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The steric interaction between asymmetric banana-shaped molecules in smectic C liquid crystals, which is one 
of the microscopic causes of the flexoelectric effect in the smectic C phase, is considered in detail. In contrast 
to other mechanisms of the flexoelectric effect, the steric interaction of the molecules leads to a strong 
temperature dependence of the flexoelectric d ~ c i e n t s  in the smectic C phases, and this explains the unusual 
temperature dependence ofthe pitch of the helix in the ferroelectric C* phase. 

PACS n u m b  61.3O.Eb, 77.80. - e, 77.60. + v 

1. The flexoelectric effect (FE) in the smectic C 
phase manifests itself in the appearance, in the liquid 
crystal, of a polarization that i s  proportional to the 
orientational deformation of the field of the director n. 
At small inclination angles 9 there exist in the C phase 
three independent FE coefficients1: go, g,, and g,, , cor- 
responding to three mutually perpendicular polarization 
directions Po, P,, and PI,. The polarization Po lies in 
the plane of the smectic layer and i s  parallel to the 2 
axis, P,, is  directed along the crystal  axis z perpendicu-' 
lar  to the planes of the smectic layers, and P, also lies 
and the plane of the smectic layer, with Pol  P,. I '  

In the chiral smectic C phase (C* phase), the flexo- 
electric coefficient go contributes to the expresssion for 
the pitch h of the helicoid3: 

where K is the elastic constant, A and p, a r e  phenomen- 
ological constants that characterize the chirality of the 
 molecule^,^ and x is  the dielectric susceptibility. It i s  
seen from (1) that the strong temperature dependence 
of the flexoelectric coefficient go should influence the 
h(T) dependence. In experiment one observes a strong 
temperature dependence of the helix pitch in the C* 

The helix pitch h increases rapidly as the 
temperature decreases from the phase-transition point 
T,, and then the growth rate of the pitch decreases 
sharply and the amplitude h reaches its maximum. 
Thus, e .  g. , the pitch of the helix in the liquid crystal  
DOBAMBC increases by several times when the temper- 
ature is  changed by 1 "C (see Fig. 1 of Ref. 4). The 
pitch of the helix decreases with further decrease of the 
temperature. 

Such a strong temperature dependence of the helix 
pitch in the C* phase has found no explanation to this 
day. The phenomenological theory leads to a constant 
value of the pitch if the corresponding constants in (1) 
a r e  temperature-independent. In the general case one 
can write the phenomenological expansion h = ho (1 + ae2 
+ be4 + . . ). In order to describe the steep linear 
growth of the pitch h a t  small angles 8 ,  however, it must 
must be assumed that a - 10' (for the smectic d-n- 

decyloxybenzinilidene-n'-amino-2-methylbutyl-cinna- 
mate-DOBAMBC, Ref. 4). In addition, the fact that k (f) 
has a maximum4 at 0, - 10-I leads to the condition b ' u '  

- lo4. Thus, all the terms in the expansion of h in pow- 
e r s  of g2 a r e  of the same order  and the expansion itself 
becomes inapplicable. We show in the present paper 
that the temperature dependence of the helix pitch k in 
the C* phase can be explained by starting from the 
strong temperature dependence of the flexoelectric coef- 
ficient go, calculated on the basis of the molecular- 
statistical theory. 

The microscopic nature of the FE in the C* phase was 
considered by us  in Ref. 2, where it was shown that 
there exist three principal contributions to the flexo- 
electric coefficients. These contributions a r e  connected 
with the ordering of the molecular quadrupoles, with the 
dipole-quadrupole interaction, and with the steric inter- 
action of the molecules. The quadrupole and dipole- 
quadrupole contributions a r e  discussed in detail in Ref. 
2, where it i s  shown that they depend little on the temp- 
erature and can be represented in the form of an ex- 
pansion in powers of 92=n'(I'C - 1'). At the same time, 
one of us has concluded that the steric interaction plays 
an insignificant role in the description of the flexoelec- 
tr ic effect in the vicinity of the transition point." This 
conclusion,~however is  valid only in the limit a s  8 - 0, 

FIG. 1. Banana-shaped molecule j. The dashed outline is  
that of a cylindrically symmetrical molecule obtained in the 
limit a s  &-  0. 
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so that the question of the influence of the steric inter- 
action on the temperature dependence of the FE coef- 
ficients in the C* phase remains open. 

We show in the present paper that the steric interac- 
tion of the asymmetric molecules leads to a strong 
temperature dependence of the FE coefficients even at 
02<< 1. Therefore, in a certain sense, the steric inter- 
action can be regarded a s  the main cause of the FE in 
the C* phase. The strong temperature dependence of 
the coefficient go can be explained in the following man- 
ner. The FE can result from a deviation of the mole- 
cule shape from cylindrical,' and in this case an im- 
portant role is the effective "banana-like" shape of the 
molecule, which can be characterized by two small pa- 
rameters: the average inflection angle of the molecule 
c<< 1, and the ratio of the width of the molecule to its 
length DI'L << 1. It is the presence of these two small 
parameters which leads to a strong temperature depen- 
dence of the FE coefficients, since the quantities go 
and g, depend in the general case on the combinations 
8 j c  and 8L/D, which a r e  not small at inclination angles 
8 - t  or 8-DIL. In this case the expansion of the coef- 
ficients go and b., in powers of 8' is itself inapplicable. 
In fact, the expression [I + (8 /~ )~ ] ' / ' ,  e. g. , cannot be 
approximated by the first several terms of the expan- 
sion in powers of 8' if 8 E. In Sec. 4 of the present 
paper we shall show that expressions of this type ap- 
pear when the contributions made to the coefficients go 
and g, by the steric interaction of the molecules a r e  cal- 
culated. It follows from the foregoing that it i s  neces- 
sary to review the conclusion of Ref. 6 that the steric 
interaction plays a negligible role, and the description 
of the FE in the C* phase, for when account is taken of 
the small parameter E the proof presented in Ref. 6 can 
be valid only at 8<< t. 

2. We examine now in greater detail the flexoelectric 
coefficients go and g,, which connect the polarization 
with the derivatives of the director along the z axis.' 
The director direction n in the C phase i s  described by 
the polar inclination angle 8 and by the azimuthal angle 
cP : 

n.=sin 0 ros q. n,=sin 0 sin q. n,=cos n. (2) 

In this case the polarizations a r e  given by P o -  acpllaz 
and P ,  - a8/az (Ref. 2). Thus, to determine the flexo- 
electric coefficients go we need take into account only 
the dependence of cp on z. In this case 

In the case of steric interaction of the molecules, the 
statistical thermodynamics of the liquid crystal is com- 
pletely determined in the molecular-field approximation 
by the function ti,, which depends on the shape of the 
molecule and is the shortest possible distance between 
the mass centers of the molecules i and j at a given mu- 
tual orientation of these molecules. '*' The orientations 
of the molecule i can be characterized by the unit vec- 
tors a, and b, of the long and short axes, respectively, 
a , lb , .  Then 

Eil=Si,(ai, b8, aj, b,, u,~) .  

Here u,, =r,, Ir,, I ,  where rij is the vector joining the 

mass centers of the molecules i and j. With the aid of 
the function ti,, the following expression was obtained 
in Ref. 2 for the polarization P that appears, on ac- 
count of the flexoelectric effect, in the result of the 
steric interaction of the molecules: 

where ti, = Si,(ni,nj, b,, bj ,e) and b ( x )  is the delta func- 
tion. Expression (4) was obtained in the approximation 
of ideal nematic and smectic orders, therefore the vec- 
tors a, and a, were replaced by the local values n, and 
n, of the director at points r, and r, . In Eq. (41, e is a 
unit vector fixed in space and perpendicular to the plane 
of the smectic layer, and cy is the fraction of the mole- 
cules nearest neighbors located in the same smectic 
layer as  the molecule. It is seen from (4) that the FE 
in the C* phase, just a s  in the nematic phase,' can re -  
sult from the asymmetry of the shape of the molecule, 
inasmuch a s  for cylindrically symmetrical molecules 
the value of ti, does not depend on the directions of the 
short axis b, and b, , and the integral in (4) vanishes. 

We assume a model in which the molecules of the 
liquid crystals have the effective banana shape (Fig. 1) 
considered in the description of the FE in the nematic 
phase.' It is convenient to describe the banana-like 
molecule by an average bending angle c<< 1,  shown in 
Fig. 1. At small deviations from cylindrical symmet- 
ry,  the value of 6, depends little on the directions of 
the short axes b, and b,, and it can be represented ap- 
proximately in the form 

cos o,=b,n,,  coso,=b,n,,  

cos z,=b,c. ros z,=br. 

where < y j  does not depend on the b, direction. All the 
derivatives in (5) a re  taken at the points cos w =0,  
cos n = 0. We note that 

We substitute now (5) in (4) and differentiate with re-  
spect to z,, putting n, = ni = n after the differentiation, 
inasmuch a s  to describe the FE it is necessary to take 
into account only the terms that a re  linear in the gradients. 
Contributions to the polarization P o  are  made only by 
the gradients of the angle cp, so that to determine the 
flexoelectric coefficient go it is necessary to differen- 
tiate only the quantity b, .nj,  since all the remaining 
coefficients in (5) depend only on the scalar product 
n -  e = cos 0. As a result we obtain the following expres- 
sion for the polarization Po: 

from which follows an expression for the flexoelectric 
coefficient go: 

1 
6 0  = - 2cos B p2(l--a)d,(:,10)3dS,I . d c o s o ,  ' 
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where the derivative is  taken a t  the point cos  w ,  = 0. 
Thus, the quantity go i s  a function of only the inclina- 
tion angle 8. At small inclination angles, {:, depends 
little on 0, and = L, where L is  the length of the 
molecule. Therefore at  small  inclination angles 8<< D/ 
L the temperature dependence of the flexoelectric coef- 
ficient go is determined by the quantity at,, / a  cos w,, 
which will be considered in Secs. 3 and 4. 

3. To calculate the flexoelectric coefficient go it i s  
necessary to derive an expression for the quantity at,, / 
a cos w,, which is determined by the shortest distance 
5 ,  between the mass centers. A general analytic ex- 
pression for ti, cannot be obtained even in the simplest 
cases. The quantity ti, cannot be formally expanded in 
powers of E (this situation is discussed inSec. I) ,  i.e., the 
terms of higher order in the expansion of {,, can be dis- 
carded, provided they do not contain combinations of the 
form (B/c)~. At small &, however, the function {,, can 
nevertheless be approximately expressed in t e rms  of 
the simpler function Ail, the form of which is  determin- 
ed only by the shape of the cylindrically symmetrical 
molecules, (i. e.  , a s  & - 0). To determine the form of 
the function A,, we make the following change of var- 
iables that characterize the orientation of an  asymme- 
trical molecule. 

We consider again the banana-shaped molecule j in 
Fig. 1. At small bending angle c such a molecule can 
be characterized by two vectors l,, and lj, (see Fig. 11, 
i. e. , such a molecule can be approximately regarded 
as consisting of two cylindrically symmetrical parts 
with long axes ljl and l,,. Let now the point XI in Fig. 
1 be the mass center of the molecule j ,  and 
let the point OJ lie on the intersection of the axes l,, 
and I,,. The point 0, can also be defined a s  the limiting 
position of the mass center of the molecule a s  c -  0. 
The distance X, 0, - EL. We define also the vector kiJ 
joining the points 0, and 0, of the molecules i and j. 
Then, in analogy with t,, , we can define A,, a s  min l kij I 
at a given orientation of both molecules. The quantity 
A,, has here the meaning of the shortest distance be- 
tween the mass centers of the cylindrically symmetrical 
molecules with axes of length l,, and I,,. This cylin- 
drically symmetrical molecule is shown dashed in Fig. 
1. 

We can now fix the orientation of the two touching 
banana-like molecules located in neighboring smectic 
layers in two stages (Fig. 2): 

1) we fix the positions of the long axes l,, and l,, of 
the two touching parts of the molecules i and j; 

2) we fix the positions of the short axes of the mole- 
cules b, and bj by rotating them around the axes li, and 
lj,. 

We note that A,, i s  not changed by the rotation of the 
corresponding molecules around the axes li2 and I,,, 
i .e . ,  

where 

FIG. 2. Relative orientation of two touching banana-shaped 
molecules located in a neighboring smectic layers. 

When the two molecules touch, the quantities Ail and 
t i ,  a r e  connected by the following exact relations (see 
Fig. 2): 

where EL, is the distance between the points Xi and 0,. 
At &<< 1 we have L, =L.  It follows from (9) that la,, 
-vij I - c ,  and expression (9) can be approximately re -  
written in the form 

We note that in this expression the quantity I;, is a 
function of the scalar products of the vectors a , ,  a,, b,, 
bj , and u i j  , while Ail is a function of the scalar products 
of the new vectors l,, 1, , and v,, introduced in the pre- 
sent section. 

We can now express the derivative a[ ,, a cos w , in 
terms of the quantity A,,. In fact, it follows from (10) 
that 

d:, /r)  co. (I),-(IA,,/o cos ( I ) , ,  C05 w,=b,n,. (11) 

The quantity Ail depends on the scalar product b, .n, 
via quantities 1, . lj , 1, . vij, and lj v,, . To determine 
the derivative in ( l l ) ,  and consequently to determine 
the flexoelectric coefficient go, we must express the 
scalar products of the vectors l , ,  1,, and v,, introduced 
by us in terms of the scalar products of the initial vec- 
tors  a i , a j  ,b i ,b j  ,uij ;  1, =li2,1j = l j l .  

In the ideal nematic order ,  a i  =n i  and the vectors ni 
and 1, a r e  connected by the relation (see Fig. 1) 

With the aid of (9) and (10) we can also express the vec- 
tor v,, in terms of the vectors uij , b,, and b,: 

Equations (12) and (13) allow us to express the scalar 
products of the vectors l,, l,, and vij introduced by us 
in terms of the scalar products of the vectors a i ,a , ,  
b, , bj , and uij  . The derivative of interest to us in the 
right-hand side of Eq. (11) can then be written a s  the 
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derivative of a complicated function. As a result  we 
arr ive  at the following expression: 

Thus, the determination of the flexoelectric coefficient 
go was reduced to a determination of the shortest  dis- 
tance Ail between the mass  centers of two cylindrically 
symmetrical molecules a s  a function of their relative 
orientation. The form of the function Ail i s  determined 
by the simpler form of the cylindrical molecules ( c  - O), while the nontrivial dependence on the asymmetry 
of the shape of the molecule i s  contained in the depen- 
dences of the new variables on the old ones tsee  (12) and 
(13 )]. An expression for A,, will be obtained in the next 
section. 

4. The function A,, can likewise not be expressed 
analytically even for bodies of simple shape. Neverthe- 
less ,  when smectic C crystals a r e  considered, ad- 
ditional simplifications a r i se ,  since the corresponding 
molecules a r e  sufficiently elongated and a r e  stacked 
on the average smectic layers. Therefore the main 
contribution to the steric interaction in (7) is  made by 
molecules that touch end to end. Under these conditions 
we actually do not need to know the form of the func- 
tion A,, at all the values of the variables, so  that the r e -  
liable approximate expressions can be obtained for Aij 

in the case  of bodies of simple shape. 

We note above all  that a t  D L<< 1 the limits of the 
variation of one of the angles a ,  3,  and y ,  which char- 
actertze the mutual orlentation of the molecules in 
contact, depend strongly on the values of the two other 
angles, so  that it 1s posstble to express one of the 
angles approximately in terms of the two others. In 
fact, we consider the plane n (Fig. 3) that 1s parallel 
to the long axts of two touching molecules i and j and 
passes through the mass center of the molecule j. We 
consider also the projection v t  of the vector v,, on the 
a plane. It is  then obvious that Ix l -'D L ,  where x 
=v,', -vi,. At small  mclinatton angles 0 in the C phase, 
the ends of the molecules of the neighboring smectic 
layers a r e  in contact, and kt , -  L.  In this case  we ob- 
tain the following relations: 

cns (x=I,v,,=I,Y,;+o(L)'I,). (15a) 
ro- j-l,v, =I,\ I - o ( ~  r.) (1%) 

The three vectors l,,  lj, and vb lie in the same plane a 
and consequently 

FIG. 3. Position of touching molecules i and j relative to the 
plane n parallel to the long axis of the molecules l i  and 1, and 
passing through the mass center of the molecule j .  

cos azcos (y -8) , 

A,,=A,,[cos(~-$), cos $, cosy] +o(D/L), 

assuming that 0 -C a , P , y  s a / 2 .  

Thus, for strongly elongated molecules All depends 
effectively only on two angles, 19 and y o r  respectively 
LY and y. In the c a s e  when the vectors l,, 4 ,  and vti 
l ie  approximately in one plane, A,, can be expressed in 
explicit form at  small  angles y < P < D / L  for arbitrary 
convex cylindrically symmetrical molecules 

We have taken into account here the fact that the ends of 
the molecules a r e  in contact, and that the shapes of the 
ends can be approximated by sections of a sphere of ra-  
dius R ,  where R i s  the curvature radius of the surface 
of the molecule at the point of intersection with the long 
axis. 

We can now use (17) to express in explicit form the 
derivatives contained in (14): 

dA LZ siny 
n z l ; - - -  
d cos 4R sin $ ' 

( 1 8 4  

A La sin $ 
E - - -  

D 
yep" -. 

d cosy 4R sin y ' L 
(18b) 

To obtain the final expressions, we must again change 
to the initial variables n, enj, n, .u,,, and nj mu,,. The 
vectors n,, nj. and u,, a r e  connected with the vectors 
1, , I,, and vij by relations (12) and (13), in which we 
must put n j  = n, = n and u ,  = e ,  in accordance with the 
range of definition of expressions (7) and (8). Under 
these conditions the angles P and y in (18) a r e  defined by 

from which i t  follows that 

sin J's in. :r[ l i - (0:~) ' ]  :/I?. (20) 

Thus, the condition of smallness of the angle y<< D/L 
in (18) i s  always satisfied, since E<< DIL , and the con- 
dition of the smallness of the angle 3 i s  satisfied at 
small  inclination angles 0<< D/L in the C* phase. 

We have now obtained a l l  the expressions needed to 
determine the flexoelectric coefficient go at small  in- 
clination angles. In the general case the flexoelectric 
coefficient go can be represented in the form 

where goo depends little on the temperature and i s  the 
sum of the contributions due to the ordering of the mol- 
ecular quadrupoles, the dipole-quadrupole interaction, 
and others: while go, i s  determined by the steric inter- 
action and depends strongly on the temperature: 

In the derivation of this expression we have substituted 
(20) in (18), and next in (11) and in the initial expres- 
sion (8), recognizing that [:j -L  in (8) a t  0<< D/L. We 
have neglected here the contribution from (18a), since 
it decreases rapidly with increasing angle 0 .  
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Expression (22) for the flexoelectric coefficient g, 
i s  valid a t  small  inclination angles 0 in the C* phase. 
At the same time, when the temperature i s  lowered, the 
angle 9 increases rapidly in the C* phase and saturates 
a t  Om., - 1/2 (Ref. 4). At 0 - D/L we can no longer use 
the approximate expression (17) for A,,, and it is  neces- 
sa ry  in this case  to have an expression for the quantity 
A,, = A,,@,y) at al l  8,  i.e. , at  al l  angles 0. The form 
of the function A,, should depend in this case  on the ac- 
tual shape of the molecule. 

By way of specific model examples of the molecule 
shape, we have considered simple bodies: an ellipsoid 
of revolution with axes L and D, and a spherocylinder, 
constituting a cylinder of length L and diameter D, ter -  
minated on both ends by hemispheres of diameter D. 
For  the ellipsoids of revolution obtained for an ex- 
pression that is  asymptotically exact a s  y - 0 and is 
valid for a l l  angles 8: 

In this case  a general expression valid a t  a l l  angles 8 
< 1 can be obtained for the flexoelectric coefficient 
g0 J 

with allowance for the fact that ( y ,  = A,, at p = 8 and 
y = O  [see Eq. (6)]. We note that at y < P<< D I L  expres- 
sion (24) actually goes over into Eq. (22) a t  R =Re, 
= (D/2)(D/L), where Re, is  the curvature radius of the 
ellipsoid of revolution at the point of intersection with 
the long axis. It follows from (24) that the flexoelectric 
coefficient go, increases rapidly a t  8 << D/L , reaches 
a maximum, and a t  sufficiently large angles 8 > D/L it 
begins to decrease slowly. At 8 << D/L expression (24) 
goes over into expression (22). One canstate, however, 
that expression (24) overestimates the flexoelectric 
coefficient go, at 8<< D/L, since Ref <<D/2. This c i r -  
cumstance does not make it possible to use the ellip- 
soidal molecules for quantitative calculations of the 
flexoelectric coefficient go,, since the ellipsoids have 
ends that a r e  too sharp,  (at D/L<< 1) with a small  cur- 
vature radius Re, << D/2, and this influence strongly the 
s ter ic  interaction of the molecules at small  angles 8. 
It is natural to assume that a rea l  molecule has R - D/2, 
and consequently a rea l  molecules i s  closer to a sphero- 
cylinder than to an ellipsoid. 

The steric interaction of two spherocylinders in con- 
tact was considered in Ref. 12 and the value of Ail i s  
given in this case by the following exact expression, 
which can be easily obtained with the aid of Fig. 1 of 
Ref. 12 at /3 > D/L: 

Lsiny D 
A,,=-+- 

D D 
2 sin 6 sin 

Expression (25) also decreases with increasing angle 8 
[just a s  Aij (24) for ellipsoids], i.e., the shape of the 
molecule does not affect the qualitative behavior of the 
flexoelectr ic coefficient go, a s  a function of the angle 8. 

We have thus shown that s ter ic  interaction of asym- 
metric molecules leads to a complicated temperature 
dependence of the flexoelectric coefficient go,, of the 
form (24), and that this dependence is  determined by the 
relation between the inclination angle 8 in the C phase 
and the small  parameters c and D/L, & <D/L, which 
characterize the geometric shape of the  molecule^.^' 

5. We proceed now to a discussion of the results .  
We note f i rs t  that the flexoelectric coefficient go, is 
large enough compared with the characteristic values 
of the flexoelectric coefficients in the nematic phase. 
Indeed, substituting in (22) the constants typical of mole- 
cules that ~ a k e  up the smectic C phase, namely d ,  = 1 
D, L = 4 0  A, a n d D = 5  A, anda l so  a = 3 / 4 ,  p=102' cm-', 
we obtain the estimate go,- 10 -2~[1  + (8 ' E ) ~ ] " ~  cgs. The 
effective bending angle c for long smectic molecules is 
apparently much smaller than for the short ones that 
make up the nematic phase (the molecules of the PAA 
liquid crystal ,  e .  g. , have c = 5 x lo-', Ref. 9). It can 
be assumed that 10-'S c 5 lo-' for molecules that make 
up the C phase. Then the flexoelectric coefficient is  
go,- 10-28 > lo-' at (P"')\> 1, higher than the charac- 
teristic values of the flexoelectric coefficients in the ne 
matic phase, which a r e  of the order of g- 104 cgs. AS 
8 - 0 the value of go, decreases considerably and be- 
comes negligible compared with the coefficient g,,, in 
(21 ). Large values of the flexoelectr ic coefficient gos, 
compared with the characteristic values of the flexoel- 
ectric coefficients in the nematic phase (despite the 
smaller c) ,  a r e  due mainly to the following factors: 

a )  The coefficients go, i s  determined by the steric in- 
teraction of molecules lying in neighboring snlectic lay- 
e r s ,  therefore we always have here (:, = L in (8). At 
the same time, in the nematic phase the nlolecule mass  
centers a r e  randomly distributed and the distances Ey, 
between them take on values from L to D, i .  e .  , in the 
nematic phase the averaged value is  ( (E' , ' ,  I%)<<  L1. 

b) Smectic molecules a r e  longer than nematic, and 

go,  - Li 

C )  A factor L ID>> 1 appears in expression (22) for the 
coefficient go,. 

We consider now the influence of the FE on the temp- 
erature dependence of the pitch h of the helix in the 
ferroelectric C* phase. The experimental h(T) depen- 
dence is given in Ref. 4 and was discussed in Sec. 1 of 
the present paper together with the phenomenological 
theory. As already noted, the phenomenological theory 
does not explain the strong temperature dependence of 
the helix pitch h(T) in the C* phase. An expression for 
the helix pitch h in the C* phase was obtained in Ref. 11 
without allowance for the ferroelectr ic effect. In Ref. 
11, accordingly, k = 2 n K / ~  [see (I)] ,  where the elastic 
constant K is determined by the s ter ic  interaction of 
the molecules: K =Ko(l + T/T,) (T, i s  a parameter that 
characterizes the shape of the molecule") and the con- 
stant A characterizes the chirality of the molecules and 
i s  determined both by the s ter ic  and the dispersion in- 
teractions of the molecules: k = A, + A,(1 + T,/ T,). This 
temperature dependence of the constants K and A leads 
to a smooth decrease of the helix pitch h with decreasing 
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temperature, and such a decrease i s  indeed observed in 
the C* phase at large inclination angles 8 .  At the same 
time, at small angles 8  << D / L ,  corresponding to Tc 
- T- 0-3 "C, the temperature dependence of h(T) con- 
sidered in Ref. 11 can be neglected, whereas it i s  pre- 
cisely in this region that experiment reveals a strong 
temperature dependence of the helix pitch. 

The strong temperature dependence of the flexoelec- 
tric coefficient g o ,  a s  a function of the angle 9 explains 
all the main features of the temperature dependence of 
the helix pitch, since 8' = a'(T, - TI. It follows from 
(22) that at 8  S c we have 

where the constants h, and o are  expressed in terms of 
the constants of Eqs. ( I ) ,  (8), and (22). Thus, the lin- 
ear growth of the helix pitch at Te - T - 1 T is connected 
with the parameter C" >> 1. With further decrease of 
the temperature the growth rate of h decreases and the 
dependence of go,  on B L / D  becomes simultaneously sub- 
stantial [see (24)], leading to the appearance of a maxi- 
mum in the function h(8). It can be shown that at typical 
values of the constants the maximum of the helix pitch 
(which is observed in experiment'.') is reached at the 
point of the maximum of the function go, when 8  = 8 ,  
( e , = D / G L  for ellipsoids). The value of 8 ,  i s  deter- 
mined from experiment, and for DOBAMBC we obtain 
the reasonable value L/D 6. With further lowering of 
the temperature and with increasing angle 8 ,  the go, 
( 8 L  D) becomes predominant and the helix pitch de- 
creases. At still lower temperatures, the inclination 
angle saturates and in this region there is already nec- 
essary to take into account the temperature dependence 
of the constants K and A in accordance with 2ef. 11, 
which leads to further slow decrease of the pitch h. 
Thus, the flexoelectric effect plays an essential role 
in the smectic C* phase, since the steric interaction 
of the molecules leads to large values of the flexoelec- 

tric coefficient go in the C* phase, which depends 
strongly on the temperature and determines the temper- 
ature dependence of the helix pitch. 

'1 It i s  known that the flexoelectric effect i s  not connected with 
the chirality of the molecules, '" therefore the phenomeno- 
logical theory of the F E  and all the expressions for  the flexo- 
e lec t r ic  coefficients, obtained in the present paper, are 
valid for both the chi ra l  and the nonchiral C phases. 
We note that the s t e r i c  interaction of the molecules deter- 
mines a lso  the stability of the C phase itseif.1° In this case,  
however, s t e r i c  forces of different symmetry act, since the 
C phase i s  formed in the model of cylindrical molecules. 
whereas the FE i s  determined by the deviation from cyclind- 
r ica l  symmetry,  which is characterized by the parameter C. 
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