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The propagation of several ultrashort light pulses in a dense resonant medium is considered by the inverse 
scattering formalism with account taken of the response to the transmitted radiation. The scattering 
coefficients in the photon (light) echo problem are obtained in the case of excitation of the resonant medium 
by a sequence of two coherent light pulses. The asymptotic part of the solutions, which is connected with 
formation of solitons, is investigated. The conditions for the onset of solitons and the soliton parameters are 
determined as functions of the areas of the exciting light pulses, as well as of the time interval between them. 

PACS numbers: 42.65.G~ 

1. iNTRODUCTlON medium produce an  optical response a t  the instant of 

One of the significant achievements in the field of 
nonlinear equations and soliton theory was the develop- 
ment of the inverse scattering formalism, which made 
it possible to solve the Cauchy problem by means of 
nonlinear transformations.'-3 This method was first  
performed by Gardner, Greene, Kruskal, and Miura 
and applied by them to the Korteweg-de Vries equa- 
tiom4 Zakarov and Shabat5 next investigated success- 
fully the self-focusing phen~menon.~ Ablowitz et al. 
succeeded in establishing certain general limits of the 
applicability of the method to a large class of equations, 
including the modified Korteweg-de Vries equation, the 
simple and generalized sine-Gordon equation, the non- 
linear Schrodinger equation, and others.= Finally, in 
1974 ~ a m b ~  and Ablowitz and co-workerss were able to 
solve by a similar method the coupled Maxwell-Bloch 
system of equations that describes coherent propaga- 
tion of light pulses in a resonant medium with inhomoge- 
neous broadening of the energy levels and, in particular, 
the McCall and Hahn self-induced transparency phe- 
n o r n e n ~ n . ~ " ~  

A theory that describes coherent interaction of a sin- 
gle light pulse with a resonant medium has by now been 
well de~eloped.'- '~ Although many theoretical results 
were initially obtained by simpler  method^,^*'^ signifi- 
cant progress in this field became possible by the use 
of the inverse scattering formalism. Firs t  of all, it 
became possible to investigate analytically the soliton 
part of the solution of the Maxwell-Bloch equations, 
which consists of isolated 2r pulses, o r  of a coupled 
state of solitons in the form of Oa  pulse^.^*'^*'^ In addi- 
tion, it became possible to determine exactly how an 
initial light pulse with arbitrary temporal profile, 
breaks up a t  the boundary of a resonant medium into 
solitons and a certain additional "background 

Similar problems a r i se  when several light pulses 
pass through a resonant medium. Under conditions of 
coherent interaction of electromagnetic radiation with 
the resonant medium, when the characteristic dura- 
tions of the incident-radiation pulses a r e  much shorter 
than the times of irreversible relaxation of the polari- 

time 2ri, where r i  is the interval between the exciting 
light pulses. The physics of this process has been well 
investigated in rarefied resonant medium, when the re -  
sponse of the medium to the external action can be neg- 
lected. In this case  the photon-echo signal remains 
small  compared with the exciting light pulses. Its in- 
tensity, however, increases in proportion to the square 
of a traversed distance and a t  a certain instant the 
"given-field" approximation used for rarefied media no 
longer holds. Strictly speaking, such a medium can no 
longer be regarded a s  rarefied but, on the contrary, a s  
dense. In dense resonant media the coherent response 
in the form of a photon-echo signal becomes compar- 
able in magnitude with the incident pulses themselves, 
and is capable of producing additional echo-type sig- 
nals - this is the multiple echo phenomenon. The be- 
havior of these pulses a s  they penetrate in the interior 
of the resonant medium is a complicated problem even 
for powerful numerical methods. This problem was 
considered by us earl ier  The inverse 
scattering formalism provides in this case definite in- 
formation without resorting to a complex computer cal- 
culations. It will be shown below that the asymptotic 
part  of the solution determines the number of pulses 
(solitons) produced a t  the "exit" from a dense reso- 
nant medium when two pulses with definite amplitudes, 
durations, and time intervals a r e  applied to its "input." 
The soliton part  of the solution does not describe the 
dynamics of the transient processes (this i s  contained 
in the "background" part  of the kernel of the integral 
equation), but even the number of emerging pulses is 
an important parameter for the use of this phenomenon. 

In the present paper we obtain the asymptotic part of 
the solution; this part is connected with formation of 
solitons when two coherent light pulses pass through a 
resonant medium. We determine the parameters of the 
solitons and the conditions for their appearance a s  
functions of the a reas  of the f i rs t  and second exciting 
light pulses, a s  well a s  of the time interval between 
them. 

2. BASIC EQUATIONS 

zation, photon (light) echo can be produced, wherein We shall consider the interaction of coherent light 
two light pulses that pass in succession through the pulses with resonant media in the quasiclassical ap- 
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proximation. For slow field and polarization amplitudes 
we then easily obtain the equations 

~ I ~ Z - - ( ~ V ~ V ~ ~ > ,  

av, A@ i 
- + i - V , = - 8 V a ,  
ar 2  2  

In the system ( I ) ,  the variables x ,  7, and the field am- 
plitude $ are expressed in the following units: 

8 ( x ,  T )  =ffZlE (5, T )  lih, 

where c is the speed of light in vacuum, n is a refrac- 
tive index of nonresonant type, which takes into account 
also the dispersion of the matrix of the paramagnetic 
crystal, w is the carrier frequency, d l ,  is the matrix 
element of the dipole-moment operator, and No is the 
density of the resonant atoms in the medium. The angle 
brackets in the first  equation of (1)  denote averaging 
over the scatter of the energy levels within the limits 
of the inhomogeneously broadened line: 

+- 
<. . .)= J g ( ~ o )  (. . . ) d ( ~ o )  

-- 
[ g ( ~ ~ )  is the distribution function over the transition 
frequencies AW= w,, - w]. 

I t  is known'-3 that the success of the inverse scatter- 
ing formalifm is _due to the ability of finding a pair of 
operators L and B that realize the so-called Lax rep- 
resentation. The initial system (1)  is described by a 
single equation equivalent to a certain operator evolu- 
tion equation 

The determination of the Lax operators i and in the 
general case is a rather complicated problem whose 
solution, incidentally, is facilitated by the existence of 
  pseudo potential^."^ We present only the final form of 
the Lax pair as applied to the initial Maxwell-Bloch 
equation ( I ) ,  f irst  guessed b y  Ablowitz et ~ 1 . ' :  

&[ A ( t ,  T) 
B ( c p s * r )  I . 

(4) 
B' (5', x, r )  -A (5 ,  x, T )  

The functions A(C,x, T ) ,  B(5, X ,  T )  ?f complex argument 
5 (the eigenvalue of the operator L) are determined with 
the aid of the Hilbert transformation 

1 I V z ( A o , s , r )  1'-IVi(Ao,z,  r ) I z  
A ( c , s , ~ ) = - - (  4 (C-Ao/Z) 

1 2 V I ( A o ,  s, r)V, ' (Ao,  x, t )  

)* 
~ ( t ,  s ,  = z(, 9. (5) 

( 5 - A o / 2 )  

I t  is possible to associate with the operator a cer- 
tain scattering problem, in which case the function 
g(x, r )  will play the role of the "potential, " and the co- 
ordinate x serves as a parameter. Sjnce the spectrum 
of the eigenvalues 5 of the operator L it is independent 
of x ,  it is determined only by  the limiting form of the 

function $(O,r). Solving the Cauchy problem in terms 
of the scattering data, one can find the evolution of the 
coefficients of the scattering with respect to x. Final- 
ly,  the inverse problem can be solved, namely recon- 
struct the potential $(x, r )  for arbitrary values of x. In 
this case, however, it is necessary to solve a Levitan- 
Gel'fand-Marchenko integral equation whose kernel 
contains information on the scattering coefficients. The 
easiest to investigate is the soliton part of the solution, 
since the kernel of the integral equation turns out to be 
factorized. At the same time, at large depth of pene- 
tration of the light into the resonant medium, it i s  pre- 
cisely this asymptotic part of the solution which pre- 
dominates, since the contribution of the background 
part of the kernel is exponentially smalL3 This corre- 
sponds physically to neglecting in the solution the tran- 
sient processes that are significant only in a resonant- 
medium several absorption lengths in size. 

3. DETERMINATION OF THE SCATTERING 
PARAMETERS I N  THE PHOTON-ECHO PROBLEM 

W e  consider in greater detail the eige?value and 
eigenfunction problem for the operator L under condi- 
tions when a sequence of two coherent light pulses of 
rectangular shape, with different amplitudes E, and E ,  
and durations rpl and T,, are incident on the boundary 
x = 0 of the resonant medium (Fig. 1). 

Using the explicit form of the operator E, we obtain 

An analogous problem was formulated by Zahkarov 
and Shabat as applied to the nonlinear SchrZidinger 
e q ~ a t i o n . ~ ~  They have shown, in particular, that the 
operator L has both a discrete spectrum a;nd a spec- 
trum of continuous eigenvalues <. Since L is not Herm- 
itian, the discrete eigenvalues correspond, generally 
speaking, to complex numbers 5,. These bound states 
determine the soliton part of the Marchenko integral 
equation. The continuous eigenvalue spectrum is ob- 
tained for real 5. We  note that at 5 = A W / ~  Eqs. ( 6 )  go 
over into the last two equations of the system (1).  

We stipulate that the function I ( x ,  7 )  must satisfy for 
all x the condition 

j [ 8 ( s ,  t )  ,dr<=.  (7) 
-- 

Since it is necessary in this case that the field &Z(x, T )  - 0 as T - f a ,  the system ( 6 )  reduces to the equation 
for oscillators, and for real 5 it has two solutions of 
the type exp(ii5.r). W e  determine the linearly indepen- 

FIG. 1. Profiles of exciting light pulses entering the resonant 
medium. 
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dent solutions + and of Eqs. (6), whose asymptotic 
forms a r e  

The scattering parameters a and b a r e  then defined for 
7- +* in the following manner: 

It follows from scattering theory that the points of the 
upper half-plane Imb,> 0, a t  which a(bi) = 0, c_orre- 
spond to discrete eigenvalues of the operator L.3 TO 
each such bound state, depending on whether the points 
b, lie on the imaginary axis o r  have also a real  part, 
there correspond either 2n pulses or  On pulses of the 
Maxwell-Bloch system of equations. 

We note that for rectangular exciting light pulses one 
can arrive a t  the analog of the one-dimensional Schrii- 
dinger equation with potential U(T) = - (%'(r) 1 '/4 and en- 
ergy b2. In fact, differentiating one of the equations of 
the system (6) with respect to r and neglecting the 6 -  
function singularities on the fronts, we obtain the equa- 
tions 

where V= Vl,,. 

It is  now easy to write down the solution of the sys- 
tem (6) during the time of action of the exciting light 
pulses and in the intervals between them: 

Vi'(ro) sin A(T-zo), V.=Vi (ro)cos A (%-to) + - a 

V,=VV(ro) esp [TiS(~-r , )1 ,  

FIG. 2. Dependence of the coefficient q, , which determines 
the energy of the bound state in the scattering problems and 
the soliton parameters,  a s  a function of the interval between 
the exciting light pulses ri a t  6, = r/2 and a t  different values 
of a2 [the number m labels the different branches of the 
solutions of Eq. (16). while the values of the a reas  of the ex- 
citing light pulses a r e  indicated in the parentheses]. 

where the minus and plus signs a r e  chosen for Vl and 
V2, respectively. 

It is clear that the scattering coefficients a and b can 
be written, after the termination of the action of the last 
optical pulse, in the form 

a(c)  = V * ( ~ ~ )  ~ X P  (i6~0)1 b(6)=VZ(zO) exp (-ifzo), (12) 

where r0 = rpi + ri + rp2, 

Solving the system (6) with account taken of relations 
(11) and (12), we obtain the scattering coefficient fol- 
lowing the action of the f i rs t  light pulse 

c .  a (g) = (cos arP-i - I s ~ n  arP) exp (iczp), 

E' sin AT, a(&)=-- exp ( -it.rp). 
(13) 

2R 

We note that the solution (13) agree with the results of 
Kaup,13 who considered the propagation of a single light 
pulse of "rectangular shape." Similarly, after the action 
of two optical pulses, we obtain the expressions 

Et'Ez . 
a ( i )  = expliL(rpl+~n) I {n Hk- ( t )  - -slnllrpl sin4zp2 

*I,¶ 
4hlAz 

i E; 
b (c) -- expI-it (zpl+rp,) ] { exp (-2icri) -H,-(f) 

Rr 

E' 1 f .  
X sin h,t.,, +AH,+ (6)sin A,rP, , ffk*(b) =cos hkrp,f i-sxn hlrpk. 

hl A"14) 

Finally, putting a ( l )  = 0  in (14), we obtain an equation 
for the determination of the bound states in the direct 
scattering problem. We consider solutions lying on the 
imaginary axis of the half -plane Iml  > 0 ,  i.e., l = iq. 
These solutions correspond to solitons in the form of 
2n pulses: 

We obtain for them 
er ]CI (F, cos F,+~T,, sin F,) =exp(--2qri) --sinF*. (16) 

m-1.2 k-I,Z 
2 

FIG. 3. Dependence of the coefficient q on the a rea  of the 
second exciting pulse a t  O i  = n/2. Curves 1, 2,  and 3 pertain 
to different time intervals rj, given respectively by Ti /rp 
= 0,  1, and 10. 
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In (161, 8, stands for the a rea  of the k-th exciting pulse 
of light: 8, = E,T,, and F = em2/4 - q2TpmZ. 

Equation (15) describes the simplest single-soliton 
solution of the coupled system of equations ( I ) ,  when 
Eq. (16) admits of the existence of one unique solution. 
In our case we construct N-soliton solutions a t  which 
the number of solitons i s  determined by the number of 
branches o r  roots of Eq. (16)."*18 

4. DISCUSSION OF RESULTS 

Using the results of scattering theory, a s  well as the 
analogy between the system (6) and the one-dimensional 
Schriidinger equation, we can assume that each bound 
state in the scattering problem corresponds to a certain 
discrete "energy level" &,= -qm2, which determines the 
parameters of the soliton (15). 

In the approximation qs, >> 1 it is  seen from (16) that 
the asymptotic form of the solution does not depend on 
the "interaction" of the incident pulses, and there a r e  
determined separately by the initial areas  8, and 0, of 
the initial light pulses. Equation (16) breaks up in this 
case into two, each of which takes the same form as in 
the case of scattering by a spherically symmetrical po- 
tential: 

Ft cos R+qrp sin Fi=O, i=i, 2. (17) 
At 7, = 0 and El = E,, Eq. (16) reduces to the form 

eos A (rPr+rpr)) +%sin A(T,,+T,,) =o, 
li (18) 

i.e., the scattering is determined by a potential well 
with effective width T,, + T,,. In the general case the 
right-hand side of (16) is  responsible for the interaction 
of two rectangular potential wells, due to the overlap of 
the wave functions. 

A numerical analysis of the solutions of the transcen- 
dental equation (16) confirms the noted features of the 
behavior of the roots. Figure 2 shows the dependence 
of the coefficient q,, which determines the "energy" of 
the bound state in the scattering problem and the soliton 

FIG. 4. The same a s  Fig. 3, a s  a function of the area of the 
first exciting light pulse a t  (u2 = r .  

FIG. 5. The same a s  Fig. 2, a s  a function of the interval 
between the exciting pulses in the case of equal areas = B2 

parameters, a s  a function of the quantity T,, i. e., of the 
interval between the exciting light pulses, for 0, = n/2 
and for different values of 0,. In the region n<O, +@, 
< 3n there i s  only one bound state. However, the q(ri)  
dependence turns out to be substantially different for 
8,s n. Thus, a t  O,= 3 the value of q tends asymptoti- 
cally to zero a s  T, - m.  At O,= 3.2 the asymptotic value 
of q a s  7,'- is  already different from zero. 

At large values of O,, such that 0, +0 ,>  3n, two bound 
states q, and q, a r e  already produced. But the limiting 
values of ql and q, a s  T, - again depend on O,. Thus, 
7,- 0 a s  7 , - m  and a t  0 2 = 8  (0,<3n),  but q,-const+O 
a s  7, - and 0,= 10 (0 ,  > 3n). Generally speaking, the 
presence of two closely lying potential wells facilitates 
the appearance of "shallow" energy levels in the wells 
(the second branch of 71, for 0,= 3, 3.2, and 8, see  Fig. 
2). The asymptotic values of q, with increasing dis- 
tance between the potential wells, and the fact that the 
shallow energy levels coalesce with the continuous - 

spectrum, a r e  determined in this case by the value of 
0, and a r e  in splendid agreement with the solution of 
Eq. (17) for a single light pulse.13 

The threshold character of the onset of bound states 
with increasing O, a t  8, = n/2 i s  illustrated in Fig. 3. 
It shows two branches of the solution of Eq. (16), with 
curves 1 ,  2, and 3 corresponding to different delay 
times T,/T, = 0, 1, and 10. 

Similar features of the behavior of the energy levels 
for different 0, and for O,= n a r e  shown in Fig. 4. 
Figure 5 shows a plot of qm(ri) for equal areas  of the 
exciting pulses 0, = O,. It is seen from the figure that 
the function q,(r,) does not decrease in all  the branches. 
At 7, = 0 the number of roots and their values a r e  de- 
termined by the solution of Eq. (16) a t  the duration 27,. 

At sufficiently large distances between the potential 
wells, the energy levels in them turn out to be degen- 
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FIG. 6. The same Figs. 3 and 4 in the case of equal areas 
01= ea. 

erate. The degeneracy can  be  easi ly  at t r ibuted to dif- 
fe rences  in the symmetry  of the  wave function. When 
the wells  come c lose  together ( the interval  between t h e  
exciting light pulses  decreases )  the  degeneracy i s  lifted 
in the region where  the  wave functions overlap,  and the 
p a r a m e t e r s  of the solitons t u r n  out to  be  different. 

We note a n  interest ing fea ture  of the  behavior of the  
roots. With increasing interval  between the  exciting 
light pulses ,  a new branch of the  solutions appears  at 
cer ta in  values 0, =0, and ti (Figs.  5 and 6). T h i s  
means that  the number of sol i tons leaving a dense  res- 
onant medium i s  determined not only by the  areas of the  
exciting light pulses  0, and 0,, but a l s o  by the t i m e  in- 
t e rva l  T~ between the  pulses. 

Thus, the  number of branches of the  equation that  de-  
t e rmines  the  bound states in the  sca t te r ing  problem, 
and with it  a l s o  the  number of sol i tons leaving the d e n s e  
resonant  medium, are determined by the  total area 0, 
+O, of the exciting light pulses ,  by the  t i m e  delay T, 

between them, while t h e  asymptot ic  f o r m  of the  solu- 
tions as 7, - depends s t rongly on each of the values 
0, and 0, separately.  
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