,), r>o, (13) 

where T ,  is the temperature of the volume transition of 
the SC into the state with CDW. At p > 1, the potential 
a,, which is the solution of the linearized equation ( l l ) ,  
decreases monotonically into the interior of the crys- 
tal. In the range - 1 <p < 1 the linearized solution that 
satisfies the conditions (12) is of the form 

As the transition point is approached from above, we 
have q -0 and the linearized solution (14) diverges in  
the surface, nameIy, a t  any nonzero surface-charge 
density there is always a boundary region where the 
linearized equation for the potential is inapplicable. 
The depth of this region increases without limit a s  
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T  -- To and becomes infinite a t  the transition point it- 
self. At T = T,(q =0) the decrease of cp is not expo- 
nential a s  in (14), but follows a power law (see below). 

As for the asymptotic behavior of the solution cp a s  
q - 0, it is given by the linearized equation (1 1): 

but the constants A, and 5,, naturally, do not coincide 
here with the corresponding constants in (14). 

Defining the surface differential capacitance by the 
relation 

we obtain from (14) 

We note that c, turns out to be non-negative a t  A > I .  
Otherwise there should set  in a t  the temperature 
To > T, a surface instability corresponding to a restruc- 
turing of the crystal in the subsurface region when 
there is still no superstructure whatever in the volume. 
This possibility will not be discussed here and we 
assume hereafter A > 1. 

2. SOLUTION AT THE TRANSITION POINT 

We describe now the method of finding the asymptotic 
solution of the nonlinear equation (11) a t  T = T , ( p  = -1). 
As 5 - .o we represent the solution in the form of a 
ser ies  (a quantity with the subscript c pertains to the 
transition temperature T,) 

where the sought functions fn(5) a re  assumed to oscil- 
late and to contain no power-law parts. Substituting 
(17) in (11) and equating terms of like powers 5-", we 
obtain the equations 

etc. Taking the statements made above in account we 
choose a s  the solution 

where A,, A,, 5,, 5, a r e  constants (we point out that the 
right-hand side of (19) vanishes identically). With al- 
lowance for the solutions obtained, Eq. (20) takes the 
form 

f :Y+2f ,"+f t=8~,  cos ( f - f , )  -A,3 cos3 ( f - t i ) ,  

where we obtain in the right-hand side, after trigono- 
metric transformations, 

( 8 -S /4A12)AI  cos ( f -Sr) - ' l rA~'cos  [ 3 ( f - E % ) I .  (22) 

It is easily seen that retention of the first term in (22), 
which is the solution of a homogeneous equation of the 
type (la) ,  would lead to the appearance in f, of terms of 
the form 5 cos(5 - 5,), which should not be there (other- 
wise this would mean simple a redefinition of the func- 

tion fi(()). It follows from this directly that the coef- 
ficient of cos(5 - 5,) in the right-hand side of (22) should 
vanish, i. e. , 

and the constant A, itself is defined only accurate to the 
sign. 

The function f, is now easy to determine and equals 

A, and 5, a r e  constants. Writing also the equation for 
f,: 

f,"+Zf,"+k=-24A1 sin ( 5 - f , )  +24A, cos (E-Er) 

+3A,tcos"(E-f,) [ -A2cos  (E-f2)+2A,  sin (5-E,)]+12(f, '+f3"') 

and making the necessary transformations in the right- 
hand side, we represent this equation in the form 

- 8 [A ,+2A2  sin ( 5 , - f 2 ) ]  sin ( g -5 , )  

-8A2cos ( 3 g - 2 f r - f z ) + 4 A l  sin [ 3 @ - E l ) ] ,  (25) 

from which i t  follows that a solution of the type of in- 
teres t  to us  is possible if 

A,=-A , /Z  sin ( E , - E ~ ) .  (26) 

The equations for the functions that follow turn out to 
be more cumbersome, and their main feature is that 
trigonometric transformations carried out in the right- 
hand sides always single out independent terms of the 
type cos(5 - 5,) a s  well a s  sin(< - 5,) (we note that terms 
of one of this type vanished identically in (22) and (25)). 
As a result, for the power-law terms to vanish we must 
stipulate simultaneous vanishing of the coefficients of 
both cos(5 - 5,) and sin({ - 5,). This yields each time 
two equations for the determination of the constants A, 
and 5, at the specified n 3 3, i. e . .  all the constants a r e  
found to be expressed in terms of two, 5, and 5,. 

The described method serves  a s  the basis for the 
construction of an approximate solution of Eq. (11) a t  
p  =-1 in the entire range of variation of 5. We repre- 
sent the sought solution in the form 

where 5, and 5 ,  a re  unknown constants that must be de- 
termined from the boundary conditions (12). Substitut- 
ing (27) in (12) and carrying out simple transformations 
we obtain 

6 a-g2 6  
sin i,=#* 2'4, ( _ + ~ - 3 ) ,  50 E , = - ( - + L - I )  2Ai 50' , 

after which we arrive at the equation 

[6+ (A-3)  to"] z / S o 2 +  [6+ ( A - l )  ta'] 2=4A,zla,". (28) 

As ( us 1 - 0 and a t  A > 1 we have approximately 

The value of @,(O) is given in this case by 

from which we obtain for the surface capacitance a t  the 
transition point ( p  = -1) the expression 

c.,= [dQ.(O)/da.]  -'=6'" (A-1)-" 10. I ". (30) 
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A simple analysis of (28) shows that at A -  1 real  so- 
lutions for 5, exist in the region lo, ( s l ;  a t  A >> l this 
region becomes narrower: 1 us\ 2 A-"'. TO find the cap- 
acitance at lusl >> 1 a more complicated approximation 
of a,({) must be used. We, however, will not deal with 
this and confine ourselves to low surface-charge densi- 
ties. 

3. SOLUTION IN  THE REGION OF THE TRANSITION 
POINT 

Before we proceed to report the results of the solu- 
tion of Eq. (11) a t  T #T,, we determine the important 
f i rs t  integral. Multiplying (11) by and integrating, we 
obtain 

where G is a constant. At p > -1(T > Tc) the potential @ 

and its derivative tend asymptotically to zero, whence 
G 10. As for the value of G a t  T < T,(p < -1) it can be 
obtained in the following manner. At p < -1, in view of 
the presence of a periodic superstructure in the volume 
of the SC, we represent the solution far  from the boun- 
dary in the form of the expansion 

where the constant phases a r e  left out for brevity. Sub- 
stituting (32) in (11) and using trigonometric transfor- 
mation formulas, we obtain, equating the coefficients 
of cosines of like argument, accurate to the principal 
terms: 

etc. Substutution of (32) in (31) with allowance for (33) 
yields now 

where we have again restricted outselves to the princi- 
pal terms in T - T,. 

Thus, at T < T, there is a periodic solution (32) far  
from the boundary. It is useful to indicate the additional 
terms that decrease at large distances and a re  due to 
the presence of the boundary. We seek the solution of 
(11) in the form 

@ ( E ) = @ - ( E ) + @ < ( i )  

(here and elsewhere the symbol < indicates that the 
solution pertains to the temperature region T < T,). 
Linearizing the equation with respect to @<([), we a r -  
rive at the equation 

We note now that at p < -1 the principal asymptotic 
terms of a,([) can be represented in the form 

@<(E) -@o<(E) +f<<(E)I& 

where @,,(5) and fl<([) contain no power-law parts and 
satisfy Eq. (35), with f,,(5) -f,([) (see (17)) at the tran- 
sition point. Solving Eq. (35) (see the Appendix), we 
obtain a t  T < T,: 

@ ( E )  =al cos t+(A,+A, /E)  exp [--(I pI - l ) ' A f ]  cos E .  (36) 

where we have again left out the phase constants, and 

We consider now the case T >T,. Equation (11) has 
the asymptotic form (15). There is ,  however, also 
another type of solution that goes over into (17) a t  
T = T,( p = -1): the function f1<(5) (the symbol > indi- 
cates the case T >T,) is again a solution of a linear 
equation that coincides formally with the linearized 
equation (11). Again comparing with the case p=-1, 
we have a t  T >T,: 

where the first  term is defined by (15) and A, -0 a s  
T - Tc + 0. Of course, i t  is impossible to determine 
the temperature dependence of A5 from the asymptotic 
behavior, the dependence is determined essentially by 
the behavior of the solution in the subsurface region 
(cf. the solution (14) corresponding to the linearized 
boundary-value problem). We call attention also to the 
fact that €he correlation length [,, the distance a t  which 
the influence of the surface is "felt," is equal to 5,, 
= (lpI - I)-''' at T < T, (see (36)); a t  T >T,, a s  follows 
from (37), we have 5, = [(I  - Ip 1)/2]'1'2. 

4. CALCULATION OF THE SINGULAR PART OF THE 
SURFACE CAPACITANCE 

T o  obtain the answer we must find the value of the 
potential @ on the SC surface a s  a function of the sur- 
face-charge density us and of the degree of proximity 
to the transition point. It i s ,  however, a very compli- 
cated matter to obtain a s  T -- T, a solution + (5) valid 
over the entire interval 0 < 5 < -, and the temperature 
dependence of +(0), a s  will be shown below, differs 
even qualitatively from that given by the asymptotic 
formulas (36) and (37). 

Yet the dependence of @(0) on us can be determined if 
two independent f irst  integrals of Eq. (11) a re  known: 

P, (0, Q', Q", @'") =G, P , (Q ,  Q', @", @'")=H,  

where G and H a r e  constant determined by the asymp- 
totics of the arguments F, and F,. Indeed, referring 
F, and F ,  to the value 5=0  and using the boundary con- 
ditions (12), we obtain the sought function @ (0; us) (as 
well a s  @"(O;as). 

Unfortunately, i t  is impossible to obtain one more 
exact f irst  integral of (11) (other than (31)). At small 
lo, I we can, however find an approximate first  integral 
by the following procedure. We multiply (11) by @' and 
integrate term by term. The only difficulty encountered 
here is in the integration of the last term. By integrat- 
ing in it several times by parts and using ( l l ) ,  we have 

The last integral in (38) can be neglected because of 
the smallness of 1 us) and of the proximity to the transi- 
tion point. In the next to the last, however, we can put 
approximately @ - -+" (it i s  easily seen from (12), (29) 
and (31) that for 1 o, 1 << 1 this is indeed satisfied at 5 = 0, 
and that a s  5 - m this relation is more accurate the 
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closer the transition point, see (32) and (33)). We then 
obtain 

5 QsQ'"de=-@"'/4. 

Thus, a t  1 o, 1 << 1 the second independent f irst  integral 
can be represented, accurate to the principal terms, in 
the form 

where the value of the integration constant H, determi- 
ned from the asymptotic solution, turns out to be (ac- 
curate to ( [PI-  1j2): 

Choosing now 5 = 0  a s  the argument of the f i rs t  inte- 
grals (31) and (39), using the boundary conditions (12), 
and eliminating @(O) from the equalities obtained, we 
find 

At p =-1 and a t  small losl we obtain from this 

Q.(0)=-Q,=[3C(h-1)  1a,I]"'sgn a., (42) 

where the difference of the coefficient a t  / ~ , 1 " ~  from 
that given by (29) is -3%. 

To obtain reliable information on the dependence of Q 
on p in the vicinity of p = -1 we solved Eq. (11) with the 
boundary conditions (12) with a computer. The para- 
meters chosen were us =0,2;  A =  a. The calculation 
results a r e  shown in Fig. 1 (points). The figure shows 
also plots calculated from the approximate expression 
(41), which differ from the "exact" (computer) results 
by not more than 5% in the indicated@ interval. It can 
thus be assumed that the appropriate formula (41) 
yields in the case los[ << 1 a satisfactory solution of the 
problem of the temperature dependence of the surface 
capacitance near the transition point. 

It follows from (41) that Q (as well a s  @(O)) is a non- 
analytic function of T - T,, and has a discontinuous 

FIG. 1. Plots of -Q(us) at p =-1 {a) and of -Q(-p) at o,= 0 .2  
(b); A =  fl. Points-result of numerical computer solution of 
the system (11) and (12); 1) calculation by formula (41). 2) by 
(27) and (28). 

second derivative. The same holds for the capaci- 
tance, the singularity 6c, of which is determined near 
the transition point by the expression 

Calculating the derivatives with respect to temperature 
and taking (34), (40), and (13) into account we have 

A propos these results, the following remarks a r e  in 
order. The surface charge density o was regarded 
everywhere above a s  an external given parameter. Yet 
i t  is clear that under conditions of thermodynamic 
equilibrium the quantity a, (and p,) must itself be de- 
termined by the minimum condition that the free energy 
(5) be a minimum with respect to variation of 60,. 
Taking this into account and using the equilibrium con- 
ditions (6), (7),  and (9) we arr ive  at the sought equa- 
tion 

which, together with (31) and (41), allows us to express 
the equilibrium density charge located on the surface 
proper in terms of the system parameters. In this 
case, since both the volume and surface (q, which en- 
ters  in A) parameters a re  within the framework of the 
Landau theory regular functions of T - T,, the only 
singularity of the capacitance is contained a s  before in 
2H-G, although the coefficient of 2H-G in 6cs will now 
differ from (43). 

5. DISCUSSION OF RESULTS 

We have analyzed above, on the basis of the Landau 
model, the character of the singularity that determines 
the temperature dependence of the surface capacitance 
in the vicinity of the point of the volume transition of a 
SC into a spatially inhomogeneous state. The discon- 
tinuity of the second derivative of the surface quantity 
is evidence of the appearance, in the capacitance c,, of 
singularities that a r e  typical of the second-order phase 
transition that takes place in the bulk of the crystal. 
It can therefore be stated that the singular part of 
d2c./dTZ in the vicinity of T, will coincide (apart from 
a numerical factor) with the singular part  of the bulk 
heat capacity. 

Zekunde and Bukun15 reported the results of mea- 
surements of +he surface capacitance of the SC 
[C,H,NH]A~,&, in which an anomalous behavior of c, 
is observed near =35"C. A characteristic heat- 
capacity peak was noted earlier18 near this very same 
temperature, but x-ray methods did not reveal a tran- 
sition in this temperature region. It can be suggested 
that these anomalies a r e  due to the t r a n s i t i o ~  of the 
superionic crystal [c,H,NH]A&I, into a spatially inho- 
mogeneous phase corresponding to the appearance of 
the CDW considered above. The qualitative behavior 
of the temperature dependence of the surface capacity 
on the vicinity of the transition point15 does not contra- 
dict the possibility of the type of heat capacity a s  a re- 
sult of the existence of a singularity of d2c,/dT2. More 
precise experiments a r e  needed for a clear-cut answer 
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to this question. 

To my knowledge, in none of the investigations listed 
in the Introduction, in which a spatially inhomogeneous 
state of SC was observed, were the surface properties 
studied. In light of the statements made above con- 
cerning the experiments in Refs. 9 and 10 it is of in- 
terest  to study the correlation of the singularities of the 
surface and buIk properties of SC. 

I am deeply grateful to A. F. Andreev for interest in 
the work and for valuable critical remarks. I thank 
also V. M. Belous for support and A. B. Kuklov for the 
numerical calculations. 

APPENDIX 

Equation (35), written in the form 

y1y+2( (2 -  l p l ) - ~ ( l p l - i )  cos 2 ~ )  yl'+y=O, (All 

has periodic coefficients, and i ts  solution can be ob- 
tained in the following manner. We represent the solu- 
tion of (Al) in ser ies  form: 

nm-- 

where w is the so-called characteristic exponent.I9 
Substituting (A2) in (Al) and equating coefficients of 
like exponentials, we obtain the recurrence formula 

where 

( o )  = [ 2 ( n ~ t l ) - o i ] ' 0 ~ / ~  (2n-mi)4-2h(2n-mi)'+ I] 

and we put 

It follows from (A3) that 

(A4) 
Applying this relation in succession, we obtain a con- 
verging infinite continued fraction R,(w).  On the other 
hand, from (A3) we have also 

where L , ( w )  is again an infinite continued fraction. To 
determine w ,  we have the equation 

As 8,-0, Eq. (A6) has a solution w = - i +  6, 1 6 ( < < l .  
We obtain the value of 6, assuming i t  to be real. Taking 
the principal terms into account, we have from (A. 6) 

The root 6 with the minimum value of 161, i . e . ,  corre- 
sponding to the solution that decreases most slowly at 
infinity, turns out to be 

6=-(FJo/2)'"=- ( lp l -2 )" .  

It follows from (A4) and (As)  that in this case C ,  =C, ,  
C - , / C ,  -8, etc. Taking this into account we obtain Eq. 
(36) of the text. 

"A spec ia l  c a s e  of sys tems  in which intr insic defects can ex- 
hibit liquid proper t ies  a r e  quantum crystals? In SC, jus t  
a s  in  quantum c r y s t a l s ,  the number of s i t e s  of one of the sub- 
lat t ices i s  l a r g e r  than the  corresponding objects. Although 
the analogy i s  incomplete (an SC i s  a system with Coulomb 
interact ions,  and fur thermore  quantum effects  a r e  of no im- 
portance for i t ) ,  we  sha l l  somet imes  u s e  it. 
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