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Size quantization of the holes in a thin film of a semiconductor with a structurally complicated valence band, 
i.e., a semiconductor of the Ge type, and of the carriers in.a gapless semiconductor of the HgTe type is 
considered. The energy spectrum and the effective masses in the size-quantization subbands are calculated. 
The characteristics, connected with the p F c e  of surface states, of the size quantization in a gapless 
semiconductor are discussed. 

PACS numbers: 73.20.Cw, 73.60.F~ 

1. In a thin semiconductor film the component of the spin component along the direction of the momentum. 
electron or  hole quasimomentum along the normal to This change in sign does not lead to the transformation 
the film surface is quantized, a s  a result of which the of one type of particles into the other. 
energy spectrum i s  a se t  of two-dimensional subbands. 
This spectrum is very simple and well known in the case 
of the simple-conduction-band electrons (when there is 
only a twofold spin degeneracy). Recently, the pheno- 
menon of size quantization of the holes in semiconduc- 
tors with a structurally complicated valence band (Ge 
and GaAs) was also studied experimentally In these 
semiconductors, a s  is well known, the valence band 
consists of light- and heavy-hole subbands with a com- 
mon vertex at the center of the Brillouin zone. Size 
quantization of the holes in such semiconductors has not 
been theoretically investigated. 

If k #0 ,  then the reflection of the particle from the 
surface may be accompanied not only by a change in 
sign, but also by a change in magnitude of the spin com- 
ponent along the momentum. This implies that a light 
hole can be transformed into a heavy hole (and vice ver- 
s a )  in the course of its reflection from the surface. 
Thus, the wave function for k # 0 should be a linear 
combination of volume-state wave functions of light 
and heavy holes with one and the same energy. This 
mixing of the states is  the cause of the complicated 
character of the function E(k) and, in particular, the de- 
viat ion of the effective masses in the size-quantization 

The present paper i s  devoted to the computation of the subbands from the volume effective masses. 
energy spectrum of the holes in semiconductors with the 
diamond structure in the presence of size quantization. 
At the same time we consider the size quantization of 
the carr iers  in a gapless semiconductor of the HgTe 
type. Mathematically, these problems a re  equivalent, 
since the Bloch wave functions have the same symmetry 
(the I?, representation), and the volume spectra in the 
two cases a r e  described by the Luttinger Hamiltonian. 

The object of the investigation i s  the dependence E(k) 
of the energy on the momentum k parallel to the film 
surface in the size-quantization subbands. As to the lo- 
cations of the size-quantization levels for k =0,  they 
a re  given by the standard formula 

where a i s  the film thickness, m, i s  the volume effec- 
tive mass of a particle of the j-th kind, and n = 1,2,  
3,. . . . This is  due to the fact that the light and heavy 
holes (or the electrons and holes in a gapless semicon- 
ductor) a r e  quantized independently a t  k =O.  Indeed, for 
a given momentum, there a r e  four states differing in 
their spin components along the direction of the momen- 
tum, so that the components ** correspond to the heavy, 
while the *% components correspond to the light, holes. 
The spin component along the normal to the film surface 
is conserved in the purely transverse (i. e. , k = 0) mo- 
tion; therefore, the reflection of the particle from the 
film surface is accompanied by a change in sign of its 

In the case of a gapless semiconductor, the mixing of 
the electron and hole wave functions leads to the appear- 
ance of specific surface states, which a r e  considered 
in our previous paper.4 The corresponding branches of 
the energy spectrum appear upon the s ize  quantization 
of the system. Furthermore, a forbidden band appears 
in the energy spectrum because of the breaking of the 
cubic symmetry in the thin film. Since, a s  asserted 
above, for  k = 0 the electrons and holes.become quan- 
tized independently, it may be inferred5 that the width 
of the forbidden band is equal to the distance between 
the k = 0 electron and hole levels with n = 1, i. e. , to the 
quantity tizn2/2m*a2, where m* is the reduced electron 
and hole mass. But, a s  we shall show, this inference 
i s  incorrect. In fact, the forbidden-band width is sig- 
nificantly smaller, it being equal to 3A2n2/2mp2, where 
m, is  the volume effective mass of the hole. This cir-  
cumstance is closely tied with the presence of surface 
states. 

2. The energy spectrum in the vicinity of the point of 
degeneracy of the bands is described by the Luttinger 
~ a m i l t o n i a n ~  

where m, is  the free-electron mass; y = (2y2 + 3y,)/5; 
yl, y2, and y, a r e  the Luttinger parameters; p is the 
quasi-momentum operator; and J x ,  J y ,  and J,  are  4 x 4  
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matrices corresponding to the spin 9 .  The Hamiltonian 
(1) has been written in the spherical approximation, to 
which we limit ourselves here. 

In an unbounded crystal, the solutions to the Schro- 
dinger equation with the Hamiltonian (1) give, as i s  well 
known, two energy-spectrum branches corresponding 
to  the free motion of particles with effective masses 

ml=mol(yt+2y) ,  mz=mol(yl-27). 

These two branches correspond, depending on the values 
of the Luttinger parameters, to either light and heavy 
holes in a normal semiconductor of the Ge type (when 
y1 + 2y > 0 and y, - 2y > 0) or  electrons and holes in a 
gapless semiconductor of the HgTe type (when y, + 2y 
> 0 and y, -2y < 0). 

The Schrodinger equation with the Hamiltonian (1) is  
a system of four second-order equations for the compon- 
ents of the spinor JI. The most general conditions a t  the 
film boundaries have the form 

where n i s  the unit vector along the normal to the sur- 
face and i s  a dimensionless matrix whose general 
form can be established from symmetry considerations. 
The characteristic length 1 i s  determined by the dimen- 
sion of the region near the crystal boundary where the 
effective-mass approximation is inapplicable. For nar- 
row-band semiconductors 1 - (fi2/m~,)1/2 (Ref. 71, where 
E, in our case i s  the distance to the nearest s band. In 
the region where the spectrum is parabolic (i. e. ,  where 
E<< E,), the characteristic wave vector q i s  such that 
qL<< 1. In this case  we can neglect those terms in the 
boundary conditions which contain VJI, thereby reducing 
these conditions to the normal requirement that JI= 0 at 
the boundaries. 

Let us  orient the z axis along the direction perpen- 
dicular to the film surface. Let the film boundaries 
be located at z = u / 2 .  The energy spectrum i s  deter- 
mined from the Schrodinger equation HJI =EJI with the 
boundary conditions 24442)  = JI(a/2) = 0. Let the wave 
vector k in the film-surface plane be oriented along the 
x axis. Let u s  denote the wave-vector component along 
the z axis by q. For a given values of k and q the 
Schrodinger equation possesses four independent solu- 
tions of the form 

q;" (k, q)exp (iItz+iqz), (2 

where the superscript j = 1,2 numbers of the two branch- 
e s  of the energy spectrum (E, = 3 ( k 2  +q2)/2m,), while 
the subscript o! numbers the two degenerate states cor- 
responding to a given j. In the representat ion in which 
the matrix J, is  diagonal, the spinors cp;"(k,q) can be 
chosen in the form 

The spinors cp$) and cpp) a r e  obtained from (3) through 
complex conjugation: cp2 '= (cp? 'I*. 

The general solution to the Schrodinger equation with 

given values of the wave vector k and the energy E i s  a 
superposition of solutions of the type (21, where the val- 
ues of q for j = 1 , 2  should be determined from the equa- 
t ion 

Notice that the quantities q, and q, given by Eq. (4) may 
turn out to be purely imaginary. Each of the quantities 
q, and q, can assume two values differing in sign. Thus, 
there a r e  in all eight independent solutions for given 
values of k and E. The general solution can be written 
in the form 

$=e'& [A,"'@ (k ,  q,) exp ( iqjz)  + B , ~ ~ I . ~  (It, -pi) exp (-iw) I .  (5) 
j,= 

The use  of the explicit form (3) of the spinors cp;j3 in 
the boundary conditions JI(-a/2) = JI(a/2) = 0 gives r i s e  
to a system of eight homogeneous equations for the 
coefficients A2'  and B:'.  This system reduces to two 
independent systems of four equations each for the coef- 
ficients A:), A:", B:'), and B,"' and the coefficients 
A:'), A:),B:), and BY). The determinants of the two 
systems a r e  identical (which corresponds to a twofold 
Kramers degeneracy of the levels), and have the form 

1-cos q,a cos q,a=-f (q,,  qt, k)s in q ~ a  sin qza, (7) 

hl* cos (qla12) hl cos (qla/2) cos ( q ~ a / 2 )  cos (q2a12) 
cos (qla12) cos (qla12) - Az cos (qza/2) - hz* cos (qza/2) 

Ll* sin (qla/2) - hl sin (qla12) sin (qza/2) - sin (qza/2) 
sin (qla12) - sin(qla/2) - A2 sin (q2a/2) Az* sin (q2a12) 

where 

= 0, 

Equation (71, together with Eq. (41, determines the 
sought energy spectrum. For m,, m, > 0, it describes 
the size quantization of the holes in a complicated val- 
ence band; for m, > 0, m, < 0, the size quantization of 
the carr iers  in a gapless semiconductor. 

(6) 
where k, = ~ ( k , q ) .  Expanding the determinant (61, we 
obtain the equation 

For k = O  we have flq,,q,, O)=.*,; then it follows from 
Eq. (7) that qla = m or  q,a = nn. Thus, a s  has already 
been noted in Sec. 1, for k = 0 we have two independent 
systems of levels with energies 

This is  valid both for the holes in a complicated valence 
band and for the ca r r i e r s  in a gapless semiconductor. 
Below we shall consider these two cases separately. 
The energy-spectrum branches E! )(k) will be number- 
ed by the indices j and n indicating which size-quan- 
tization level the branch in question goes over into a t  
k=O. 

3. The spectrum of the holes in a complicated val- 
ence band. In this case m, = m, and m, = m,, where 
m, and m, a r e  the effective masses of the light and heavy 
holes respectively. Equation (7) can be rewritten in the 
form 

The two signs in Eq. (9) correspond to the two different 
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TABLE I. Values, computed from the formulas (11) and (15). 
of the effective masses in the size-quantization subbands for 
Ge and HgTe. 

FIG. 1. Size-quantization energy spectrum of the holes In the 
valence band of germanium. The dashed curves depict the 
parabolas (10) corresponding to the independent quantization 
of the light and heavy holes; P=0.12. 

sets  of E(k) curves. It i s  easy to see  that, on choosing 
the upper sign from Eq. (9), we obtain the branches 
~j:'(k) and Ej:)(k) with even n, and odd n,; on choosing 
the lower sign, the branches with odd n, and even %. 
The indicated se ts  of curves can intersect, since they 
a r e  obtained from different equations. Specifically, 
the branches with the same j intersect when their n 
numbers a r e  of different parities, while the branches 
with different j intersect when the n's a r e  of the same 
parity. The points of intersection a r e  determined by 
the conditions q,a = dl and q,a = nl,, where 1, and I, a r e  
nonzero whole numbers of the same  parity. In this case 
Eq. (7) is  satisfied irrespective of the value of k, and 
Eq. (4) gives the E and k values corresponding to the 
points of intersection. 

Figure 1 shows the energy spectrum, which was ob- 
tained through a numerical solution of Eqs. (4) and (7) 
with j3= m,/m, = 0.12 (Ge). Schematically, this spec- 
trum can be described a s  follows. Let us draw the set 
of parabolas 

which correspond to the independent quantization of the 
light and heavy holes for al l  k (the dashed curves in Fig. 
1). The parabolas corresponding to the light and heavy 
holes intersect. The qualitative form of the t rue  spec- 
trum can be obtained by replacing the intersections of 
the parabolas (10) with 1, and I, values of different par-  
ities by anti-intersections. The intersections corre- 
sponding to 1, and I, values of the same parity remain 
in the true spectrum. 

This scheme provides a rough qualitative description 
of the size-quantization spectrum. In fact, the effective 
masses in the size-quantization subbands differ sig- 
nificantly from the volume masses of the light and 
heavy holes. It follows from Eqs. (4) and (7) that, for 
ka<< (nn)"2, 

~ d j '  (k) =E,,"' ( 0 )  +h2kz/2m~" , 

where the effective masses m;') a r e  given by the ex- 

pression 

The expression for mf) is obtained from (11) by 
substituting m h  for rn, and 8" for 8. Several f irst  val- 
ues of the ratio m>'/m, for Ge a r e  given in Table I. 

Notice that, according to Eq. (41, two regions can be 
distinguished in the (E, k) plane: the region E > g2k2/ 
2 3 ,  where the wave vectors q, and q, a r e  both real ,  
and the region E < i?k2/m1, where q, is  rea l  and 9, is  
purely imaginary. In the second of these regions the 
transformation of a heavy hole into a light one in the 
course of a reflection from the surface is  impossible, 
in view of which the level of admixture of the states of 
the light hole in the wave function (5) attenuates expon- 
entially with distance from the surface into the interior 
of the film. 

Miller e t  al. report an experimental study of the op- 
tical transitions between the size-quantization subbands 
for the conduction and valence bands of GaAs in hetero- 
structures consisting of thin GaAs layers separated by 
relatively thick Al,Ga,,As layers. Besides transitions 
between subbands with the same n, "forbidden" transi- 
tions between subbands with different n were observed. 
Such transitions would be forbidden if the light and 
heavy holes were quantized independently. The authors 
of Ref. 3 relate the occurrence of these forbidden tran- 
sitions with the distortion of the bottom of the potential 
well formed by the GaAs layer. As follows from the 
results of the present paper, such forbidden transitions 
a r e  possible even without allowance for this effect. In- 
deed, the dependence of the wave function (5) on the 
coordinate z does not have the simple form cos ( ~ n z / a )  
at al l  nonzero values of k,  and, consequently, the func- 
tion (5) is  no longer orthogonal to the wave function of 
the n'-th (n'f n) subband of the conduction band. The 
transitions with n ' f n  a r e  forbidden only when k =0. 

4. The spectrum of the ca r r i e r s  in a gapless semi- 
conductor. The only difference between this and the 
preceding case lies in the fact that now m, > 0 and m, 
< 0 in Eq. (4). Let us set m, = me and m, = -m,, where 
meand mh a r e  the electron and hole masses respectively. 
Three essentially different regions can now be distin- 
guished in the (E,k)  plane (see Fig. 2): I) the region E 
> E2k2/2m,, where q, i s  r ea l  and q, is  purely imaginary 
11) the region E < -E2k2/2mh, where q, is purely imagin- 
ary and g, is  real; 111) the region -fi2k2/2mh< E < Fi2kZ/ 
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FIG. 2. Size-quantization energy spectrum of the carriers in 
the gapless semiconductor HgTe. The dashed curves indicate 
the boundaries of the regions I, II, and 111; for ka >> 1 the curve 
h1 gives the energy spectrum of the surface states; E, i s  the 
forbidden-band width; 8 = 0.063. 

2m,, where ql and q, a r e  both purely imaginary. 

Let u s  set  q, = in l  and q, = ix, in the region XI, and 
consider the limiting case xla>> 1, u p > >  1. Then Eq. 
(7) assumes the form 

and, according to Eq. (4), k 2 - x t = @ ( 4 - k 2 ) ,  where @ 
=me /m,. Equation (12) coincides with the equation that 
describes the surface states in a gapless semiconduc- 
tor.4 The dependence on the mangitude of the mass ra -  
tio j3 contains either one o r  two energy-spectrum 
branches corresponding to these states. For B<+,  
there exists one branch of the electronic type with ef- 
fective mass m, given by the formula4 

It follows from Eq. (12) that xl - x, - k; therefore, 
the above-considered limiting case corresponds to the 
condition ka>> 1. Thus, in the j3< $ case one of the 
branches of the size-quantization spectrum should go 
over at high k values into the branch of surface states 
with effective mass given by (13). All the remaining 
branches of the spectrum a r e  contained in the regions 
I and 11. 

Figure 2 shows the size-quantization energy spectrum 
in a gapless semiconductor, obtained through a numer- 
ical solution of Eqs. (4) and (7) with j3= 0.063 (HgTe). 
The most interesting characteristic of this spectrum i s  
the fact that the branch corresponding a t  k = 0 to the 
hole-quantization level with n =  1 has an electronic, and 
not a hole, character. For ka>>l  this branchrepre- 
sents the energy spectrum of the surface states. The 

wave function changes its character when this branch 
crosses the boundary between the regions I1 and III: the 
electron density has i ts  maximum in the middle of the 
film (i. e. , at z = 0) when ka<< 1 and in the vicinity of the 
film surfaces when ka>> 1. As can be seen from Fig. 2 
the forbidden-band width is determined by the distance 
between the n = 1 and n = 2 size-quantization levels of the 
hole: 

For $ < @ < 3 there exist two branches of surface 
states-of the electronic and hole types.4 In this case, 
a s  can be shown, both of these branches exist: in the 
size-quantization spectrum they go over to the n =  1 
size-quantization levels for the electron and hole, r e -  
spectively, when ka>> 1, but k - 0. The forbidden-band 
width is then determined by the distance between these 
levels. But this case is  of no practical interest, since 
in the known gapless semiconductors B < h . 

From Eqs. (4) and (7) we find that, for ka<< (an)'I2, 
the expressions for the energy in the size-quantization 
subbands have the form 

where the effective masses m k )  a r e  given by the expres- 
s ion 

The expression for m,'h' is obtained from (15) by sub- 
stituting m, for m, and P" for @. Values of the ratios 
m(,B)/me and m,'h'/mh for HgTe a r e  given in Table I. 
It can be seen that the effective masses mie' differ 
slightly from the volume mass me of the electron, 
whereas the masses mih' significantly differ from the 
hole mass m, and, for the first  values of n even have 
the opposite sign. 
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