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Some properties of the electromagnetic waves emitted by electrons in Laue four-wave scattering by two sets of 
mutually perpendicular reflecting crystal planes are considered. It is shown that in this case, along with 
electric dipole transitions there also appear mixed electric quadruple and magnetic dipole transitions which 
result in the emission of waves with frequencies o, = o,*o,(o , ,  are the electric dipole radiation 
frequencies). The comsponding multipole moments exceed the atomic values by several orders of magnitude. 
The multipole structure of the matrix elements is a result of expansion of the Bloch electron functions in the 
parameter of deviation from the Bragg condition in the final state, and reflects the nature of the electron wave 
beats in the crystal. The usual approach, based on expansion in the radiation-field multiples, is not valid in 
this case, since it implies a confined (e.g., by the channel boundaries or upon channeling) region of motion of 
the particles. As a result the radiation from a diffracted electron is found to be similar to the radiation from 
macroscopic multiples moving in a refracting medium and oscillating at different frequencies. This seems to 
be a unique situation from the viewpoint of experimental investigation of multipole radiation of multipoles 
moving with "circaluminal" and "superluminal" velocities. Formulas from the radiation intensities are 
obtained. 

PACS numbers: 78.40. - q, 42.10.H~. 41.10.H~ 

1. INTRODUCTION (the x and y axes, respectively), and have different 

It was shown that electromagnetic transi- 
tions between different dispersion surfaces or, equiv- 
alently, between transverse-motion bands," give rise to 
Pendellosung radiation when an electron is diffracted in 
a single crystal. The frequency of this radiation can 
range widely, from the infrared to the x-ray region. 
The two-wave case was considered and it was shown 
that the classical analog of a diffracting electron i s  an 
electric dipole oscillator moving in a refractive medi- 
um, oriented perpendicular to the velocity, and oscil- 
lating with frequency oo =2vC/Fi= 2nvll/&, where v, is 
the amplitude of the corresponding harmonic of the 
periodic potential V(r) of the lattice (2V, i s  the width of 
the forbidden band in the spectrum of the transverse 
electron motion), v,, is the average propagation velocity 
of the electron along the crystallographic planes, and 
5, is the extinction length. This analogy has a simple 
physical meaning in terms of the two-wave approxima- 
tion of dynamic diffraction theory. As a result of beats 
between electron waves having different wave vectors 
belonging to two branches of the dispersion surface, 
electrons are  periodically "pumped" over the thickness 
of the crystal, with a period [,, from the direct beam 
to the diffracted beam and back (the Pendellosung ef- 
fect), i.e., the electron, which propagates on the aver- 
age along the crystallographic planes, oscillates in the 
direction of the reciprocal lattice vector at a frequency 
2~1,/5,. 

The present paper deals with the properties of the 
electromagnetic radiation from an electron passing 
through a crystal when the Bragg condition is simultan- 
eously satisfied for two systems of mutually perpendic- 
ular crystallographic planes (g, . g2 = 0). In this case 
the incident and reflected waves are transformed in the 
crystal into four types of electron waves. These waves 
have different symmetries in the directions g, and g2 

wave-vector components in a direction parallel to the 
planes (the z axis). The resultant picture of the beats 
between waves of different types i s  reflected in a more 
complicated structure of the electromagnetic transition 
current than in the two-beam case. It will be shown 
that the classical analog of such a structure i s  a system 
of charges moving in the direction of the z axis, locat- 
ed in a plane perpendicular to this axis, and oscillating 
in the directions g, and g2 with frequencies wo, =2v,/fi 
and wo2 =2vC/fi, as  indicated in Fig. 1. The result is 
radiation due to electric dipole oscillations of the dif- 
fracting electron in the directions g, and g2, with fre- 
quencies wo, and oo2, as  well as  electric quadrupole 
and magnetic dipole oscillations with frequencies W o  

= wo,* wo2. The dependence of the photon frequency on 
the radiation direction, just as  in the two-wave case, 
i s  determined either by the normal or  anomalous Dop- 
pler effects, except that the photon spectrum in each 
direction consists of four frequencies. 

We note that the quadrupole and magnetic moments 
produced with the radiation are of macroscopic size. In 
particular, the magnetic moment can amount to lo3-lo4 
Bohr magnetons. 

2. BLOCH FUNCTIONS AND EQUATION OF THE 
DISPERSION SURFACE OF THE ELECTRON IN  
FOUR-WAVE DIFFRACTION 

We consider a beam of electrons, having an energy E 
and a momentum Ek,,, incident on a single crystal in a 
direction close to the Bragg direction for both systems 
of crystallographic planes in the symmetrical Laue 
scheme (the crystal boundary is perpendicular to the 
planes). We can choose, for example, a crystal with 
body centered cubic structure, for which the geometric 
structure factor of the reflection g, +g2 i s  equal to zero, 
i.e., V,,,,, =O. The variables in the wave equation sep- 
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arate in this case, and in the weak-coupling approxima- 
tion4 the propagation of the electron in the crystal can 
be described by the Bloch functions I)""' corresponding 
to the four branches (a/3lE of the dispersion surface (a  
= 1 and 2; /3 = 1 and 2): 

$(a@) (k(a@), r) =$c{ ( 2 )  $::% ( Y )  exp (ik;" z )  , (1 

where I)fii(x,) ( j  = 1,2) a re  the one-dimensional Bloch 
functions of the transverse motion in the two-wave ap- 
proximation. Their form is k n ~ w n ~ ' ~ :  

9: ( Z J )  =COS $J exp( ikuxj)  +sin $j e xp [ i  ( kL j+g j ) zJ ] ,  

(2) 
$::(%) =- sin $j exp ( i k y ~ t )  + cos exp[ i (k ,+gJ)zJ] .  

Here tan @ j  = -[Aj + (A: + ~ i , ) ' ~ ~ v ~ ~ ~  and A, = [(k, +gj)' 
-kt j1/2 a r e  the parameters of the deviation from the 
Bragg condition for the system of reflecting planes gj, 
and UE - 2rn~,,/ti~. Correspondingly, 

The values of the wave vectors kk4'  (k(06'2 =k2  ~i +k2 1 2  

+klPB'2) a re  determined by the equation of the disper- 
sion surface: 

where K' = k i  + UO, UO =2mvO/Fi2, and -Vo i s  the aver- 
age potential of the crystal. 

3. ELECTROMAGNETIC TRANSITIONS OF 
DIFFRACTING ELECTRON I N  THE FOUR-WAVE 
CASE 

Let electrons with energy E, by incident on the crys- 
ta l  at exactly the Bragg angle relative to both systems 
of crystallographic planes (kL, = ko, = -g1/2, kL2 =kg, 
=-g J2). In this case the waves of all four types a re  
excited in the crystal with equal a m p l i t ~ d e , ~  s o  that the 
wave function $,of the electron inside the crystal is of 
the form 

where2' 
(1) 

$. ( x j )  = - i f i  sin ( g j x j / 2 ) ,  $iZ) (x,)  = fi cos ( g j x j / 2 ) ,  (6) 

Thus, the double index cup characterizes the symme- 
try of the two-dimensional Bloch function if the Bragg 
condition is exactly satisfied with respect to the coor- 
dinates x and y.  We note that different longitudinal mo- 
menta fZk2:' correspond to different transverse ener- 
gies of the electron, and the difference is due to the 
different symmetries of the transverse-motion func- 
tions. 

As a result of emitting a photon of energy Ao and mo- 
mentum Fin ( n  = wn/~) ,  the electron can go over to any 
of the four branches of the dispersion surface of lower 
energy E, =Eo - Ew. The Bloch functions of the final 
state of the electron are  determined by the quasimo- 
mentum conservation laws kbB' =k\y6) - x :  

$:"'=$da' ( x )  $db) ( y )  exp (ikdlrb' z) ; (8) 

where 

Account i s  taken here of the fact that the photon emis- 
sion violates weakly the Bragg ~ o n d i t i o n , ~  and the terms 
linear in A, Ju,, of the expansion in (3) for the one-di- 
mensional functions of the final state of the electron 
(Abj =[(kbj +gj)2 - kijj/2 = - q j )  have been retained. We 
get correspondingly from (4) 

The matrix element of the transition a- b from the 
branch (a&, t o  the branch ( ~ 6 ) ~ ~  with emission of a 
quantum with polarization u, is of the form 

where H, = (e/mn) (2.lrlT'~)" 'e-lxr ( u , ~ )  is the operator 
of the interaction of the electron with the photon in the 
refracting m e d i ~ r n . ~  

In the four-wave case we therefore have 16 transi- 
tions ( ( ~ / 3 ) ~ , -  ( ~ 6 ) ~ ~ '  which can be subdivided, in ac- 
cord with the character of the change of the symmetry 
of the wave function of the transverse motion, into 
three groups: 

1) four transitions of the type (no)- (cup) without 
change of symmetry between identical branches of the 
dispersion surface. Just a s  in the two-wave case,2 they 
lead to  Cerenkov radiation; 

2) eight transitions ( l a )  * (2a), ( a  1) 4 (2a) with 
change of symmetry along one of the directions g, or  g2 
lead to  electric-dipole Pendellosung radiation similar 
to  that considered earlier''3; 

3) four transitions (11) (221, (12) 4 (21) with simul- 
taneous change of the energy along both directions lead 
to  Pendellosung radiation of mixed electric quadrupole 
and magnetic dipole type. The total number of photons 
emitted by the diffracting electron per unit time is de- 
termined by the formula3) 

2n n30Z dodo 
N = lHi(afi-.y6) 126(E.-E,-ho) -- 

c3 ( 2 ~ ) ~  ' 
(12) 

ant 

The calculation of the matrix elements (11) for the 
transitions of the first group leads t o  the result 

Here ell is a unit vector in the direction of the z axis. 
Since 

(0, =vl j/c, us =tigj/2m are  the transverse velocities 
corresponding to the momenta fZgj/2, e = gj/gj; n, 
= n/K), the last two terms in (13) can be neglected in 
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this case, since they contain an additional smallness 
gf2keIl - B, , compared with the first terms. 

From the quasimomentum conservation laws Gu6) 
=kg "" - H, with account taken of the dispersion equa- 
tions for the electron and photon, we obtain 

where bly" =iikp6'/mc and cos 6 =a,* ell. The energy 
conservation law in this case leads to conditions for the 
onset of eerenkov radiation. 

For the number N, of the cerenkov photons emitted 
per unit time we get from (12) 

i dodo 
NF a n x  $" j 6 ( 1 - n p r l  cos 0)sin' e -  . 

2n 
(1 6) 

a6 

Here a = e2/iic. Thus, the eerenkov radiation of the 
diffracting electron i s  described by the Tamm-Frank 
formulai8 except that the radiation i s  in four directions 
because of the different propagation velocities of waves 
of different types in the crystal. 

5. PENDELLOSUNG RADIATION OF THE 
ELECTRIC-DIPOLE TYPE 

For the transitions ( 1 a ) e  (20) and (01) Q (012) the 
quasimomentum conservation laws and the dispersion 
laws lead to the following result: 

Here and below the index i t a b s  on the following values: 
i = 1 for transitions (la) * (2a) with change of symme- 
try of the wave function along the direction ei,  i = 2 for 
transitions ( a l )  * (a2) with change of symmetry with 
respect to e2. The plus sign pertains t o  transitions in- 
dicated by the upper arrow (la),a- (2a),,, ( ~ 1 ) ~ ~  - ( ( ~ 2 ) ~ )  with decreasing transverse energy of the elec- 
tron, and the minus sign to transitions indicated by the 
lower arrow (2c~),~- (la),,, (a2), - ((~l),, with in- 
crease of the transverse energy; fill =v,,/c, v,, =t i~, , , /m 
is the average propagation velocity of the electron along 
the crystallographic planes. The energy conservation 
laws determine the spectrum of the radiated photons: 

ol=ooI[* (i-npll cos e ) ]  - I ,  (18) 

where wof =2vCf/h. Thus, the radiation frequencies for 
the given transitions are determined by beats of the 
electron waves in the directions gi and g2, analogous to 
the beats in two-wave diffraction.'-' The dependence of 
the frequencies on the radiation direction i s  determined 
either by the normal (plus sign) or  the anomalous (min- 
us sign) Doppler effect. 

The matrix elements are also analogous to the two- 
wave elements3 and have an electric-dipole structure: 

where 

In expression (19) it is important to take into account 
the terms linear in the parameter of the deviation from 
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the Bragg condition in the final state of the electron, 
since their smallness is offset by the large longitudinal 
current of the electron. 

The radiation intensity at the frequencies w1 and w2 i s  
given by 

dN,@* a n  [ (I-plln cos 0 )  - (I-pl,ZnZ)cos2 cp sinz 131 
-=- 

do 
*. P l l W 0 1  

( l -p , ln cos 6)' , (21) 

dNp" a n  [ ( i -pnn  cos 0)'- (I-$,,tn2)sin'cp sin' 01 
-=- do 4n $ 1 2 0 0 2  (i-Py,)cose)4 7 (22) 

where dNt i /do  i s  the number of photons having a fre- 
quency wi and emitted in a unit time into a unit solid 
angle. The polar axis is directed along el, and the azi- 
muthal angle cp i s  measured from the e, direction. 

For the total number of photons emitted per unit time 
we have (at n = const, nB,, < 1 ) 

2 0 0 1  
NPm( = - anplt - . 

3 i-pl12nz 
(23) 

At n = 1 and high electron energies (fi,, = B) 

where y = (1 - f12)-"2 is the relativistic factor, which 
represents the total mass of the electron in rest-mass 
units (we recall that m is taken to be the tqtal mass3). 
Since the quantities contain the relativistic factor 
f 2 ,  at high electron energies the total number of radi- 
ated photons does not depend on the electron energy, 
while the energy losses increase with increasing energy 
like y2, owing to the Doppler shift of the photon frequen- 
cy into the harder region. 

Possible classical analogs of the transitions (101) 
= (20) and (al) ( ( ~ 2 )  are  dipole oscillators that move 
in the direction of el, [Fig. l(a)] and oscillate in the di- 
rections of ei with frequencies wo( (i = 1,2), so that 

dl ( t )  =2exme, cos 6)0,t, d 2 ( t )  =2ey,,,e2 cos uQZt,  (24) 

where dl and d2 are the corresponding electric dipole 
moments; x,  and y, are the oscillation amplitudes of 
the charges shown in Fig. 1 (a). The expressions for the 
radiation intensity of such oscillators moving in a re- 
fracting region were obtained by Frank.' Equations 
(21)-(23) coincide with them if the oscillation ampli- 

FIG. 1. Classical analogs that can be set in correspondence 
with electromagnetic transitions of a diffracting electron: a) 
system of two electric dipole oscillators oscillating in the 
directions gi and g, at  frequencies woi and w,,. It corresponds 
to transitions with a change in the symmetry of the wave func- 
tion relative to one of the directions g, o r  g,; b) system having 
quadrupole and magnetic moments with frequencies wo+ and 
wo-. It corresponds to transitions with simultaneous change of 
the symmetry with respect to directions gi and g2. Both sys- 
tems a re  shown at the instant of time t = 0 .  

V. V. Fedorov 



tudes x, and y, a re  set  equal to x, =v,,/woi and y, 
=v,,/wo2, and if account is taken of the population of the 
states from which the transitions take place. 

We note that in the relativistic case (y>> 1) at n = I  
the radiation turns out to  be concentrated near zero 
angles 8. Equations (21) and (221, integrated with re- 
spect to the angle v, a r e  then reduced to the form 

Allowance is made here for the fact that at y>> 1 we 
have p,, = 0- 1 - 1/2y2. 

The angle region from 0 to 1/2y contains -20% Nr', 
while 50% Nri, a re  contained in the region from 0 to 
I/Y. At the angle 8 = 1/2y the photons emitted have 
frequencies o, =0.8wmt, where w,, = 2y2wo, a re  the 
maximum frequencies of the photons emitted at zero  
angle. Thus, at y>> 1 in the range of angles 8 from 0 to  
1/27 it is possible to observe two intense quasimono- 
chromatic lines (the degree of monochromaticity is 
-20%) with frequencies -2y2wo,, due to  electric dipole 
transitions of the diffracting electron. Their intensi- 
ties at crystal thicknesses -55, and at an electron cur- 
rent -1 p A  amount to -lo8 photons/sec, and the fre- 
quencies can lie in the x-ray region. 

6. PENDELLOSUNG RADIATION OF HIGHER 
MULTIPOLARITY 

We consider the transitions of the third group with 
simultaneous change of the symmetry of the electron 
wave function in both directions 

The quasimomentum conservation laws, when allowance 
is made for the dispersion equations, lead in this case 
to the following result: 

~ . - ~ ~ - f i o = *  2 ~ . - t i o  (I-n$,, cos 0). (26) 

The index s takes on here plus values for the transi- 
tions (11) 4 (22) and minus for (12) * (211, with V, = V,, 
i Vg2. The energy conservation laws determine the de- 
pendence of the photon frequency on the radiation direc- 
tion: 

~,==too./(l-n$,l cos 8) .  (27) 

Here w o , = 2 ~ / ~ = o o l  +C wo2. Just a s  in the preceding 
case, the plus sign in (27) gives the normal Doppler ef- 
fect, and the transverse energy of the electron de- 
creases (the transitions 11 - 22 and 12- 21), while the 
minus sign gives the anomalous effect, at which the 
transverse energy increases (transitions 22- 11 and 21 - 12). Thus, the transitions of the third group lead to 
radiation at the combined frequencies w, = w, i w2. 

For the matrix elements H ,  (11 = 22) and H ,  (12 @ 21) 
we obtain the following expressions: 

Contributing to  these equations a r e  terms starting with 
those linear in the parameter of the deviation from the 
Bragg condition in the final state of the electron. An 
important role is played also by allowance for the quad- 
ratic t e rms  [the third t e rms  in (2811, owing to  the com- 
pensation, a s  in the preceding case, of the smallness 
by the large longitudinal momentum of the electron. 

Separating the symmetrical and antisy mmetrical 
parts of the tensor g,g2, in (281, we can represent the 
latter in the form 

where 

The components of the vector D a re  of the form Du 
=q,,,,nnr, where quv = e, ezV +e2,eiV has an electric quad- 
rupole moment structure. The quantity m =el X e, = el, 
has a magnetic dipole moment structure. 

Thus, it follows from the form of the matrix elements 
(29) that the radiation produced in transitions of the 
third group is  similar to  radiation of a system having 
alternating magnetic dipole and electric quadrupole mo- 
ments. 

Denoting by u, the polarization vector in the plane of 
the vectors n. and el, (u, will lie in a plane perpendicu- 
lar  to  the direction of e,,), we have for the matrix ele- 
ments that correspond to  different polarizations, in a 
spherical coordinate system, 

11*22 V. sin 0 sin 2p(cos O-pun) I *  
11-22 (31) I H, ( 12n21) I =A(@.) lsin8(V,cosZq-V-.)I. 

Here w, is defined by Eq. (27). As a result we obtain 
for the numbers of the photons with frequencies w, and 
w,, emitted by a diffracting electron per unit time into 
a unit solid angle, 

where 

F* (6, rp) (33) 
- 

(00+2-200+w0- cos 2rpf ma-') (l-$,lncos 0)2-wo+Z(l-$l~nz)sin2 2rp sin2 0 - 
( l - ~ l l n c o s  - 

The t e rm containing the quantity 2w,,+wo- cos2v in (33) 
describes the interference between the electric quad- 
rupole and the magnetic dipole radiations. Upon aver- 
aging over the angle cp, the interference t e rm vanishes, 
and (32) can be represented in the form 
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where WO/do, %/do are the intensities of the quad- 
rupole and magnetic dipole radiations, respectively: 

1 [ (1-),ncos 8). - -(I-B:nz)sinz 8 
dNQu* an' BLi'$,r2 - = -- sin' 0 

2 

& 32n oo,'oo,' (l-B,lncos 

1 
2 - - .  

We note that the angular distribution cf the radiation at 
the frequencies w+ and w. differ substantially from the 
distribution of the electric dipole radiation at the fre- 
quencies w, and w2 [ ~ q s .  (21) and (2211. In particular, 
at zero angle we have zero intensity for the radiation 
at the frequencies w+ and w,, whereas for w, and w2 the 
intensity is a maximum. 

The expressions presented a re  valid both at 8 > 80 [00 
=arccos(l/~,n)] in the region of the normal Doppler ef- 
fect. The difficulties connected with the infinitely large 
Doppler frequency and intensity at 8 s  80 for the case n 
=const are  eliminated if account i s  taken of the disper- 
sion of the medium, i.e., of the n(w) dependence. A 
complicated Doppler effect appears in this case,' and 
the equations for the angular distributions acquire an 
additional factor" (ref. lo), equal to (1 - cos @)/[I 
- @(n + wdn/dw)cos B] (due to differentiation of the argu- 
ments of the &functions). 

For the total numbers of photons with frequencies w, 
and w, radiated in a unit time, integration of (34) and 
(35) at n = const and nb,, <: 1 yields 

where ./ 

At n = 1 and at high electron energies (6, = B, y >> 1) we 
have N$: - /3!,@:z#; consequently the total number of the 
emitted phdons does not depend on the electron energy, 
just as in the case of electric dipole radiation. The 
angular distributions (35) take then the form 

We note that at equal structure factors of the systems 
of the reflecting planes, i.e ., at Vet = Vez, wo_ = 0, and 
w, =2wo,, the magnetic dipole radiation vanishes. The 
classical analog that can be compared with the transi- 
tions 11 - 22 and 12 --• 21 i s  a system of oscillating 
charges moving in the e,, direction, as  shownin Fig. 1b). 
The oscillation laws are the following: 

xi.,=-& COS ~ a s t ,  Zz.r=Zm COS ~ o i t ,  
(39) 

g,,'=yn cos moat, ys.1--ym cos oozt. 

The system in Fig. l(b) is shown as  the instant of time t 
=O. It has electric quadrupole and magnetic dipole 
moments. The electric quadrupole moment Q,, has two 
nonzero components: 

Qlu=Qr-Q=12ezmync~s oolt cos wort, 
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which oscillate at two frequencies coo, and o~,. Recog- 
nizing that xm = vLl/wOt and ym = vL2/wOz, we have 

where 

The magnetic moment p i s  directed along the z axis, 
i.e., p = pe,, , where 

- 2ezmym - - -(oo2 cos oort  sin oozt-00,  cos oozts in os't).  
C 

Similarly 
pap.. s inoo+t f  k. sin a,-t,  

where 

are the amplitudes of the oscillations of the magnetic 
moment at the frequencies wo*. 

Using the classical formula for the radiation intensity 
of the electric quadrupole and of the magnetic dipole" 
(&,=O, n=I) :  

1 ... 2 .. 
I--Q,,2+7pz 

180c' 3c 
(40) 

and dividing it by tiob, we obtain for the numbers of 
photons with frequencies oo, and coo. emitted per anit 
time 

The equatims in (41) coincide with those in (37) at n = I  
and fill =0, if it i s  recognized that the expressions in 
(37) contain an additional factor 1/4 that determines the 
population of the states (II),., (121E.9 (22)E.l and (21)Ea 
from which the transitions take place. 

This analogy has the following physical meaning. In 
transitions of an electron with change of the symmetry 
of the wave functions in both directions el and e2, the 
electron density becomes periodically distributed, over 
the thickness of the crystal, between the direct and dif- 
fracted beams. This redistribution i s  due to beats be- 
tween the electron waves simultaneously in two direc- 
tions. In the case of electric dipole transitions, the 
beats take place in each of the directions independently. 

To compare the intensities of the different radiation 
types, we consider the case n = 1,  PI, = fi and ggi =gz 
=2n/d, where d is the distance between the planes; in 
this case fill = BLz = BL. Let wo1/wo2 = q (q 3 1) and woz 
=wo; then wol =quo and a,, = (qf 1 ) ~ ~ .  Putting 

N 9 ~ ~ ~ N ~ z / ~ ~ L o ' ~ o ,  (42) 

where plo = nE/dmoc i s  the transverse velocity corre- 
sponding to the rest mass of the electron mu, we obtain 
from (23) and (37) 

3 (rl* 1 (qTl)'(rl* N9'k,,N, NC* -- -- BlaZN, NM"* = - 
40 r12 8 rlt 

V. V. Fedorov 



At d = l  A we have fllo 1.2-10'~. Thus, the intensity of 
the radiation of the higher multipoles is suppressed by 
a factor - lo4 compared with the electric dipole radia- 
tion, on account d the factor @:O, and depends substan- 
tially on the frequency ratio q .  For example, at q = 3 
(in this case the spectrum of the photons radiated in the 
specified direction is equidistant) we have Ni l  = 3N; N:+ 
= 1.2 ~ o - ~ N ;  N:+;=. 5.2. lO-*N; N t - =  0.4. lW4N; N l - =  2.6 
x ~ o - ~ N .  After traversing in the crystal a distance equal 
to  one extinction length te2 =am, ,  /we, the diffracting 
electron radiates Nyz = 2rN/wo photons with frequencies 
w2: 

The corresponding number of photons with other fre- 
quencies w, and w,, radiated over the same distance, is 
determined by Eqs. (43). In the example considered a- 
bove Ny2=4.4- SO that passage through a crystal of 
thickness -55,, of an electron current of 1 pA (6. loi2 
electrons/sec) will cause the emission of =lo8 sec-I pho- 
tons with frequencies w, and w2 on account of electric 
dipole transitions, and -1 04-1 o5 sec-' photons with fre- 
quencies w+ and w- on account of electric quadrupole 
and magnetic dipole transitions. We note that in the re- 
gion of optical frequencies the intensity of the latter can 
be relatively increased on account of the additional fact- 
o r  n2/(1 - n 2 ~ f ) .  

The equations derived above for the Pendellosung ra- 
diation intensity are  based in fact on a two-wave ap- 
proximation, relative to each of the directions e, and 
e2, of the dynamic theory of diffraction. At sufficiently 
high electron energies this approximation does not hold. 
Indeed, with increasing energy, the effective crystal 
reflectivity U,,-y increases, and at sufficiently high 
energies there a r e  excited in the crystal, besides the 
electron waves with wave vectors k and k + gj, also 
waves with vectors k- g, and k + 2gj (systematic re- 
flections5). Their amplitude is low if the corresponding 
parameters of the deviation from the Bragg condition 
are  large compared with U,,, i.e., g:>>U,j ( j = 1 , 2 )  o r  
(we omit the indices 1 and 2 from now on): 

where w, =2rv10/d. This condition means that the 
transverse energy of the diffracting electron should be 
much higher than the amplitude of the periodic poten- 
tial of the crystal lattice or,  in other words, the dif- 
fraction angle width should be less  than the Bragg 
angle. Consequently, the equations that describe the 
Pendellosung radiation a re  valid at electron energies 
for which 

At d = 1 A we have tie, = 150 eV. At low values V ,  = 1 
eV we have yc - 150, so  that the equations can be valid 
up to electron energies of several dozen MeV. At 
higher energies the systematic reflections become sub- 
stantial and account must be taken of the higher har- 
monics of the periodic crystal-lattice potential. 

At electron energies y > y, the diffraction effects give 

way to channeling effects,I2 inasmuch a s  the Bragg an- 
gles become smaller than the critical channeling angles 
(the transverse energy becomes less than the height of 
the periodic potential). 

Radiation produced by channeling of fast electrons 
and positrons (y>> yc) was considered by a number of 
 worker^.'^‘ It results  from transitions between lev- 
e l s i 3 - ~ 6  or ,  more accurately, bandsi7 of transverse mo- 

tion of the particle in the averaged potential of the a- 
tomic planes o r  chains that make up the channels. The 
band structure of the levels of the transverse motion in 
channeling is due to tunneling of the particles through a 
barr ier  into neighboring channels. In the case of dif- 
fraction, on the other hand, the energy bands are  pro- 
duced a s  a result of above-barrier reflection of the par- 
ticle from the periodic potential of a system of planes. 
The last circumstance determines essentially the quan- 
tum character of the Pendellosung radiation, which, in 
contrast to channeling radiation, cannot be described in 
the classical limit. Indeed, a s  ti-- 0, a s  follows from 
(44), the region of applicability of the equations for the 
Pendellosung radiation becomes zero. 

We note that to describe the radiation of ultrarelativ- 
istic channelled particles (y>> kc) ,  above-barrier states 
can be considered in a quasiclassical approximation, 
and below-barrier states in the strong-coupling approx- 
imat i~n. ' "~  In the intermediate energy region (y- y,) 
the problem can be solved analytically only in certain 
models of the Kronig-Penney type.17 Therefore a more 
constructive approach in this region may be the one 
based on a consistent allowance fo r  the systematic re- 
flections in the dynamic theory of diffraction. 

In conclusion, the author thanks K. E. Kir'yanov, A. 
S. Ryl'nikov, A. I. Smirnov, and 0. I. Sumbaev for 
helpful discussions. 

"In the direction of the reciprocal-lattice vector g perpendi- 
cular to the reflecting planes. Transitions between identical 
branches (intraband) lead to Cerenkov radiati~n.~ 

''We assume that qi U, > 0, with the origin located on the 
intersection of the planes. 

' '~ f fec t  connected with interference between different transi- 
tion are not considered. For crystals of finite size they can 
lead to oscillations of the intensity with the crystal thick- 
n e s ~ . ~ ' ~  

4 ' ~ h e  author thanks V. G.  Baryshevskii for calling his atten- 
tion to this circumstance. 
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