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The influence of Coulomb attraction between an electron and a hole on the coefficient of light absorption by a 
polar crystal is considered under conditions when the Urbach rule holds. It is shown that as the light 
frequency approaches the exciton binding energy a change takes place in the structure of the fmal state 
reached by the electron and hole produced upon absorption of the photon. If the Coulomb interaction is weak 
enough, the electron and hole are produced in a "quasifree" final state, wherein the regions of their 
localization are far from each other, and the sign of the screened interaction between them corresponds to 
repulsion. Enhancement of the Coulomb attraction first decreases the electron-hole distance, but at a certain 
finite value of the exciton Rydberg R ,  approximately equal to 3(E,-%2)m,/m, (m, and m, are the effective 
masses of the electron and hole, E, is the gap width, and f2 is the frequency of the light), the effective 
repulsion gives way to attraction, and the final state acquires an excitonic structure. In all cases, the exciton 
effect leads to an increase of the absorption. The strongest factor is found to be the renormalization of the 
absorption edge: the photon energy deficit A = E,-%2 is replaced by A -R . 

PACS numbers: 71.35. + z 

1. INTRODUCTION 

In a preceding paper1 the author derived self-consis- 
tent-field equations that describe the absorption of light 
by a polar crystal with simultaneous absorption of a 
large number of LO phonons. The essentially multipar- 
ticle problem was thus reduced to a certain two-particle 
(electron and hole) quantum-mechanical problem, al- 
ready a considerable simplification. However, the ob- 
tained nonlinear and nonstationary Schrijdinger equation 
is quite complicated, and the structure of its solution 
has a number of nontrivial singularities. The self- 
consistent-field equations were solved in Ref. 1 only 
for the case of strong fluctuation overscreening, when 
the bare (unscreened) Coulomb attraction of the electron 
and hole could be neglected compared with the screened 
one. This succeeded in reducing the problem in fact 
to one with a single particle. 

The present paper deals with screening of arbitrary 
strength, so  that the resultant screened Coulomb inter- 
action can correspond either to repulsion (overscreened 
situation) o r  to attraction (non-overscreened situation). 

The appearance of a new physical parameter (on top 
of the old one), namely of the exciton Rydberg R, in- 
creases greatly the number of possible situations and 
makes the problem, generally speaking essentially two- 
particle. This necessitates the use of the following sim- 
plifications. 

1. Although the method developed in Ref. 1 yields the 
preexponential factor of the absorption coefficient, we 
confine ourselves to calculation of only the argument 
of the exponential. We note that excitonic effects can 
lead to an exponential increase of the absorption coef- 
ficient only if 

RrBfi, (1) 

where 7 is the characteristic absorption time. 

2. We forgo a general analysis and study only two 
limiting cases, quasistatic (when the time 7 is short 

compared with the characteristic time of variation of 
the form of the fluctuation of w,', where w, is the fre- 
quency of the LO phonons), and dynamic (the opposite 
case). For details on the meaning of the conditions 0,7 

3 1 see  Ref. 1. 

The effective masses m, of the electron and m,, of the 
hole will be assumed to differ greatly. To be specific, 

The condition (2) allows us in all  cases to separate 
the motions of the electron and the hole, s o  that we a r e  
dealing again with a single-particle problem. We em- 
phasize that in the investigated situation the electron 
and hole a r e  in a complicated inhomogeneous self- 
consistent field, so  that their relative motion cannot be 
separated from the mass-center motion a t  arbitrary y ,  
a procedure permissible in the free-exciton problem. 

In addition to the inequality (2) it is necessary, how- 
ever, to stipulate that the electronic contribution to the 
argument (proportional to y) of the absorption-coeffic- 
ient exponential must all the same be large compared 
with unity. Otherwise allowance for the electron (and 
with i t  for all the excitonic effects) leads only to a 
change of the pre-exponential factor. 

FIG. 1. Structure of the wave function of the electron-hole 
pai r  in the overscreened (a) and non-overscreened (b) cases.  
The electron localization region i s  shown solid, that of the 
hole, dashed. a, and ah a r e  the characterist ic dimensions of 
the localization regions of the electron and hole, and Lop, i s  
the optimal distance between them. 
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We report below the main results of the study. 

2. MAIN RESULTS. QUASISTATIC CASE 

In the quasistatic case (when a07 << 1) the absorption 
coefficient K, is  proportional to the probability of the 
onset of the optimal fluctuation, i.e., the most prob- 
able of a l l  fluctuations such that the binding energy of 
the electron-hole pair with this fluctuation is -A =fin 
- E,. In this case,  generally speaking, a contribution 
to the binding energy is made also by the electron-hole 
interaction, and two cases a r e  possible. 

1. If the electron-hole attraction is weak enough (R 
< R,, where R,= 3yA), the resultant interaction is over- 
screened and corresponds to repulsion. 

2. If the attraction is strong (R > R,), the interaction 
is not overscreened and corresponds to attraction. 

It was shown in the preceding paper1 that in the strong- 
ly overscreened situation ( R e  R,) the optimal fluctua- 
tion constitutes a pair of fluctuation wells of opposite 
sign, located fa r  from each other [see Fig. l(a)]. The 
optimal distance between the wells L,,,, is determined by 
the compeitition between the increase of the fluctuation 
probability and the decrease of the overlap interval (the 
probability that the electron and hole turn out to be at 
the same point of space) with increasing distance L. 

If, remaining within the framework of the over- 
screened situation, we recognize that the bare attrac- 
tion is finite, a certain decrease of the total repulsion 
is obtained, and a s  a consequence also a decrease in the 
optimal distance between the wells: 

Lop, (R)=LOpt (0) [ I -  (RIR,)'hl"'. (3) 

If R is now increased (as the measure of the Coulomb 
attraction), then L,,,, vanishes formally a t  R =Re. 
Actually, however, the validity of the "two-well" ap- 
proximation is violated somewhat earl ier ,  when L,,,, 
becomes comparable with the width a, of the well. The 
expression fo r  the absorption coefficient a t  R < R, and 
(A / t i ~ , ) ' ~ / ~  *N << 1 is 

Here a, and a, a r e  respectively the electron and hole 
polaron coupling constants, and N = [exp@wo/~) - I]-' is 
the phonon occupation number. 

Thus, in the overscreened case allowance for  the 
Coulomb attraction leads to an increase of the absorp- 
tion coefficient. The principal (first) term in the ex- 
pression (4) for K,, which depends only on the internal 
structure of the wells, is not altered by the Coulomb 
interaction. The second term, which describes the in- 
teraction of the electron and hole and the overlap of 
their wave functions, decreases in absolute value be- 
cause of the decrease of the effective repulsion and the 
mutual approach of the wells. Moreover, an additional 
increase of the overlap intergral appears, namely the 

third term (Coulomb logarithm). In the case of strong 
overscreening ( R e  R,) Eq. (4) agrees with the one pre- 
viously obtained.' 

Equation (4) ceases to hold when the second term be- 
comes comparable with unity; this corresponds to the 
condition Lo,, - a, o r  

The region in which the electron-hole wave function be- 
comes restructured is thus very narrow. 

With further increase of R (R> R,) the repulsion be- 
tween the electron and the hole gives way to attraction 
and the structure of the optimal fluctuation i s  radically 
changed. 

The fluctuation becomes spherically symmetrical and 
constitutes a broad electron well, with a narrow hole 
well a t  its center [ ~ i g .  l(b)]. The hole is localized in 
the hole well.') The electron localization region is con- 
siderably broader, s o  that from the point of view of the 
electron the hole can be regarded a s  fixed in a point. 
The electron localization is due to the joint action of the 
(screened) attraction to the pointlike hole and to the 
electron self-action (the electron well). 

At R >> R, the electron energy is determined mainly 
by its attraction to the hole; the screening effect, a s  
well a s  the interaction with the electron well proper, 
can be neglected in this case, and the excitonic effects 
reduce to a renormalization of the edge-to a decrease 
of A by an amount R. 

At R ZR, all  the indicated effects (the bare attraction, 
the screening, and the self-action) a r e  of the same 
order. The electron energy is therefore in this case, 
too, of the order of R and the size of the state is of the 
same order of magnitude a s  the exciton Bohr radius. 
The absorption coefficient takes a t  R > R, the form 

1.17 A-R '' 
1. I'.= --(%I [ i+2  (sR)'1'-2T]. 

Comparing (5) with (4) we see  that both equation yield 
the same value a t  R = R,. 

Thus, whereas a t  large values of R i t  is expedient 
for the electron and hole "to s i t  one on the other" and 
form a spherically symmetrical configuration, a t  R =R, 
a peculiar spontaneous violation of the spherical sym- 
metry takes place: the electron breaks away from the 
hole. At the point R =R, the probabilities of the two 
configurations a r e  equal. At R < R, the fluctuation 
has a dipole moment (there is a degeneracy with respect 
to its direction), and a t  R >  R, the dipole moment is 
identically equal to zero. 

I t  is seen from (5) that the strongest action (which 
reduces to a shift of the edge by an amount R) is ex- 
erted by the excitonic effects on the absorption a t  A 2R.  
At A>> R the R-dependent terms in (5) and in (4), al- 
though large compared with unity (thus indicating that 
they a r e  important for the value of K,), a r e  small compared 
with the principal R-independent term, and therefore 
cannot alter  the character of the frequency dependence 
of K.. 
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If the hole-phonon coupling is very strong, the quasi- 
static approximation is valid also a t  low temperature. 
All the arguments of Ref. 1 remain in force in this 
case, and Eqs. (4) and (5) must be modified by replac- 
ing N with N +Q. 

We note also that the structure of the optimal fluctua- 
tion and its symmetry properties a r e  preserved also 
a t  y - 1. For example, in the derivation of (4) we have 
in fact not used the condition (2). Therefore expression 
(4) can be directly generalized to include the case of 
arbitrary y. In this case R, = 3 y ~ / ( l  +y)'. 

At R > R, and y - 1, however, we have essentially a 
two-particle problem, and the calculation of the binding 
energy is difficult. Equation (5) cannot be generalized 
in simple fashion to include the case y - 1. Incidentally, 
a t  y - 1 the frequency region where the Coulomb interac- 
tion is not overscreened is already very narrow. At 
y =1, for example, 

and this region i s  hardly of interest. 

3. MAIN RESULTS. DYNAMIC CASE 

In the dynamic case (in contrast to the quasistatic) 
the time of the absorption process is long compared with 
the time of the restructuring of the fluctuation well, 
therefore the screening can change strongly during the 
course of the process. Specifically, if the evolution is 
described in terms of imaginary time (see Ref. 1) the 
widths of the fluctuation wells increase exponentially 
with increasing imaginary time t, and their depths and 
the screening decrease exponentially. Three different 
situations a r e  accordingly possible. 

1. The Coulomb interaction is overscreened during 
the entire time T of the process: 

where 6 = A  - E,h , where ~ , h  is the polaron shift for the 
hole and is significant in the case of strong coupling 
(a,>- 1). 

This fully overscreened situation is realized for very 
strong overscreening, when 

FIG. 2. Dependence of the electron binding energy E, on the 
time. Eel is  binding energy in the electron well, and Eez is  
the energy of binding with the hole. The condition Ee2 = 0 cor- 
responds to reversal of the sign of the interaction and to the 
onset of an excitonic state, while the transition takes place a t  
the instant 7*/2, when E, = E, z. 

FIG. 3. Dependence of the potential energy of the electron on 
the coordinate at the instant t = 0 of the direct transition (a) and - - - - 
at  the instant t =  7*/2<f the inverse transition (b). 

In this case the electron and hole a r e  f a r  from each 
other all  the time, each in its own nonstationary fluc- 
tuation well. The excitonic effect influences only the 
terms that describe the interaction between the elec- 
tron and the hole. Just  a s  in (3), the distance Lo,, be- 
tween wells decreases. By virtue of the inequality (7), 
however, this decrease is insignificant and can be ne- 
glected. Thus, in the fully overscreened case the ex- 
citonic effects a r e  not important and the following equa- 
tion is valid for the absorption coefficient (see Ref. l )  

2. The Coulomb interaction is overscreened on 1 part 
of the time 7 .  This partially overscreened situation is 
possible under the condition 

and the time during which the electron and hole a r e  fa r  
from each other is 

At the s t a r t  of the process the screening is strong 
enough, so that the effective interaction corresponds to 
repulsion. I t  is expedient for the electron and hole to be 
f a r  from each other in this case. In the course of time, 
the screening decreases exponentially, and a t  a certain 
instant the repulsion gives way to attraction and a bound 
state of the electron (with energy E,) is  produced near 
the hole. It is  not expedient for the electron, however, 
to go over immediately after its onset into this state, 
since i t  is  initially too shallow. The transition takes 
place when the binding energies of both states-the one 
with the hole (E,) and the one with the electron well 
(Eel)-become equal (see Fig. 2). At this instant the 
radius of the electron w ell is  st i l l  small compared with 
the distance between wells. Consequently the transition 
is of the tunneling type. This must be taken into account 
when Lo,, is calculated. 

The evolution of the state in imaginary time can be 
described in the following manner. 
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The thermodynamic fluctuation gives r ise  to two 
polarization wells of opposite sign separated by a 
distance L,,,. The electron and hole a r e  produced a t  
one point (inside the hole well). The electron tunnels 
next rapidly (compared with the entire time of the 
process) into its own well, while the hole remains in 
place. The electron and hole "live" then in their wells, 
whose depths decrease exponentially in this time (and 
the widthincreases). At some instant the binding energy 
of the electron in the well becomes so small that tunnel- 
ing back to the hole i s  favored, and the electron remains 
the res t  of the time near the hole in a state of excitonic 
type (Fig. 3). 

The described picture takes place in the partially 
overscreened situation; in the case of complete over- 
screening there is no tunneling back and the electron 
remains in its well to the very end. 

Expression (8) (as seen from the calculation in Sec. 5) 
is determined mainly by times t - w;'. Therefore if 
r*>> w,' (this condition is satisfied a t  Rc< R,) the con- 
tribution of the time during which the electron and 
hole a r e  spatially separated practically coincides with 
(8). During the rest  of the time the hole is an excitonic 
state with energy of the orderof R. 

The final expression for K, is  of the form 

The last term in (11) is the contribution of the exciton. 
Accurate to the number under the logarithm sign, its 
value is R(T -T*)/E. Expression (11) is exact a t  w;' 
< < ~ * < < r ,  i.e., 

At R S R, the distance between the wells changes sub- 
stantially and T* turns out to be of the order of w;'. 
Therefore the f i rs t  term in (8) also begins to change 
(a * is replaced by a, at  R > R,). 

3. At R > R, the Coulomb interaction is (always) fully 
overscreened, and the electron wave function is sphere- 
ically symmetrical during the entire time T .  In this 
case 

A-R 2 77 A-R '1. 

1""0--="[%(3c) I 
Equation (12) is exact a t  R >> R,. At R 2Rc,  however 
(this corresponds to A -R/Y >> R), another term of the 

FIG. 4. Regions, on the plane, corresponding to different 
screening strengths. 1) non-overscreened situation, 2) par- 
tially screened situation, 3) full overscreening. 

order of R h w ,  appears in (12) and when combined with 
the term (R/tio,,) In(. . . ) it changes the argument of the 
logarithm in the latter. We shall not calculate this 
change. 

Thus, just as  in the quasistatic case, the principal 
excitonic effect is the shift of the edge of the band by 
an amount R, a shift particularly substantial in the 
region -R. 

Figure 4 shows, in the (RA) plane, the regions of 
validity of the expressions presented above. The value - o! QPAw, separates the quasistatic (i<< a *Pffwo) 
and the dynamic (i >> a *2N%wo) regions. At R > 3 y A  the 
Coulomb interaction is always overscreened. In the 
dynamic case the condition R =0.66 ~ * N @ W , ~ ) ' "  separ- 
ates the partially and fully overscreened regions. 

I t  must be emphasized that in the dynamic and quasi- 
static cases the values of R a r e  different: in the quasi- 
static case 

and in the dynamic 

This difference is natural, since to manages to be 
formed within a time r only if w,r >> 1. 

We derive below al l  these expressions on the basis of 
the self-consistent-field method proposed in Ref. 1. 

4. QUASISTATIC CASE (SELF-CONSISTENT 
CALCULATION) 

I t  was shown in the preceding paper1 that in the 
multiphonon case the absorption coefficient is  described 
by the expressions 

C,(R,', R,,'; R, ,  R,,; T )  =-itp(R,', R,,'; t ) ( p . ( R , ,  Rh; O)esp(-S(cp)) ,  (15) 

1 r r  

+1 (I 11 a at. d t , ~ ( t , - t . )  ( ~(-IR..-R.~I-~-IR.,-R,~~I-~ 

The wave function cp of the electron-hole pair is de- 
termined from the condition that the action have an 
extremum and under the additional normalization c ondi- 
tion (rp* 1 p) = 1, while the duration T of the process (in 
imaginary time) is determined from the extremum con- 
dition on K,: 

A=-aS/ar. 

Here and elsewhere we use units in which Fi = w, =m, = 1. 
The condition (2) makes the spatial scales of the elec- 
tron-localization region much larger than the corres- 
ponding scales fo r  the hole. This allows us to factorize 
the wave function 

cp(R., Rh; t ) = @ ( R e ,  t)cp(Rh, t ) ,  
(19) 
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where JI  and cp a r e  the electron and hole wave functions. 

Upon substitution of (19) and (16) the action breaks 
up into electron and hole terms 

S=Se+Sh, (20) 

where the screened Coulomb interaction constant, which 
depends on the imaginary time, is 

2R, 'I* 
% (',) - (T ) - 2 - ~ ~ j  d ~ l ( ~ . - ~ ) .  (23) 

0 

R,,in the f i rs t  term of (22) is reckoned from the center 
of the hole well. 

In the quasistatic case (r<< 1) we obtain (see Ref. 1) 

If x < 0 (the overscreened situation), the electron and 
hole wells a r e  fa r  apart. Minimizing expression (25) 
with the aid of a direct variational method and choosing 
(just a s  in Ref. 1) a tr ial  function in the form 

where p = r - L, L is the distance between the wells, 
and a is the width of the electron well and is the varia- 
tional parameter, we obtain (see Ref. 1) 

(E, is the energy of the electron in the well). 

To calculate K, we must know the electron wave func- 
tion in the hole-localization region, i.e., JI(0). The 
trial  function (27) cannot be used to find JI(O), and i t  is 
necessary instead to find the correct asymptotic form 
of the wave function a t  large distances. We write down 
for the electron a Schrijdinger equation that is valid fa r  
from the electron and hole wells 

ah2'hNT ) ( ( r )  =E.$ ( r )  . { - + v ~ - ~ - ~  

Solution of (30) yields (with exponential accuracy) 

When the argument of the exponential in (31) is cal- 
culated, the Coulomb logarithms corresponding to at- 
traction to the electron well and repulsion from the hole 
well a r e  mutually annihilated. What is left is the 

Coulomb logarithm corresponding to the unscreened 
electron-hole attraction. 

The optimal fluctuation should ensure a maximum of 
the quantity (JI(0) 1' exp(-$. From this we easily obtain 
Lo,, with the aid of (311, (28), and (27) (the Coulomb 
logarithm is disregarded in the determination of L,,,) 

LOPI ( R )  =Lop* ( 0 )  [1- (R_/a2N2t1)'h]  'h. (32) 

Substituting (24) and (28) in (14) we get 

with the second term of (28) disregarded (see Ref. 1). 
With the aid of (33) and (32) we obtain finally expres- 
sions (3) for L,,,(R) and (4) for K,, while the condition 
U< 0 is found to be equivalent to the condition R,< R,. 

In the overscreened situation, when x > 0, the wave 
function of the electron is concentrated near the hole. 
By way of a trial  function we use again (27), putting L 
=O. The functional (25) a t  n >  0 recalls the F-center 
energy functional considered by Pekar and Deigen.'*' 
They also used a tr ial  function in the form (27). Using 
their result, we can write 

Following Ref. 2, we have rounded off somewhat the 
numerical coefficients obtained in the exact expres- 
sion. As shown in Ref. 2, the ensuring e r r o r  is -2%. 

Substituting (34) and (24) in (18) we obtain 
(A-R)'" 7 R  

~=1.75- ahN [1+4(-)'~ 3 ( A - R )  -271 

We arrive ultimately a t  expression (5) fo r  K,. 

5. DYNAMIC CASE (SELF-CONSISTENT 
CALCULATION) 

In the dynamic case (see Ref. 1) we obtain 

The second term in (36) corresponds to the polaron 
energy shift of the hole, which must be taken into ac- 
count a t  a,>> 1 and N<< 1. The polaron shift for  the 
electron [the term with the damped exponential in the 
expression for ~ ( t ,  - t , ) ]  was neglected. Integrating in 
(23), we get 

The maximum of ~ ( t )  is reached a t  t =7/2. Therefore 
if n (7/2) < 0 or ,  equivalently, R,< ya2#er , the fully 
overscreened case is obtained. The electron and hole 
a r e  separated all the time by a large distance L, and 
the inner structure of the electron well does not differ 
from the case when there is no Coulomb interaction a t  
all. This leads to the following expression for 5,: 
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s ~ = - o . o z ~ ~ . ~ N z ~ " +  L - I ~  x ( t )  dt=-0.024a.zNze" 
0 

+~-'[2'~a~Ne'-'~(2Ro/r)"]. (3 9) 

LOPI is calculated in perfect analogy with the procedure 
in Ref. 1 o r  in the preceding section of this paper. The 
result is 

Substituting (39) and (36) in (18) we obtain expression 
(6) for 7, and it is easy to verify with its aid that the 
condition X ( T / ~ ) <  0 is equivalent to condition (7). On the 
other hand, from (6) and (40) we obtain 

Lopi ( R )  =Lop, (0) [I-0,38 (Ro/R,) 'I' In (4.566'"/a'N)] 'h. (41) 

I t  is seen now that a s  a result of the condition (7) the 
difference between L,,,(R) and L,,,(O) can be neglected 
in the fully overscreened case. One can all  the more 
neglect, as can be easily verified, also the Coulomb 
logarithm. Thus, no excitonic effects appear and Eq. 
(8) is  valid. 

In the partially overscreened case we introduce the 
time T* during which the electron is far  from the hole 
(it is equal to that part of the time during which the 
interaction is overscreened, but differs from it by a 
value on the order of unity, i.e., much less than 7 * 
itself). To calculate r *  we write 3, in the form 

sc -3.1+se2, 

gel is the contribution made to the action by the time 
interval during which the electron is in its own well, 
and <, that near the hole. Making in (43) the substi- 
tutions 

$+ (aeNer/2) ',-I$, r+ (aSAre'/2)-'I, 

we obtain 

To find I,(T*) a t  7*>> 1 we write down the SchrGdinger 
equation corresponding to the extremum (46) and valid 
a t  t,>> 1. We use fo r  this purpose the fact that the 
characteristic spatial scales of the wave function a t  the 
instant t ,  >> 1 a r e  much larger than the scales of the 
wave function a t  the instant t, - 1. This allows us to ne- 
glect r, in Jr,- r, 1 " compared with r, and to integrate 
with respect to r, and t,. As a result we obtain an 
equation with a Coulomb potential 

which is easily solved. For the binding energy we have 

We can now calculate Z2(r*): 

We obtain T* from the extremum condition on 3,: 

The electron thus goes over from a state in its own 
polarization well into the excitonic state at the instant 
when the energies of the two states become equal. 

Using (48) and (44) we obtain 

e " = a . 2 N 2 ~ Z r / ~ 0 ,  

which yields, after substitution of (6), the quantity (10) 
and 

To calculate Lo,, i t  is important that this is a tunneling 
transition, so  that in the optimization one must take in- 
to account the exponential dependence of its probability 
W,, on Lop,: 

Wt, -exp [-22 (2.1 1 E. (zS/2) 1 ) "1 =exp [ -L  (2yR0) "1. (49) 

Using (45), (49), and expression (31) for $(0), we find 
that L,,,, should be determined from the condition that 
the quantity 

be a minimum, from which we get 

Lop, ( R , )  =Lop, ( 0 )  [i-0.38(R,/Rc)"(r'+3.2)]'". 

We finally obtain expression (1 1) for K,. The Coulomb 
logarithm is disregarded in the wave function by virtue 
of the condition R<< R,. 

In the completely overscreened situation the wave 
function of the electron is concentrated all the time near 
the hole. If R - R,, the autolocalization term in (37) and 
the screening can be neglected. As a result we obtain 
the simple answer 

S.=-R,T, (50) 

which leads directly to Eq. (12). In the intermediate 
screening region R - R ,  al l  three terms in the energy 
(Coulomb, screening, and autolocalization) turn out to 
be of the same order a t  t - 1. This makes it impossible 
to solve the SchGdinger equation correspnding to the 
minimum of 3,. The last two energy terms, however, 
attenuate exponentially in time and contribute only a t  
t -  1, in contrast to the f i r s t  term, which remains con- 
stant during the entire time interval T. As a result the 
expression for S, should differ from (50) a t  R - R, only 
by the number under the logarithm sign in T. 
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6. CONCLUSION 

Despite the great variety of the different physical 
situations, we can point out the general principal effect 
of the Coulomb attraction of the electron and hole: 
when the light frequency approaches the exciton reso- 
nance, the type of the filial state of the electron-hole 
produced upon absorption of a photon changes. Where- 
a s  this state constitutes fa r  from resonance a pair of 
particles that a r e  fa r  apart in space and hardly interact 
(the weak interaction between them corresponds to 
repulsion), the state near resonance has an excitonic 
character, the interaction is strong and corresponds to 
attraction, and the distance between the electron and 
hole a r e  of the order of the Bohr radius. 

When the parameters (such a s  the frequency of the 
light) is changed, the change of the type of the final 
state constitutes practically a "phase transition" (with 
a very narrow region). It is important that these states 
have different symmetries: whereas the excitonic 
state is spherical symmetric and has no dipole moment, 
the quasifree state has a nonzero dipole moment. This 
difference must undoubtedly manifest itself when an ex- 
ternal electric field is superimposed. The greatest  
change occurs in the light-absorption coefficient in the 
immediate vicinity of the excitonic state. The energy 
of the electron-hole pair should be reckoned in this 
case not from the edge of the band, but from the ground 
state of the exciton. 

In the dynamic case, the reference level is the bind- 
ing energy of the localized exciton, and the dielectric 
constant is E,; in the quasistatic case the reference is 
the energy of the localized exciton, but the dielectric 

constant is E, (the reason for  the latter is that the ab- 
sorption time T << w, is simply too short  for polarization 
to be established). On the other hand, the structure of 
the final expressions for the absorption coefficient 
changes insignificantly both in the dynamic and in the 
quasistatic case. 

The author thanks A. G. Aronov for a discussion of 
the work and for helpful remarks. 

 he described structure of the optimal fluctuation changes 
in the immediate vicinity of the excitonic state (when A-R 
5 yR). The hole i s  also delocalized in this case. The condi- 
tions a r e  more favorable for formation of a "genuine " ex- 
citon (with a mobile hole, so that the binding energy is  in- 
creased by an amount of the order yR) than of a localized 
exciton. We shall not consider this case. since the condi- 
tion for the applicability of the quasistatic approximation is  
very stringent here and can hardly be satisfied. 
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