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The rearrangement of the ground state and the phase transitions in a quasi-twodimensional semimetal in a 
strong transverse magnetic field are considered. The transitions are due to redistribution of the electrons 
between the Landau levels as a result of electron-hole pairing. It is shown that in the transition regions the 
electrons and holes form a nearly ideal exciton gas with Bose longwave properties, the nonideality being due 
only to virtual interlevel transitions. Without account of these transitions the ground state of the system is set 
up exactly: it is proven that any diagram correction to its energy is zero. The correlation effects at T # 0 are 
decisive for a phase transition which is of the nature of the topological transition usually encountered in two- 
dimensional degenerate systems. It is shown that many thermodynamic characteristics do not depend on the 
presence of a phase transition but are defined (even in the ideal gas approximation) by the regions of existence 
of short-range order which grow on decrease of the temperature. 

PACS numbers: 71.35. + z, 64.60.Cn 

1. A two-dimensional semimetal  in a strong magnetic negative (with a maximum at  zero  momentum) in the 
field H oriented perpendicular to the plane of motion of opposite case.  
the charge c a r r i e r s  i s  an interesting example of a sys- 
tem in which the bare spectrum of the charge c a r r i e r s  
(electrons and holes) i s  completely discrete:  the parti- 
cle energy depends only on the Landau level number and 
i s  infinitely degenerate with respect  to the projection of 
the angular momentum on the direction of H o r ,  equiva- 
lently, the position of the center of the particle orbit.' 
Nevertheless the ground state of the noninteracting 
many-particle system i s  nondegenerate, a s  i s  indeed 
typical of a two-band [i.e., electron hole (e-h)] system 
in equilibrium. The point i s  that in such a system the 
Fe rmi  level i s  of course independent of momentum and 
l ies  (for the case  of equal masses  of part icles and 
holes) in the middle of the band overlap region. There- 
fore  the Landau levels with energies below the Fe rmi  - 
energy a re  densely filled with electrons, while the r e s t  
a r e  empty at  zero temperature. [ ~ n  the hole represen- 
tation the Landau levels  of the second (hole) band with 
energies above the Fe rmi  energy a r e  densely filled 
with holes.] Consequently, the state of the system is 
unique, so that the Coulomb interaction only shifts the 
energy of each level and cannot change this  state sub- 
stantially, provided the energy shift i s  small  compared 
to  the interval between Landau levels. 

However, the Coulomb interaction does change the 
energy spectrum qualitatively; a s  we will show, dis- 
c re te  levels a r e  transformed into bands with a continu- 
ous dependence on momentum. The lowest branch of 
the excitation spectrum i s  due to transi t ions of an elec- 
t ron in an upper filled level of one band into a low f ree  
level of the other band [where the filled level can be 
either in the f i r s t  (electron) o r  the second (hole) band] 
and the binding of this  electron with the hole s o  formed. 
The exciton formed a s  a result  has  a smooth spectrum 
with a continuous dependence on the effective momen- 
tum. The d ispers io~i  law i s  positive if the electron is in 
"its own" (the f irst)  band and the hole in the second, 

The gap in the spectrum i s  decreased (by comparison 
with the bare gap, which i s  equal t o  the spacing between 
neighboring unperturbed levels) by the binding energy 
of the exciton. When the binding energy (which i s  pro- 
portional t o  H'") is equal to the spacing between levels 
(which changes linearly with H), the ground state of the 
system i s  reorganized: i t  becomes energetically favor- 
able for  electrons in the highest filled levels to make 
transitions into the lowest f ree  levels. The loss  of en- 
ergy resulting from the change in population of the 
levels  is compensated by the gain from e-h pairing. It 
i s  clear  that the bare ground state of the system is 
strongly degenerate in the regions where the levels  a r e  
not densely filled. 

In regions where there i s  no reorganization, the Cou- 
lomb interaction can be taken into account exactly at  
low temperatures2 by the self-consistent field (Hartree- 
Fock) approximation, if we neglect the virtual transi- 
tions between empty and densely filled levels, whose 
contribution in strong fields i s  governed by the smal l  
parameter  

 e ere r ,  = ( C / ~ H ) ' / ~ ,  a = l/maZ2, ma is the bare effective 
m a s s  in the electron (o= 1) o r  hole (o= 2) bands, Z 2 =  e2/  
c ,  and c is the effective dielectric constant: we se t  
E =  1.1 

In the regions where the ground state is reorganized, 
the Hartree-Fock approximation is insufficient. More- 
over,  in these regions the infinite degeneracy of the 
ground state means that the usual diagram technique is 
inapplicable. At the s ame  t ime it is obvious that i t  is 
precisely in these regions, where the e-h pairing is 
important and the number of filled levels is changing, 
that the most interesting physical effects occur. 
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In the present paper we investigate the thermodynam- 
i c  properties and excitation spectrum of a quasi-two- 
dimensional metal in a strong magnetic field [satisfying 
condition (I)], taking into account systematically cor- 
relation effects for arbitrary values of the parameters,  
and including the region of e-h pairing. The construc- 
tion of a convergent temperature diagram expansion 
turns  out to be possible, if we take a s  our zero-order 
approximation the Hartree-Fock approximation includ- 
ing exciton pairing in the regions where i t  exists. We 
have previously developed an analogous method to dis- 
cus s  the nonequilibrium two-dimensional e-h system in 
semiconductors in the lowest Landau leveL3 As  well a s  
the obvious physical differences between the equilibri- 
um case  and the nonequilibrium one, where the number 
of particles is determined by optical pumping, there 
a r e  additional difficulties in the discussion of semi- 
metal systems arising from the fact that the lowest 
Landau level i s  always densely filled and effects due to 
e-h pairing a r e  possible only in subsequeilt levels. 

The correlation effects turn out to be extremely im- 
portant; they determine not only the thermodynamic 
properties such as specific heat and compressibility a t  
low temperatures,  but also the nature of the phase 
transition. The phase transition turns out to be not of 
second order (as  it would be in the Hartree-Fock ap- 
proximation) but a topological transition of the kind 
characteristic of degenerate two-dimensional sys-  
t e m ~ . ~ . '  The point is that the system i s  equivalent to a 
weakly nonideal gas of excitons [the departure from 
ideality being indicated by the small  parameter  (I)] with 
long-wavelength properties of Bose type, and under- 
goes phase transitions of the same type a s  in a nonideal 
two-dimensional Bose gas. T o  the extent that we ne- 
glect inter-level transitions, the system is equivalent 
t o  an ideal gas,  and i t s  ground state can be found ex- 
uctly in the regions of reorganization. (We show in 
Appendix I that at  T = 0 al l  diagrammatic corrections to 
the energy of the groundstate defined by the Hartree- 
Fock approximation with e-h pairing vanish.) 

In an ideal Bose g a s  at  r e s t  there a r e  no vortex ex- 
citations, since such a system does not undergo topolog- 
ical (or  indeed any other) phase transitions. However, 
the analysis of correlation functions car r ied  out here  
shows that in an ideal Bose gas  there a r e  regions of ex- 
istence of short-range order.  In the limit T- 0 the 
correlation length defined by the dimensions of these 
regions tends t o  infinity. The presence of short-range 
order  even in this approximation is responsible for  a 
number of thermodynamic properties of the system. 

In fields satisfying condition (1) the semimetal is 
found to be in the dielectric s tate (i.e. the linear re -  
sponse to an infinitesimal electric field is zero).  The 
dielectric character  of the regions with excitonic pair- 
ing is obvious; in the regions where there is no pairing 
al l  bands (Landau levels) a r e  ei ther  densely filled o r  
empty. The conductivity in a finite field E can occur 
only through tilting of the bands in the field and must 
have a nonlinear dependence on E. 

The resul t s  obtained in this  paper should describe 
qualitatively the behavior of strongly anisotropic metals  

in a strong magnetic field. The binding energy of an 
exciton in such a systeme i s  equal to the binding energy 
of a two-dimensional exciton in a strong field,7 provided 
we neglect corrections involving the small  parameter  
(m,,/m,)1'3 due to  the motion of the particle in the z-di- 
rection parallel to the field. The importance of taking 
the mass  anisotropy into account when describing the 
transition of a semimetal to the excitonic phase i s  im- 
mediately c lear  from the fact that experimentally it i s  
only anisotropic semimetals  which undergo this transi- 
tion.' There  i s  also experimental supportg for the idea 
that a two-dimensional description grasps  the essence 
of important features of anisotropic objects: the mag- 
netic freezing-out of electrons in an anisotropic semi- 
conductor turns out to be proportional to the charac- 
teristically "two-dimensional" parameter  H1zt2, ra ther  
than to  In  as would be expected in the isotropic case. 
It should be emphasized that in a strongly anisotropic 
system, in contrast to a purely two-dimensional sys-  
tem, there  may exist long-range order ,  so  that the 
phase transition has a different character .  However, 
the low-temperature propert ies (and a fort iori  the T = 0 
properties), which a r e  determined by the presence of 
short-range order,  must be qualitatively the same in 
the two cases .  

We aote that the physical propert ies of the system 
considered here a r e  qualitatively different from the 
properties of a three-dimensional system with e-h 
pairing both in a strong magnetic fieldlO*ll and without 
a field." The difference i s  due primarily to the ze ro  
dimellsionality of the momentum space of the system in 
question. Mathematically the difference manifests it- 
self in the choice of diagrams; the pole part of the 
Green's function in this case  does not depend on the 
momentum ("quasi-zero-dimensionality"), so the choice 
of diagrams has nothing in common with that in sys tems 
with nonzero dimensionality in momentum space (see 
Appendix 1). 

2. At T = 0 n levels a r e  densely filled, and the re-  
maining levels a r e  empty, with 

Here we have confined ourselves for  simplicity to the 
case  of equal masses,  m, = m2 sm,. We also set  5 ,  
= nuo-  6,- p, where 5, i s  the energy of the n-th Landau 
level measured from the chemical potential p = ~ , / 2 .  
[E,=E,(@ = E,(O) - wo+ p,*H i s  the overlap of bands in 
a field H, where p,* is the effective Bohr magneton.] 
We also se t  w, = eH/m,c and denote by E, the normal 
Coulomb renormalization (i.e. that not associated with 
exciton pairing) of the energy of the n-th level.' The 
f i r s t  pair  of inequalities in (2) is the condition that ex- 
actly n Landau levels lie below the F e r m i  surface,  the 
second ensures  the impossibility of e-h pairing in the 
groundstate in levels close to the F e r m i  level. With 
th is  condition the increase in energy E n  due to e-h 
pairing (that i s ,  the binding energy of an exciton in the 
n-th level7) cannot compensate the decrease  due to the 
transition of the electron to a higher level; here  E n  
= Ed,,, where E,  = ( ~ ' / r , ) ( a / 2 ) ~ / ~  and analytic expres- 
s ions for  the coefficients Inn were obtained in Refs. 2 
and 7. 
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If the condition 

is fulfilled, a transition to  the excitonic phase is possi- 
ble in the n-th level. In that case the occupation of the 
upper level at T = O  changes linearly from zero (for 
= E/2) to No (for t n =  - ~ / 2 ) ,  where No= L2/2nr$ is 
the degree of degeneracy of the Landau level (L is the 
linear dimension of the system). When the filling of the 
level i s  incomplete the state of the many-particle sys- 
tem neglecting interactions is strongly degenerate, and 
the diagram technique based on the usual separation of 
the Hamiltonian into &P, and Pin, becomes useless. A 
self-consistent field approximation which takes into ac- 
count the possibility of e-h pairing is inadequate to de- 
scribe the properties of the system for T # O ,  but, a s  
will be shown below, it is exact for T = 0 if we neglect 
inter-level transitions, and moreover is a suitable ini- 
tial approximation for the construction of a convergent 
perturbation theory at arbitrary T; all  diagrams below 
will be constructed on the basis of the Green's functions 
given by this approximation. 

For future convenience we write the Green's func- 
tions of the excitonic state in the Hartree-Fock approx- 
imation, which a r e  obtained from. the solution of equa- 
tions' analogous to the Gor'kov-Eliashberg equations13 
in the theory of superconductivity, in the following 
form: 

Here x,(pX, Y) a re  the oscillator wave functions1 with or- 
bit centers at the points p,r$, At i s  the order parame- 
ter  characterizing the e-h pairing in the j-th level, and 
the quantity l1 r(<: + ~ 1 2 ) ~ ~ ' ~  satisfies the following self- 
consistency condition: 

If we neglect corrections of order of the parameter (1)' 
it i s  sufficient to keep only the term with index i = n, 
where n i s  the number of the uppermost of the filled 
levels. In this approximation the transition temperature 
is obtained from (5) in the form 

By carrying out an analysis of the vertex diagrams, 
which in the region of reorganization ( T <  TJ i s  analo- 
gous to the diagram analyses for the nonequilibrium e-h 
system in semiconductors in the lowest ~ a n d a u  level,3 
we can verify that the contribution of the particles in 
the uppermost filled level to any non-ladder diagram is 
proportional to the parameter 

a,, - s k i - t h z ( $ ) ]  4T <i ,  

which for T<< E n  becomes 

FIG. 1. The phase diagram in a semimetal with n filled levels. 
The upper curve is the Hartree-Fock temperature Tn ; the 
lower curve is the temperature of the topological phase transi- 
tion as calculated in the small T region (cf. footnote 4) (the 
extension of this curve into the region 25,,/E,, -1 is an extra- 
polation). In the vertically shaded region one can choose a 
diagram expansion corresponding to the usual separation of 
the Hamiltonian into % and In the horizontally shaded 
region a convergent expansion is obtained if exciton pairing is 
taken i n t ~  account in the zeroth approximation, with the expan- 
sion parameter a < 1/2. In the unshaded region we have 1/2 
caGl.  

For T > Tn (when ,A= 0) the parameter (7) goes over into 

where fnef,,(T) a r e  the Fermi occupation coefficients of 
the n-th level. In the region (2) for T = 0 the parameter 
(9) vanishes, since the n-th level i s  either completely 
filled o r  empty; for sufficiently low nonzero tempera- 
tures  the parameter (9) is exponentially small.') 

At high T this parameter i s  small  because of the fac- 
tor  E/T. Thus, over a wide region of the parameters 
(see Fig. 1) it i s  sufficient to restrict  ourselves to a 
consideration of the ladder diagrams, while the non- 
ladder diagrams a r e  of the order of the small parame- 
ters2)(7)-(9). This can be confirmed by estimates of the 
higher-order diagrams, which can be carried out a s  in 
Ref. 3. We note that if we were to construct our dia- 
g rams  for region (3) with the bare Green's functions, o r  
equivalently with the Green's functions of the Hartree- 
Fock approximation without account of e-h pairing, then 
the contribution of the non-ladder diagrams would be 
everywhere proportional to the parameter (9), which for 
T < Tn i s  small only in an insignificant part of region (3) 
(see Fig. 1). 

We proceed to sum the ladder diagrams in the channel 
corresponding to scattering of an electron from the first  
band with a hole from the second. To sum these dia- 
grams i t  is convenient to transfer the x,-functions to the 
Coulomb interaction lines and take a s  Green's functions 
the quantities gJo,(w). In region (3), in the expressions 
(4)' it is adequate to restrict  ourselves to the term with 
j = n; the contribution of the other t e rms  is governed by 
the small parameter (1). In this representation the bare 
Coulomb vertex is 
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x x .  (P., Y) X. (P.+Q=, Y ) x , ( P , + ~ , ,  y')xn(pZ+k=+qu y ' ) .  
(10) 

The Bethe-Salpeter equation for the complete vertex i s  
simply solved in the transverse exciton momentum rep- 
resentation which was introduced for the three-dimen- 
sional case in the work of Gor'kov and ~ z ~ a l o s h i n s k i ~ , ' ~  
and f?r the many-particle problem in the work of Braz- 
ovskii.1° The solution reduces to the solution of the fol- 
lowing set of equations for the complete 16-component 
vertex r,dT(n; E, k) 

Here and below a summation over repeated band indices 
is implied, 6,, i s  the Kronecker symbol, c is the even 
(Bose) "frequency," and all momenta a r e  measured in 
units of l/r,; Y J ~ )  = Y ,  i s  the bare vertex in the trans- 
verse momentum representation: 

where L, is the Laguerre polynomial. 

In (11) we have introduced the following notation for 
the frequency sums: 

Ez 4; (n; E )  =T g.,"(o)g,."(o+e). & (13) 

The calculation of these sums is straightforward. Then 
solving the system of equations (111, we represent the 
result in a form suitable for subsequent calculations: 

where 
r,*(e, k )  = ( i e*2q . [ i - fn (k )  I)-'; 

r? (qn )  -- [ Am' As(qm+En) ] . 
A.(q,+f.)  (q.+E.)' ' 

Here we have omitted exponentially small t e rms  pro- 
portional to a,. As a result of a trivial analytic contin- 
uation of the vertex we find the elementary excitation 
spectrum: 

Here yJk) i s  given by expression (l2),  and we have used 
the fact that at  low temperatures the parameter 77, i s  
equal to ~ , / 2  within terms of the order of the small pa- 
rameter (8). The energy spectrum (16) agrees with the 
dispersion relation for a single exciton in the n-th Lan- 
dau level a s  calculated from the binding energy7; this 
indicates the equivalence of the system to an ideal gas  
of such excitons (when inter-level transitions a re  ne- 
g l e ~ t e d ) . ~ )  The double-valued character of the disper- 
sion law (16) i s  due to the symmetry of the system rela- 
tive to the replacement 5, - - 5,. The point 5 ,  = 0 corre- 
sponds to a half-filled n-th Landau level. For  f ,  > 0, 
when the level i s  l e s s  than half filled, the excitations 
a r e  the usual excitons, corresponding to the plus sign 

in (16). For  (,< 0, when the number of particles in the 
n-th level is greater than N0/2, it is convenient to mea- 
sure  the energy from the energy of a completely filled 
level (-NoEd; then the elementary excitations a r e  
"antiexcitons" with a negative dispersion ( l6 ) ,  formed 
by a hole from the first ,  electron, band and an electron 
from the second, hole, band. 

The dispersion law (16) i s  nonmonotonic7 in k; there 
a r e  n additional subsidiary minima. However, i t  is 
clear that for small T the principal contribution to the 
thermodynamics comes from excitations with small mo- 
menta k << 1. We carry out an expansion of %,(k) for 
small k and also an asymptotic expansion for k >> 1, the 
lat ter  important for subsequent estimates of integrals: 

Here the effective mass  of an exciton in the n-th level i s  
given for small  momentum by 

We note that the function (l2),  and hence the spectrum 
(16), may be calculated analytically. The result i s  ex- 
pressed in the form of some combination of modified 
Bessel functions and exponentials and is very compli- 
cated, s o  we shall not give i t ,  since it is not needed in 
what follows. The corresponding expressions for some 
low levels were given in Ref. 7. 

Expression (14) determines the vertex part for 
T T,(f,). We give the expression for the e-h vertex 
for  T a T,, which i s  obtained by direct summation of the 
ladder diagrams: 

   or T =  T ,  expressions (14) and (18) a r e  of course 
identical.] The vertex component i s  obtained from 
(18) by the replacement 5,- -f,, and the other compo- 
nents a r e  zero  in region (2). The pole of the expression 
(18) for E n  > 0 gives, after analytic continuation into the 
upper half-plane, an excitonic excitation spectrum 
which for T = 0 differs from the spectrum (16) by the 
presence of a gap 25,- E n  >O: 

In this region the pole of the vertex I?,?(E, k) defines an 
analogous "antiexcitonic" spectrum with a negative dis- 
persion law and gap, corresponding to the excitation of 
a pair composed of an electron from the hole band and a 
hole from the electron band. (In the region - ~ / 2  < 5 ,  
< 0 the role of the vert ices I'll22 and I',," is reversed.) 

From this point of view the reorganization of the 
ground state corresponds to a "softening" of the branch 
(19) of oscillations, and a Bose condensation of the os- 
cillations corresponding to  it,  the excitons. (It will be 
shown below that the long-wavelength excitons a r e  of 
Bose type.) We note, that the Hartree-Fock transition 
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temperature (6) can be obtained from the condition that 
a pole appears at E = k = 0 in the vertex (18). 

3. Let us now calculate the correlation f ree  energy. 
A fairly straight-forward analysis shows that the dia- 
grams of the random phase approximation (that is, the 
ring diagrams constructed from one-loop polarization 
operators) give a contribution to the energy which is de- 
termined by the small parameter a,. It is clear that 
ladder corrections to the simple polarization operator 
must be important. In Appendix 1 we prove that the 
principal contribution to the correlation free energy is 
given by the sum of diagrams of Fig. 2(a), just a s  in the 
case of a nonequilibrium e-h system in the lowest Lan- 
dau level.3 The analytic sum of these diagrams i s  given 
by the following expression: 

Here the ladder polarization operator [Fig. 2(b)] is 

The dependence of the polarization operator on the cou- 
pling constant X in (20) i s  given by multiplying by X all 
the bare vertices y ,  in the final expression for l l , ( ~ ,  k). 
To carry  out the sum over band indices o and T in (21) 
it i s  convenient to use the following easily verified 
summation formula: 

gwa(w)~~"(o')=~"+(o)g"+(~')g~"(~.)+g.-(o)g.-(o')g,~(-q.). (22) 

We note that a simple generalization [ ~ q .  (33)] of for- 
mula (22) to the case of an arbitrary number of Green's 
functions serves a s  a basis for the analysis of the high- 
order non-ladder diagrams. The remaining summations 
over the indices v, p ,  LL, /3 reduce to multiplication of 
matrices of type (4) and (15). As a result we get the 
following expression: 

FrG. 2. a) Diagrams giving the principal contribution to the 
correlation free energy. Full lines denote the Green's func- 
tions go,, (w),  broken ones the Coulomb interaction (10). At 
the vertices summation is carried out over the band indices 
a = 1 , 2 .  b) The polarization operator in terms of which the 
sum of the diagrams a is expressed. The square denotes the 
vertex I?:,,:,, with indices from a single pair joined by double 
lines. c) For clafrity we show the first approximation to the 
polarization operator b . 

After summation over frequencies and some elementary 
transformations we finally get 

2hTy. ah[q.y./TI U.(e,k)=-- . 
e'f 4q.'t2 sh[q,(i-~,)/Tl 

6.00~. cth - 2-U.Y. 
+a I,. [TI-TI. (23) 

Substituting (23) in (20)' we get after summation over 
frequencies and integration over the coupling constant 

(24) 

Using the asymptotic form (17) we can convince our- 
selves that for large k the integrand is proportional to 
(E/T)~,,%-', i.e. the integral converges and the contri- 
bution to the result from its  short-wavelength part is 
exponentially small (which i s  quite natural, since states 
with large momentum a re  occupied with exponentially 
small probability at low T). The principal contribution 
to  the integral (24) comes from states with k<< 1. As a 
result of straightforward calculations we get 

It is important that the above integral depends only ex- 
ponentially weakly on i t s  upper limit, provided that this 
limit is substantially larger than the quantity T/E,<< 1; 
this dependence is omitted in Eq. (25). 

As is the case of a nonequilibrium e-h system in the 
lowest Landau level, the energy (25) is the free energy 
of an ideal gas of excitons whose momentum distribu- 
tion for k << 1 i s  of Bose type (for k 2 1 the distribution 
function is considerably different from the Bose one). 
The expression (25) determines the correlation specific 
heat C,, which i s  linear in T, the correlation pressure, 
which is proportional to T2, and so on; the correspond- 
ing Hartree-Fock quantities a re  exponentially small at 
low temperatures.' However, the principal contribution 
to quantities which depend weakly on temperature (such 
a s  the magnetic susceptibility in a strong field) is given 
by the Hartree-Fock approximation, while the contribu- 
tion of correlation effects to these is determined by the 
small parameter (T/E,,)' << 1. 

Inter-level transitions make the exciton gas  weakly 
nonideal, s o  that i t s  low-temperature properties a re  
substantially changed. The calculation of the correc- 
tions proportional to powers of the parameter (1) at 
T = 0 is straightforward in principle, though extremely 
cumbrous. The corrections to the purely Hartree-Fock 
results  a r e  obtained by retaining in Eq. (5) all terms, 
not just the term with i = n. We note that the normal 
renormalization of the Landau levels do not change up 
to first  order in rH/a,. Moreover, there a r e  correla- 
tion corrections to the f ree  energy; the contribution of 
the first  correction in rH/a, is given at T = 0 by the two 
second-order vacuum diagrams, just a s  in the semi- 
conductor case.15 We will not ca r ry  out the correspond- 
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ing calculations here, since in this context the differ- 
ence between the system in question and the nonequilib- 
r ium exciton gas  in semiconductors3 is purely quantita- 
tive. The only point of importance for  what follows i s  
that the system is equivalent to a weakly nonideal gas  
of excitons with long-wavelength Bose properties, the 
departure from ideality being determined by the small  
parameter  (1). 

4. The thermodynamic properties of the system in 
question may be calculated assuming the existence of a 
condensate. However, since the system is equivalent 
t o  an ideal (or ,  if we take account of inter-level transi- 
tions, weakly nonideal) Bose gas, a condensate cannot 
exist for T#O; i t  is destroyed by density fluctuations. 
Nevertheless, these fluctuations give a small contribu- 
tion to the f r ee  energy, s o  that Eq. (25) remains true.  
The point is that it is sufficient for the validity of this  
formula that short-range order  be formed in the sys-  
tem. We shall now demonstrate that for an  ideal two- 
dimensional Bose gas  a t  sufficiently low temperatures 
regions of short-range order a r e  formed, the dimen- 
sions of which increase without limit a s  T-0;  we shall 
also discuss the effects associated with weak nonideal- 
ity. 

The chemical potential of an ideal two-dimensional 
Bose gas  i s  

which i s  exponentially small  for T<< To, where To 
= 2np/M i s  the temperature a t  which, a s  will become 
c lear  below, short-range order  i s  formed (here p i s  
the two-dimensional density and M the m a s s  of the bo- 
sons). The f ree  energy i s  

where for  T<< To goes over, apart  from exponentially 
small  t e r m s  (-t), into formula (25). Here we used the 
asymptotic expression16 for  the Bose integral 

s= 1 

We now calculate the two-particle correlation function 
of an ideal Bose gas: 

6 k  exp (ikr) 
K(r)a ~ ~ ' e x p ( k z / 2 M T - L I T )  -i- 

In Appendix 2 i t  is shown that for T s  To we have 

where the correlation radius is given by 

h= (-2M5)-" (2MT)-"' exp (TIZT,) . (29) 

The condition for existence of the second asymptotic ex- 
pression in (28), namely Y, >> (~MT)-"~ ,  i s  automatically 
fulfilled for  T 5 To. Thus, for  T - To regions of short- 
range order  (28a) a r e  formed in the system, in which 
correlation plays an essential role. The dimensions 

(29) of these regions grow without limit a s  T - 0. How- 
ever ,  the very long-distance asymptotic, (28b), is ex- 
ponentially decreasing, s ince in th is  case,  in  contrast 
t o  the nonideal two-dimensional Bose gas,4t5*l7 there i s  
no phase transition associated with a change in the 
asymptotic behavior of the correlation functions. 

It is well known that the temperature T,, for such a 
transition in the weakly nonideal two-dimensional Bose 
g a s  does not depend on the nonideality parameter  (the 
speed of sound c,) but i s  determined only by the m a s s  
M and density p of the bosons.') Thus we must find the 
correc t  procedure for taking the limiting transition 
from the nonideal gas  to the ideal one. 

Both in the weakly nonideal and in the ideal gas  there 
exis t s  in regions of finite dimension I a "bare" conden- 
sate,  that is a macroscopic number of part icles a r e  
condensed in momentum s ta tes  with p c 1/1. In the non- 
ideal gas  there  is no long-range order ,  since the phases 
of the order  parameter  in different regions a r e  uncor- 
related. However, the modulus of the order  parameter  
(i.e., the condensate density) in the nonideal g a s  does  
not change on further increase of the dimensions of the 
regions, once we reach sufficiently la rge  regions (with 
dimensions 1 >> l / ~ c , ) .  It is just th is  feature which en- 
s u r e s  the possibility of a transition from the Bose gas  
t o  the equivalent XY model. In an ideal Bose gas  the 
density of the bare condensate decreases  continuously 
with increasing dimension of the regions, if I >> (MT)-'/', 
and the transition to the XY model with constant spins 
i s  impossible. It i s  now c lear  how to take the limiting 
transition co- 0 from the nonideal gas  to the ideal one. 
Fo r  arbitrari ly small  co the very-long-range asymp- 
totic form for temperatures T < T,, is of power-law 
form,  but the dimensions of the regions in which this  
asymptotic form appears increase without limit a s  c, 
decreases.  

Formally, the fundamental difference between the 
cri t ical  behavior of a nonideal and an ideal Bose gas  
l i e s  in the fact that in the f i r s t  case  the long-range or-  
d e r  is destroyed for  T # 0 by fluctuations of the phase 
of the order  parameter ,  while in the second case fluc- 
tuations of the density a r e  also important. It i s  easy to 
convince oneself of this  by going over in the usual way17 
f rom the Bose $, operators t o  "density-phase" varia- 
bles. In these variables the correlation function can be 
written in the form of an expansion: 

where a(r)  is the operator of deviations of the density 
from the bare  condensate density po(ko); he re  primed 
operators r e f e r  to the point rr,  unprimed ones to the 
point r. F o r  a Bose g a s  with a spectrum c(k) the "den- 
sity-density" Green's function in the momentum repre-  
sentation is 

pk2/M 
<n  ( k ,  o ) n  ( -k ,  -a) )- -. 

o'+e2(k)  

In the nonideal Bose gas  with a linear spectrum the cor- 
relation (a(r)lr(rr)) i s  convergent and smal l  if we choose 
the value of the cutoff ko correct ly.  Thus in the expan- 
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sion (30) it is sufficient to keep only the first  term, 
which gives the usual power-law asymptotic form. In 
an ideal gas with a quadratic spectrum the correlation 
function of the density fluctuations is 

. 
which is logarithmically divergent. Hence it is neces- 
sary to sum all terms in the expansion (30), which must 
lead to the correct formula (28). 

It is important that the principal contribution to all 
the asymptotics discussed comes from the long-wave- 
length limit. Consequently, all results  a r e  applicable 
also the the e-h system, which is equivalent in this 
limit to a gas of excitons with Bose statistics. How- 
ever, in this system there may occur effects associatell 
with the nonmonotonic behavior of the dispersion law 
for k - 1. For sufficiently large T states with large k 
a r e  occupied, and when the temperature i s  decreased, 
it may be possible to form a metastable condensate of 
excitons in one of the subsidiary minima. In this state 
of the system each exciton has a dipole moment -kr;, 
and there may occur in the gas of interacting dipoles a 
transition to a metastable ferroelectric state. 

APPENDIX 1 

We shall prove that in the limit T - 0 any diagram de- 
scribing corrections to the energy of the exciton conden- 
sate vanishes. We will carry  out the analysis in the re- 
gion (3) of incomplete occupancy of the n-th level. Ev- 
ery vacuum diagram i s  composed of j closed fermion 
loops (j = 1,2,3.  . . ) connected in a definite way by in- 
teraction lines. (Of course, we do not have to consider 
one-loop diagrams within which the interaction lines do 
not cross;  these diagrams have been included in the ini- 
tial Hartree-Fock approximation. In the remaining dia- 
grams there should be no separate Hartree-Fock ele- 
ments.) Let us choose, in an arbitrary diagram, a 
closed loop of 1-th order. In it, independently of the 
position of the interaction lines and the other loops, we 
can carry out a summation over the band indices and at 
least one isolated summation over frequency5): 

Z~=TC~.L(~)~,".,(~+~,).  . . g : e . ( o + ~ l - l ) .  (32) 

Here w i s  an odd frequency and E,, . . . , c , ,  a re  even fre- 
quencies. If all interaction lines connect the loop in 
question with other loops, and there a r e  no internal 
lines, then all the frequencies c a r e  independent [the 
requirement of energy conservation, that the sum of all 
outgoing frequencies be equal to zero, i s  automatically 
fulfilled with the notation (32)]. In the presence of in- 
ternal interaction lines (obviously, there cannot be less  
than two of them) certain definite relations a re  imposed 
on the frequencies E ,  but these relations do not contain 
w; this allows us to carry  out the summation over w in 
(32) independently of the subsequent summations over 
the E .  For the summation over repeated band indices in 
(32) we use the following formula: 

This formula is a generalization of formula (22) which 
is easily proved by induction [the basis of induction for 
j = 0 is the representation of the Green's functions 
g,a,(w) in the form of the expansion (4)], using the fol- 
lowing properties of the matrix g,,(q): 

Setting a =  at in (33) and carrying out the remaining sum 
over a [remembering that ga,(q) = T r g =  11 we get from 
(32) after the substitution of gqw): 

1 +- . . . 
i o -q .  i (o+e i - l ) -qm 

(35) 

For T = 0 the sums (35) a r e  replaced by integrals ac- 
cording to the usual prescription: 

Since all poles of the integrand lie in the right (or 
left) half-plane and the expression converges sufficient- 
ly fast at infinity (at least as w - ~ ) ,  the integral (35) van- 
ishes. This shows that every correction to the ground- 
state energy of the exciton condensate (defined in the 
Hartree-Fock approximation with e -h  pairing taken in- 
to account, which is the analogue of the BCS approxi- 
mation for our system) vanishes. 

For  T = 0 the sums in (35) a r e  replaced by integrals 
of the type 

with an integration contour which includes the real  axis. 
The first-order residues cancel one another [they de- 
pend on temperature like tanh(q/2~) ,  and at T = 0 one 
gets zero]. The higher-order residues a r e  proportional 
to the various derivatives: 

Consequently, for T # 0 any diagram i s  proportional to 
at least the first power of the parameter a. It is evi- 
dent that every loop in the diagram gives some nonzero 
power of the small parameter a. As was shown by a 
detailed analysis of the vertex diagrams for the e-h 
system with fixed particle n ~ m b e r , ~  the small parame- 
t e r  a a r i ses  not only a s  a result of closing of the fer-  
mion lines, but also for any crossing of the interaction 
lines. Since in closed-loop diagrams there must ne- 
cessarily be internal crossings (the closed diagrams 
without crossings were already taken into account in the 
zeroth Hartree-Fock approximation) any correction dia- 
gram must be proportional to a' with j z, 2. Thus, in 
any order the leading diagrams a r e  either the one-loop 
diagrams with a single crossing of the Coulomb lines, 
o r  the two-loop ladder diagrams of Fig. 2; these are  
proportional to a2. The sum of all diagrams of the first 
type is also proportional3 only to a'. However, when 
the diagrams of Fig. 2(a) a r e  summed up the exponen- 
tial smallness disappears, so  that they give the leading 
finite-temperature contribution to the f ree  energy. 
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We emphasize once again that the vanishing takes 
place a s  a result of mutual compensation of all dia- 
grams with the same topological structure and all pos- 
sible distributions of the band indices o= 1,2  over the 
vertices of the diagram. (The diagrams of Fig. 2 con- 
stitute just such sums; in them it i s  assumed that the 
summation over band indices has been carried out.) 
On the other hand diagrams with fixed band indices, 
when taken separately, have no particular order of 
smallness. This circumstance makes preliminary esti- 
mates of the diagrams much more difficult. The stand- 
ard order-of-magnitude estimates a r e  empty of content; 
the exact compensation of identical diagrams with dif- 
ferent band indices can be demonstrated only by an ex- 
act calculation based on Eqs. (33)-(35). 

Some confusion may be caused by inadequate analogies 
between the system considered here and other e-h sys- 
tems. As already emphasized, the distinguishing char- 
acteristic of the system considered here ( a s  of the non- 
equilibrium system of Ref. 3) is i ts  "quasi-zero-dimen- 
sionality," which from a mathematical point of view 
manifests itself in the lack of dependence of the pole 
par ts  of the Green's functions (4) on momentum. Had 
the quantities q in the denominators of the g,,( w)  de- 
pended on p, formulae (22) and (33) would be inappli- 
cable. 

It may seem strange that i t  is possible to determine 
exactly the characteristics of a system which undergoes 
a phase transition (at T = 0, in the "external field" 5). 
At f irst  sight there occur, in the natural expansion of 
the energy in A near the transition point (i.e., at T = 0 
in the neighborhood of the points <,= * ~ , / 2 ) ,  diagrams 
which do not vanish and have no particular order of 
smallness. Indeed these diagrams do exist, but here a s  
elsewhere the whole point l ies in the mutual compensa- 
tion of (substantial numbers of) diagrams. This com- 
pensation i s  far from simple to see in t e rms  of an ex- 
pansion in A. The graphical expansion of the Green's 
functions is realized according to Fig. 3, in which the 
index l(2) refers  to the bare Green's functions of an 
electron from the first  (second) band. Even the sim- 
plest diagram of second order in the interaction (the 
"envelope" diagram) corresponds to Z4 diagrams with 
fixed band indices (of which 6 a re  substantially differ- 
ent). The sum of these diagrams, a s  was shown above, 
is equal to zero, but each by itself corresponds to a 
very cumbrous expression. Of course, the sum of all 
diagrams obtained from those given above a t  any order 
of the expansion in powers of A must also vanish. How- 
ever, even in fourth order in A we get 70 diagrams (of 
which 14 a re  substantially different). Thus, an estimate 
of any one particular diagram actually gives no infor- 
mation. 

g,, = m = -+- A-A++ ... 
1 1  2 1  

g = -+ +A-+A++... 
1 2  2 2 1 2  

gIz = = - A - + e A - A 4 + + . . .  
1 2  1 2 1 2  

FIG. 3. Expansion of the Green's functions in powers of A 
near the transition point. 

In higher orders  in the interaction a calculation of 
diagrams with fixed band indices in isolation and sub- 
sequent summation of them becomes totally unrealistic. 
The possibility of estimating an arbitrary class of 
topologically equivalent diagrams is based on summing 
first  over the band indices [by formula (33)], and im- 
mediately thereafter over the frequencies and momenta. 

From a physical point of view, the possibility of an 
exact description of the ground state of the system con- 
sidered even near the point at which reorganization is 
based on i t s  equivalence (neglecting inter-level transi- 
tions) to an ideal gas, whose Bose condensation can be 
described exactly. 

APPENDIX 2 

Decomposing the denominator of expression (27) in a 
ser ies ,  we get after integration 

The expression under the summation sign i s  a maximum 
when 

2b a-'(ab)", ab>I, ' -  ( l + 4 a b ) ' h - l ' a 1 ,  a b a l ,  

where we have introduced the dimensionless parameters 
a=-LIT=-In [ I-exp (-TITo) 1, b=f  MT/2. 

For T<< To the quantity a is exponentially small. Then 
in (38) we have jo>> 1 in both cases,  so  that the sum (37) 
can be replaced by an integral: 

MT' b dz 
~ ( r ) = - j e x p ( - a . ~ - ; . ) -  2n % 

with a negligible dependence on the lower limit. In the 
case (38a) the integral can be calculated by the method 
of steepest desceats. The result is 

where ro is given by expression (29). To calculate K(r) 
in the intermediate asymptotic region 1 << b << a-' it is 
convenient to represent the integral (39) in the form 

b & ' (-ab)" { f X p  ( a -  - - . (41) 
2n 

Using the well-known expression for the asymptotic 
form of the incomplete r-function, r ( - n ,  b) = b-"l exp-b 
for b >> 1, we find that the sum in (41) i s  given by 

The remaining integral can be evaluated exactly: 

MT MT Ar, 
~ ( r ) - ~ 2 ~ ~ ( ~ - - l n - .  2n r 

Here A =  23/2ey, y is Euler7s constant and KO is the Mac- 
donald function. Combining formulae (40) and (42)' we 
obtain expression (28) given in the main text. 
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xp he contribution of the levels i # n ,  which a r e  remote from 
the Fermi energy by an amount - l i - n I we, a r e  exponentially 
small, being controlled by the parameter exp(-we/ T) << a,. 

 or T z 0 the parameter (7) vanishes, since the ground state 
of the system is exactly described (in the absence of inter- 
level transitions) by the Hartree-Fock approximation taking 
excitonic pairing into account. This assertion is  proved in 
Appendix I with the help of an analysis of the vacuum dia- 
grams. 

3 ) ~ n  such an interpretation one should represent the ground 
state energy in the form E = -N,E, + 2Nn5, (for 5,  > 0). Here 
the first term is  the total energy of an ideal gas of excitons, 
while the second fs the decrease in energy due to the appear- 
ance of particles above the Fermi level. Minimizing this 
expression with respect to the number N, of particles in the 
n-th level (which depends on 5,) we find 

which agrees with the rigorously derived e ~ ~ r e s s i o n s . ~  
"n the system considered here the mass and density of parti- 

cles is  determined by the magnetic field: Ma H ' / ~  (formula 
(1 7)1 and the effective density P, , ,~ ,  = (N,/L'),,, a H (see foot- 
note 3). From the known formula for T, in a nonideal two- 
dimensional Bose gas5 we obtain, for the system in question, 
Ter a ~ ' 1 ~ .  For the analogous system with fixed particle num- 
ber we have3  IT,^ H- ' /~] .  

5'We do not take into account here the contribution to the ther- 
modynamics from inter-level transitions, which vanishes 
with the small parameter (1). Hence we include in the analy- 
s is  not the complete Green's functions (4) but their compo- 
nents g& (w) which describe the distribution of particles with- 
in only-the n-th Landau level. 
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