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An effective method is developed for calculating the higher orders of perturbation theory for potentials of 
polynomial type. The method is based on a transition to the perturbation theory problem for a Fock operator 
with purely discrete spectrum. In this case, allowance for the dynamical symmetry of the unperturbed 
operator makes it possible to express the corrections of any order in perturbation theory as polynomials with 
rational coefficients. The method is used to calculate the bound states of the Schrainger equation with 
screened Coulomb potential. The analytic properties of the solutions are investigated. By means of the Pad6 
method, the exact values of the energy are obtained in a wide range of variation of the screening parameter. 
The real and imaginary parts of the energies of quasistationary states are calculated. 

PACS numbers: 03.65.Ge, 03.65.Db 

1. INTRODUCTION In each order in c, it has the form of a polynomial in 
powers of r.   he methods of perturbation theory in the 

In connection with the solution of a number of funda- parameter c make it possible to find approximate solu- 
mental problems of quantum mechanics and field theory, 

tions in the form there has recently been a considerable increase in in- 
terest in the calcilation of the higher orders of pertur- - 
bation theory.14 The best known quantum-mechanical E,,, ( e )  = 2 EAT' eN .  (3 
problems for which the analytic properties and struc- B-O 

ture of the perturbation ser ies  have been investigated 
in detail a re  the anharmonic oscillator4-' and the hydro- It is  not difficult to find the energy to third order in pow- 
gen atom in an external field. '-'' e r s  of c, since the wave function depends on E only in 

In the present paper, we discuss various aspects of 
the use of ~a~leigh-SchrGdinger perturbation theory to 
find the energies of the bound states of a particle in the 
screened Coulomb potential 

This problem i s  of interest because it has numerous 
physical applications in nuclear theory, plasma phy- 
sics, solid-state physics, and scattering theory. '=*I4 

After separation of the angular variables and the scale 
transformation r- Zr, the problem reduces to the ra -  
dial SchrGdinger equation 

the second order. The finding of the following coef- 
ficients is a rather difficult problem. 

To calculate the corrections of higher order in quan- 
tum-mechanical problems, wide use  is currently made 
of the method based on transition from the Schrodinger 
equation to a Riccati equation for the logarithmic deriv- 
ative of the wave function. 6*16*21*22 In the case of the 
screened Coulomb potential, this method was used in 
Ref. 16 to calculate correctly five orders,  and the re -  
cently published Ref. 23 reports the calculation of -100 
perturbation orders for the ground level and summa- 
tionof the perturbation theory series.  InRef. 17, four 
orders were found for an arbitrary state'' with n = l  
- 1. However, the use of this method encounters con- 
siderable difficulties in the case of excited states, when 
the radial wave function has nodes. '2*22  heref fore, it 

where &=a/Z. The energy E:, of the particle is  re- i s  not possible to obtain general expressions for the 
lated to the eigenvalue E = E n ,  of Eq. (1) by E:,= Z2E,,,. corrections of higher order in the perturbation theory 

It i s  well known that Eq. (1) cannot be integrated 
exactly, so that approximate methods must be used to 
solve it. One usually employs either numerical inte- 
gration'' o r  perturbation theory in the parameter 
c.3*1650 It is  not always convenient to use  numerical 
methods, since they involve lengthy calculations for each 
set of parameter E, n, and I separately. In addition, 
the possibilities for investigating the functional proper- 
ties of the solutions are very limited in such an ap- 
proach. 

For small values of the parameter E ,  the perturbing 
potential U ( r )  can be expanded in powers of E :  

for arbitrary n and I in such an approach. 

It was shown earlier in Ref. 24 that if one uses the 
method of Sturm expansions the perturbation theory cor- 
rections to the wave functions and energies of hydrogen- 
like atoms can be obtained in a closed analytic form for 
a large class of perturbing potentials. The correc- 
tions have a particularly simple form in the case of po- 
tentials of polynomial type. In this case, the calcula- 
tion of the higher-order corrections reduces to the use  
of a simple recursion procedure, and this is  equally 
convenient for the ground state and the excited states. 
In Ref. 3, this method was used to find exact expres- 
sions for the first  six perturbation-theory corrections 
to  the energy E,, of an arbitrary bound state. Later,'' 
the same number of corrections was obtained using 
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hypervirial relations and the Gell-Mann-Feynman theo- 
rem. 

In Sec. 2 of the present paper, we take into account 
the dynamical symmetry of the Fock operator and de- 
velop further the method proposed in Ref. 3. We obtain 
in analytic form 13 orders of the perturbation theory for 
arbitrary n and I and in numerical form more than 70 
orders for the ground state and 50 orders for all ex- 
cited states with n=2,3. We investigate the behavior 
of the coefficients of the series (3) for large N. In Sec. 
3, we investigate the applicability of the method of Pad6 
approximants for finding the exact values En,(&) in a 
wide range of variation of c and we determine the cri-  
tical value (ES(c2 ) = 0) of the screening parameter. 
We establish rapid convergence of the approximants. 
We investigate quasistationary states when c < 0 and c 
> c; for I t o .  

2. CALCULATION OF THE HIGHER ORDERS OF 
PERTURBATION THEORY 

To solve Eq. ( I ) ,  we use expansions with respect to a 
complete system of square integrable functions associat- 
ed with the unperturbed Schrodinger equation. Making 
transformations of the unknown function, P ( r )  - y(r)  
= rml I2p(r),  and the independent variable, r - x 
= ( -8~ , ) "~r ,  we arrive at  the equation 

where E, = -1/2n2 i s  the unperturbed energy, and 

the Fock operator for a particle in the Coulomb field, 
has a purely discrete spectrum of equidistant eigen- 
values 

Thus, we have gone over from the perturbation theo- 
r y  problem for the Schrodinger operator for a particle 
in the Coulomb field to the equivalent problem for the 
Fock operator MI. The term on the right-hand side of 
the equation, which is  due to the presence of the per- 
turbation, has the form 

where 

is the perturbing operator, and bE = E  -E , .  

Besides MI, we introduce the operators 

d 1 
M,=M, - 2, ~ , = i  ( x -  + -) , 

2 dz 2 

which have a purely continuous spectrum of eigenval- 
ues. It was shown earlier in Refs. 25 and 26 that the 
self-adjoint operators Mi (i = 1,2,3) satisfy the com- 
mutation relations 

[MI, M I ]  =iMS, [ M I ,  M a ]  =iMz, [M,, M2] =-iM, (9) 

and, therefore, a r e  elements of the Lie algebra of the 

noncompact group 0(2,1). The quadratic form 

is a Casimir operator of the group. Since 

Q= (sZ-1) /4=1(1+1) ,  

the complete set  { y i )  of eigenfunctions of the operator 
M, for fixed s realizes the basis of a unitary irreducible 
representation of O(2,l). 

It i s  convenient to introduce the operators M,= M, 
iM,, which satisfy the commutation relations 

from which it follows directly that 

Bearing in mind that x =  2(M1 -M,) = 2 4  - M +  - M-, 
.we obtain 

The relation (11) was obtained by a different method in 
Ref. 26, in which it i s  also noted that there is an analogy 
between the Sturm problem for the hydrogen atom and 
the harmonic oscillator problem. 

To find the corrections to the energy in accordance 
with perturbation theory, we proceed from the identity 

where Qn = (M, -n)"Pn, and Pn is  the projection opera- 
tor onto the subspace orthogonal to In). 

TABLE I. Coefficients of analytic expressions for perturba- 
tion theory corrections. 

Note.. The coefficients cf,?li for n =1,2,. . . , 6 are equal to 
zero and are not given in the table. 

626 Sov. Phys. JETP 55(4), April 1982 A. V. Sergeev and A. I. Sherstyuk 626 



We seek the correction bE to the energy in the form of 
the expansion (3) in powers of E using the formal ex- 
pansion that follows from (12): 

Substituting in (13) the expansion (7) for V and equating 
to zero the coefficients of the different powers of E, we 
can express E 'N' in terms of corrections of lower order 
and in terms of the matrix elements of the products of 
several operators x and Q,. 

The reduced Green's operator Q, of the unperturbed 
problem can be represented in the form of an expansion 
in the eigenfunctions yS, of the operator MI: 

Q,, -C I=, 
mfn 

m-n 

In the case of a polynomial perturbing potential of the 
type (2) or  (71, all the sum over the intermediate states 
Im) in the relation (13) terminate at finite m. Indeed, 
by virtue of the "sum ruleJ' (11) for integral q 2 0 we 
have (m I x ~  1n)=0 when Im -nl  > q .  Thus, the correc- 
tions of any perturbation order can be expressed a s  
simple analytic expressions containing polynomials in 
n and I with rational coefficients. Using this method, 
we have found in explicit form the corrections to the 
energy up to 13 orders in E for all n and 1. They have 
the form 

where A = l(1 + I) ,  and k i s  the integral part of the num- 
ber N/2. The coefficients cZ) a r e  rational numbers. 
Their values a r e  given in Table I. 

Note that the proposed method is fairly universal and 
free of the difficulties that ar ise ,  for example, in the 
calculation of the excited states using methods based on 
the Riccati equation. '2*22 

In Fig. 1, the quantities ( - l ) N ~ $ '  a r e  plotted against 
N in a semilogarithmic scale for the Is, 2s, 2p, 3s, 3p, 

FIG. 1. Coefficients of the expansion of the energy in powers 
of E. 

3d states. To within the accuracy of the figure, the 
curves for states with the same n practically coincide. 
For the ground state, the obtained dependence can be 
well approximated by the function f(N) = (N/e In NlN in a 
wide range of N. 

As was shown in Ref. 3, the asymptotic nature of the 
series (3) means that direct summation of them does not 
give satisfactory results already when E 2 0.3~:,, where 
L-; i s  the critical value of the screening parameter at 
which a level enters the continuum. Thus, the calcula- 
tion of the higher perturbation orders in this case is of 
no value. However, the use  of generalized methods of 
summation of formally divergent series2' makes it pos- 
sible to use the information contained in the expansion 
coefficients to find the required function in a fairly wide 
range of E .  The effectiveness of such methods depends 
in the f i rs t  place on the number of terms of the expan- 
sion that can be taken into account with sufficient ac- 
curacy. Therefore, if these methods a r e  to be used, 
the calculation of the higher perturbation orders is  im- 
portant. 

Various methods of generalized summation of per- 
turbation ser ies  in problems of quantum mechanics and 
field theory have been used recently. 23928"' In the case 
of the screened Coulomb potential, it was shown in Ref. 
3 that when a comparatively small number (N=6,7) of 
expansion terms a r e  taken into account the Euler, ~ G l d -  
e r ,  and Hutton methods makes it possible to obtain sat- 
isfactory results (to accuracy in the region 0 < &  

2 0.7c;. However, to obtain reliable results in the 
complete range of & up to E: it is necessary to know 
considerably more expansion terms. One of the most 
effective methods in this case is  the method of pad6 
appro~imants ,32*~~ which makes it possible to take into 
account approximately the presence of poles of the un- 
known function and, thus, approximate this function in a 
region that extends f a r  beyond the limits of convergence 
of the Taylor series.  The advantages of the Pad6 meth- 
od a r e  manifested when there a r e  sufficiently many exact 
coefficients of the original series.  

The pad6 approximants [M/L] to the function f(z) a r e  
defined32*33 as the ratio of two polynomials P,(z) and 
Q,(z) of degrees M and L ,  respectively, this ratio hav- 
ing the same first  M + L  + 1 coefficients of its Taylor ex- 
pansion a s  dz): 

In Ref. 31,13 coefficients of the expansion (3) were 
found numerically and used to construct the Pad6 ap- 
proximants [6/6] and 17/61, these making it possible to 
approximate the energy in the region c <  E,*, to an ac- 
curacy of three of four decimal places. The large num- 
ber of expansion coefficients obtained in Ref. 23 for the 
1s ground state made it possible to investigate the con- 
vergence of the diagonal Pad6 approximants to the en- 
ergy, E $ / ~ ] ,  up to N= 18. It was shown that in this 
case the pad6 approximants beginning with [10/10] give 
a good approximation to the energy in the range 0 < E 

< E & .  In the present work, we have found 73 terms of 
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Pad6 approximants converge rapidly for 0 c EL ,  
and for the ground state even up to c =  5c& ; moreover, 
as one would expect, the limit function has a vanishing 
derivative at c = EL. The states with 1 # 0, the Pad6 
approximant converges somewhat more slowly. 

the expansion (3) for the ground state and 50 terms for TABLE III. Convergence of the roots of the Pad6 approxi- 
the series for the excited states. This number of coef- mants. 
ficients is  entirely adequate for investigating the con- 
vergence of the Pad6 approximants in a wide range of N I IS 

I 21 

c, including c;, and also to consider the case of quasi- 
I 3s 

1 13333333 0 333333 1 0 148148 
stationary states. 2 t.20807ta 0.30998:, o t ~ w 2  

3 1 1938110 0308729 1 0 138138 

Table II demonstrates the convergence of the diagonal 5 119079i5 0 310971 0.139634 

Since the graphs of the functions Eno(c) touch the ab- 
scissa,  to determine the critical screening parameter 
it is  convenient to approximate the functions [-E,,(E)]"~ 
and find their roots. The roots of the Pad6 approxi- 
mants to the function [-E,,(E)]'/~, which a r e  the ap- 
proximate values of c2,  a r e  given in Table III and com- 
pared with the more accurate values of c:o (last row 
of the table) obtained earlier in Refs. 15 and 34. The 
deviation of the roots of the pad6 approximants from 
cL characterizes the accuracy of the calculation of the 
energy in the least favorable case when c = c s .  The 
table demonstrates the rapid convergence of the roots. 
For the states 2s and 3s, the quantity c:~, defined a s  
the limiting value of the roots of the Pad6 approximants, 
i s  calculated to an accuracy two orders of magnitude 
greater than the value obtained by numerical integration 
in Ref, 15, while for the ground state it is  calculated 
with the same accuracy a s  was achieved by the analytic 
method considered in Ref. 34 and to an accuracy an 
order of magnitude greater than the value cf0 = 1 .I90612 
obtained in Ref. 23. 

In the case 1 # 0, there is  a nonvanishing derivative, 
dE,,/dc+ 0, at c = E,*, , and the values of c$ a r e  deter- 
mined by the points of intersection of the curves of 
En,(&) with the abscissa. Bearing in mind that the con- 
vergence of the Pad6 approximants in the region of c - &$ i s  slower than in the case of the s states, the nu- 
merical values of c; for I f  0 were found a s  the roots 
of the diagonal pad6 approximants, E:.~], for N =  12- 
14 to three decimal places: 

0 139434 
0 139451 
0 139451 

7 

Pad; approximants for the states 1s and 2p for differ- to 
14 

On the intervals ( c ; , ~ )  when I * 0 many poles of the 
Pad6 approximants accumulate, and the sequence of ap- 
proximants becomes divergent. Such an arrangement of 
the poles i s  characteristic when the function has cuts32 
and reflects the circumstance that in the given case we 
a r e  dealing with quasistationary states, and function 

TABLE II. Convergence of the diagonal Pad6 approximants. 

ent values of c. The calculations show that for  I = 0 the 

11906252 
1.1906123 
1 1906124 

En,(&) i s  no longer a single-valued function of the com- 
plex variable c. For I # 0 and c > c s  , quasistationary 
states ar ise  because of the presence of a centrifugal po- 
tential barrier.  

0 3 10223 
0 310210 
0 310209 

To find the energies of the quasistationary states, it 
is necessary to approximate by means of Pad; approxi- 
mants a certain many-valued function. For this, we in- 
troduce a new variable t so  that 

1 1906tz4 [34]  

and require the function that is the inverse of p(t) to be 
many valued. After this, we calculate the Pad6 ap- 
proximants to the function E,,(p(t)) a s  functions of the 
variable t = q-'(c). 

We choose, for example, the function 

o 3103 [15] 

cp ( t )  =a (e l -  I ) ,  (17) 

o 1395 [ i s ]  

where a ~ ( - c ,  0). Calculations show that for this choice 
of p(t) the Pad6 approximants i i ! l L  to the function 
E n l ( ~ ( t ) ) = E n , ( t )  for t = In (-&/a - I ) *  in converge in a 
much wider range of c than the Pad6 approximants to 
En,(&) [which corresponds to the case q( t )=t] .  

In Fig. 2,  the continuous curves show the real  and 
imaginary parts of the function E2lN in the region 
E-c& for N=12,13,14 and a=-0.08. The vertical 
bars in the figure demonstrate the spread of values 
of the pad6 approximants a s  N  varies from 12 to14. 
In the same figure we have plotted the maximalvalue of 
the potential V ,  (broken curve) and the values of the 
ordinary Pad6 approximants ~z[ : " / '~  (c) (chain curve). 
Note that ~m,! i&.~]dif fers  appreciably from zero at c 

FIG. 2. Behavior of Pad6 approximants in the region &-dl 
for the state 2p. 
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values slightly less than E & ,  which can be attributed to 
the particular choice of the function ~ ( t ) .  

We thank M. A. Braun, Yu. Yu. Dmitriev, and L. N. 
~abzovsk i r  for a helpful discussion of a number of ques- 
tions discussed in the paper. 
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