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An exact stationary solution of the equation for the density matrix of a system of two-level atoms interacting 
with one another and with powerful resonant radiation is reported. The atoms are located in the volume much 
shorter than the wave length of the radiation. It is shown that in the limit of a large number of atoms, the 
system undergoes a nonequilibrium first-order phase transition when the parameters of the frequency 
detuning or of the exciting-radiation power are changed. The atomic correlation functions are obtained and 
discussed. It is shown that the quantum fluctuations are significant only in the phase-transition region. An 
analogy between the considered model and stimulated nonlinear resonant oscillations of an anharmonic 
oscillator is established. 

PACS numbers: 42.50. + q, 42.65.Bp, 32.50. + d 

1. INTRODUCTION 
It was shown recently in Refs. 1 and 2 and in the fol- 

lowing  paper^^-^ that a system of N two-level atoms 
interacting with powerful resonant radiation and located 
in a volume much shor ter  than the radiation wavelength 
(the Dicke model) undergoes a s  N - a a nonequilibrium 
phase transition s imi lar  to a second-order phase tran- 
sition. The transition manifests itself in the fact that 
up to a certain cri t ical  exciting-radiation power the 
system behaves in pure classical  fashion, and quantum 
effects become substantial a t  higher values. In Ref. 6 
i t  was found that in the case  of a nonzero frequency de- 
tuning, there is no such cri t ical  phenomenon. On the 
other hand, if the atoms of the system in questions in- 
te rac t  with one another, the coherence region with re-  
spect to the power of the exciting radiation obviously 
increases with increasing interaction. Therefore the 
competition between the dephasing effect of the fre-  
quency detuning and the synchronizing effect of the in- 
teraction of the atoms should lead to a qualitative 
change in the character  of the motion in the considered 
model. 

Indeed, in the present paper, in which the Dicke 
model i s  investigated with account taken of both the 
frequency detuning and the interaction between the 
atoms, i t  i s  shown that there exists  a region of values 
of the parameters a t  which a nonequilibrium first-order 
phase transition can take place in the system. 

The density matrix of the considered system of 
atoms satisfies the equation 

fy the commutation relations [>+, 3-1 = 2?,, [j,, >,I = 52,. 
Interatomic interactions of various types can be de- 
scribed with the aid of the 4: 

Q= G z i  + x q i j z G z i & j  + x q i j  G + G - j  + 
i, j  i .  j 

Since the quantities E,, q f j  and q,, a r e  different for 
different pa i rs  of atoms, the quantity 

i s  not conserved in the general case  according to (1). 
In the present art icle i s  considered the particular case 
when ci = c,, q:j = qg, q i j  = q, and consequently 

In this case (2') = j ( j  + I ) ,  where 2 j  = N .  We note that 
the system (1) and (3) describes also an extended sys-  
tem, averaged over space, of two-level atoms. In the 
lat ter  case q corresponds to the cooperative frequency 
shift considered in detail in Ref. 9. In addition, Eqs. 
(1) and (3) describe monochromatic excitation of a dis- 
sipative quantum system, whose energy spectrum E m  i s  
represented by a converging (q>O) o r  diverging (@<O) 
sequence of N+ 1 levels: 

Em= [o.~+E+ (N-I) q]  m-qm2, m = ~ ,  I, . . . , N. (4) 

From (4) and from the commutation relations for  the 
transition operators ?+ and 2- i t  follows that a t  large N 
this quantum system is analogous to an anharmonic - 
oscillator with fundamental frequency w = w,, + F 
+ (N - l ) q  and with anharmonic constant n =q//J, ex- 
cited by quasiresonant radiation of frequency w,. 

B. , ,=~uJ,+E~, ,  The problem (I), (3), has  an exact stationary solu- 
where v is the matrix element of the interaction of the tion. But before discussing it, we obtain an  approxi- 
resonant radiation with the atoms, c w,, - W ,  is the mate solution that will be useful la te r  on. 
frequency detuning from resonance, Q is the inter- 
atomic interaction operator, y is the probability of the 2. CLASSICAL SOLUTION 
spontaneous transition a - b, and The equations of motion obtained from (1) and (3) fo r  

N the mean values (>,)(/.L = z ,  *) a r e  of the form 
j* = G,, 

I==* ( f+)=-2 iu( fZ)+i (e+~)  (f+)- (2iq-y) <P+f,), 

a r e  the collective operators of the transitions and satis- = - ( + - ) - +  (f-)=( f +)*. 
(5) 
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Assuming the quantum correlations to  be insignificant, 
we can car ry  out in the right-hand side of (5) the fac- 
torization (j,j,,) = (3,)(j,). Then the factorized equation 
can be conveniently represented in the form 

We note that for the factorized equation the "angular 
momentumn r2 = z2 + r+r- remains a conserved quantity 
( r 2 =  1). 

The stationary solution of the Eqs. (6) is given by the 
relations 

or ,  equivalently 

A/2=[Q*(P2/(1-2.') - I ) ' 2 ] ~ . ,  

y,=Im r,,= (1-z,Z)lP, 

x,=Re r,,= (Al2z,-Q) y,. 

The function e,(P) defined by (7) is shown in Fig. 1. 
According to this function, a t  certain relations ( to be 
discussed later)  between the parameters and A and Q, 
there exist regions of /3 in which each P corresponds to 
three values of z, from the interval [0, - 11. Lineariz- 
ing Eqs. (6) near the stationary points, i t  is easy to 
show that the points a and b (see Fig. 1) a r e  respectively 
a node and a focus, while the point c corresponds 
to an unstable state. The range of values of the para- 
meters p for which there a r e  two stable states i s  lo- 
cated between the two points p, = f "(ZC) and &= f1'2(i?B) 
where and ZB a r e  the roots of the equation 

and a r e  located in the interval [0, -11. The functions 
x,@) and y, (R)  a r e  not uniquely defined in the same in- 
terval. 

In the case when Q2 >> 1, -1 < A / ~ Q  0, we can obtain 
from (1 1) approximate values of FB and Tc: 

%=Al2Q, fc= (A/2Q)',3. 

Accordingly, the boundaries of the ambiguity region 
(bifurcation region) a r e  

It follows analogously from (8)-(10) in Fig. 2 that the 
dependences of z,, x,, and y, on A can likewise be am- 

FIG. 1. Plot of z,@) calculated on the basis of the classical 
solution at A = 1 and 8 = -5. 

FIG. 2. Plot of z,(A) calculated on the basis of the classical 
solution a tg=-5 ,  andp=O.5 (1); 0.9 (2); l ( 3 ) ;  3 (4). 

biguous. At sufficiently smal l  values of the value of 
z, differs little from -1, s o  that we can replace A/2z, 
in (7)  by -A/2. As  a result, the function z,(A) is rep- 
resented by the curve 

with a maximum a t  point A/2 = -Q (see  Fig. 2). With 
increasing p the curve becomes deformed and i t s  max- 
imum shifts towards the point A = O .  At a certain value 
p = p  an ambiguity se t s  in the function z,(A). The limits 
of this region a r e  determined by the condition 

where the function A(z) is defined by (8). 

It should be noted here  that a t  smal l  pump intensities 
(at  x 2, + yz = 1 - zz << 1) the equation of the bifurcation 
curve (7) o r  (8) coincides with the analogous equation 
for  stimulated nonlinear resonant oscillations of an an- 
harmonic damped oscillator (see e. g . ,  Ref. 10). In- 
deed, putting 1 - z: = b2 << 1 in (7) we obtain 

which coincides, when the parameters a r e  redesignated, 
with Eq. (29. 4) of the book by Landau and Lifshitz.1° 

Returning to the exact equation (1) and (3), we easily 
see  that i t s  stationary solution is uniquely determined 
by specifying the parameters (3, A, and Q [this follows 
from the fact that the determinant of the right-side of 
Eq. (1) differs from ze ro  when account is taken of the 
normalization ~ r ; =  11. The difference between the 
classical  (i. e . ,  obtained on the basis  of direct  factori- 
zation of the equations of motion) solution and the solu- 
tion based on the complete equation i s  explained by the 
influence of the quantum fluctuations which a r e  not ta- 
ken into account by the classical description. The next 
section of the art icle i s  devoted in fact to the infleuence 
of the quantum fluctuations on the stationary solution. 

\ 

3. EXACT SOLUTION 

The exact stationary solution of Eq. ( I ) ,  (3) can be 
obtained on the following manner. Following Refs. 1, 
2, and 6 we assume that the stationary density matrix 
PC can be represented in the form 

^ ~ , = A - ~ R ( Y - ) R + ( ~ + ) ,  A = S P R ( Y - ) R f ( f + ) ,  (13) 

where ~ ( j - )  and ~ ' ( 3 , )  a r e  functions of the operators 3- 
and j + ,  i. e . ,  a r e  operators defined by the relation" 
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where c, a r e  the coefficients of the Taylor expansion 
of the c-number function R(x). Then, taking into ac-  
count the easily proved relations 

where, according to (14) 

we obtain from (1) and (3) a t  dfiJdt=O 

[?+, { R  (3-) (2- 4- 60 + i Q R R  (7-)  $ iv 1 R ( j - ) d f - ) I  R+ (J:)$ H.c.=O, 

6=2v/r ,  Q=2q/.y, v = Z ( ~ + e ) / . y .  
(16) 

If we denote the operator in the curly brackets of (16) 
by F(J-), relation (16) states that the opera tor  
i[j+, ~ ( 3 - ) I R + ( ~ + )  is Hermitian. The lat ter  can be sat is-  
fied ei ther  if [ j+,  F] = O  o r  if i [ j + ,  ~ ( 3 - ) ]  =R(j-)  apar t  
from a rea l  factor. The lat ter  cannot take place by 
virtue of the commutation relations between the 2,. 
Therefore the operator F ( j - )  must commute with S,, 
i. e . ,  we have accurate to a r ea l  factor chosen from 
the normalization condition 

where 1̂  i s  the-unit operator. Since (17) contains only 
the operators J-, i t  is possible to operate with a l l  the 
quantities in (17) a s  with c-numbers. 

Differentiating (17) with respect  to 2- in solving the 
resultant equation we obtain 

( 1 )  ( + i )  C=Fl(l+iQ), e=v / ( l+ iQ) .  (18) 

The final form of the sought stationary density matrix 
is ,. .. -.. 

8v i) -I+;. &=A-I (J_+iCI) -'-'"(I -'"' 

where 

The coefficients a,, determine the distribution of the 
quantum system over supe_rposition states with density 
operators proportional to ~57:. 

From (19) and from an earl ier1 analysis of Eqs. (1) 
a t  v =  g = 0 i t  follows that a t  z e ro  frequency detuning 
allowance for the interatomic interaction leads to an 
increase of the coherence region with respect  to the 
power of the exciting radiation-time radiation scat tered 
by the atoms is in the limit j >> 1 coherent a t  powers up 
to values -( 1 ~ l j ) ~ ( l  + *T2), and above them quantum ef- 
fects  become significant. In addition, in contrast  to the 
case Q=0,  the intera_ction between the atoms leads to a 
nonzero mean value (J,). In the other limiting case,  

when Q = o  but v#O, we can find from (19) (see also 
Ref. 6) that no such cri t ical  value of the power exists. 

We dwell in detail in the present paper on the com- 
bined influence exerted on the atomic correlation func- 
tions by the frequency detuning and by the interaction 
between the atoms. These functions a r e  defined by the 
expressions 

and a r e  proportional to the correlation functions 
(k?@) of the scattered radiation. l2 Using (19), we 
obtain 
G(m,n)=A-L (l+ie),-,, (1-ie*),-m(2j+ri-1) l ( 4 '  

(r-n)  ! ( r -m)  I (2j-r)! (2r+I)!  
,=maI(m,") 

(22) 
From among the functions (21), most information is 

provided by G'lp0', G'l*", and G'~, ' ' .  The function 
G'llO) is proportional to the average amplitude of the 
scattered radiation, G'lsl) i s  proportional to i t s  inten- 
sity, and G'2*2' is proportional to the intensity correla-  
tion function. The correlation properties of the scat-  
tered radiation a r e  usually determined by the normal- 
ized functions of f i r s t  and second order:  

At g'"= 1, the scattered radiation is fully coherent; 
in other words, i t  i s  identical with the classical  radia- 
tion and a deviation of g'" from unity i s  evidence of 
loss of coherence. The function g"' determines the 
ra te  of the counting of the photon coincidences by the 
two counters. The values g"' > 1 a r e  evidence of the 
presence of bunching of the scattered photons, and g'" 
< 1 evidence of antibunching; if g"' = 2, then the pro- 
pert ies of the scattered light a r e  equivalent to the pro- 
pert ies of the equilibrium thermal radiation. In addi- 
tion, interest  attaches to the mean value (j,), which is 
proportional to the power absorbed by the atomic sys-  
tem. According to (19) 

Figures 3 and 4 shows the dependences, calculated 
on the basis  of (22)-(24), of z=(j,)/j ,  g") ,  and g"' on 
the parameter  p = 2 1 vl /yj, that characterizes the am- 
plitude of the exciting radiation, and on the normalized 
frequency detuning A = 2(c +X)/yj a t  various particle 
numbers N =  2j. It follows from the curves of Fig. 3 
that for  those values of the parameters  Q and A for  
which Eq. (11) has  two roots  in the region [0, -11 there 
exists  a region of values of p where the function z(P) 
undergoes an abrupt jump, and the functions g ( l ) ( ~ ) ,  
g("(p) have a sharp  maximum. With increasing number 
of particles in the system (with increasing j)  these sin- 
gularities become more strongly pronounced. In the 
limit a s  j - m the region of the transition with respect  
to P converges to the point fi =PC,, and the mean value 
of z(P) tends to the values z,(P) obtained on the basis  of 
the factorization method. At @ <PC, these values corre-  
spond to one stable branch of z,, and a t  P >PC, to the 
other. On the other hand, the functions gCn(P) and 
g'2'(p) tend a s  j - m to unity (i. e . ,  the system behaves 
classically) a t  P =PC, and take on values la rger  than 
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fixed value of the exciting-radiation power, a s  is con- 
firmed by Fig. 4. 

FIG. 3. The functions z @ ) ,  g(') ( P ) ,  gfi)(~),  calculated on the 
basis of the exact solution (19 )  at  = - 5 ,  A = 1 ,  j = 15 ( I ) ,  
j = 50 ( 2 ) .  The dashed curves represent the corresponding 
classical quantities. 

unity at the point p =PC, .  

It can thus be assumed that in the "thermodynamicv 
limit a nonequilibrium phase transition, similar to an 
equilibrium first-order phase transition, takes place a t  
the point p =PC,. A similar critical transition takes 
place also when the frequency detuning is varied a t  a 

FIG. 4. The same quantities a s  in Fig. 3, a s  functions of A ,  
calculated at j = 50  and P = 0 . 5  ( I ) ,  0 . 9  (2), and 3 (3). 

It follows from the results that the quantumfluctuations 
taken into account in the complete description influ- 
ence greatly the character of the behavior of the inves- 
tigated systems a t  large j only in the vicinity of the re-  
gion of p,, (or A,,), and that in the thermodynamic limit 
( j  - *, with 8 and A finite) they a r e  effective only at the 
point 8, (or A,,) itself. 

4. QUASICLASSICAL SOLUTION 

To find the phase-transition points O,, and A, one 
could seek asymptotic expressions for the exact for- 
mulas (19)-(24) a s  j - m. There is, however, a simp- 
l e r  method of taking into account the influence of the 
quantum fluctuations in the thermodynamic limit. We 
note for this purpose that we can write for the coeffi- 
cients a, in  (19) and (20) the simple recurrence relation 

n 
a .  = i+(Ai'n+P)\2j-n+i) (2 j+n+i)  - 

(Pi)' 2(2n+i)  an-,, ao=l .  (25) 

Replacing a t  j >> 1 the discrete variable n by the con- 
tinuous variable 

we obtain from (25) a differential equation for the 
function a(w): 

where f(w) coincides, apart  from the substitution 
w - -w, with the function introduced by relation (7). 
The solution of (27) is 

a ( w )  =c exp (-2jm ( w ) )  ; (28) 

The constant in (28) is chosen from the normalization 
condition 

Since 2j >> 1 in (28), the function a(w) takes the shape 
of a se t  of steep peaks whose positions a r e  determined 
by the minima of the function +(w), i. e . ,  by the equa- 
tions 

Equation (31a) coincides, following the substitution 
w - -w, with Eq. (7) that determines the mean value 
z, =(jz)/j in the factorized description. Consequently, 
the positions of the maxima of a(w) coincides with the 
value -z,, and their dependences on /3 and A a r e  shown 
in Figs. 1 and 2. The condition (31b) determines the 
stable branches AB and CD on these figures. Thus, 
expanding @(w) in a power ser ies  near the minimum 
points and retaining only the quadratic terms, we ob- 
tain an asymptotic representation of the function a(w): 
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where -z,, and -2, a r e  stable roots of Eq. (31a), and 
the weights a,,, are ,  according to (30) 

[0"(-zla) I-"' exp[-210 (-z.,) 1 
al- 2 [@"(-z.,) ]-"exp[-2j@(-z.r) ] * 

k-1.2 

The widths of the Gaussian curves in (32) a r e  pro- 
portional t o  [2jch"(-~,)]'"~. With increasing j, they 
tend Po zero and in the limit a s  j -- the corresponding 
functions in (32) can be replaced by 6-functions. Ac- 
cording to (32) and (33), in the regions of the parame- 
t e r s  p and A, where the function (7) or  (31a) has a sin- 
gle root, the distribution function a(w) is represented by 
a one maximum. In the region where there a r e  two 
roots, the function a(w) has two minima. The ratio of 
the weights of these maxima is 

Since 2j >> 1, the predominant maximum will be the 
one for which the function @ ( w )  calculated a t  the cor- 
responding point of the bifurcation curve is smaller. If 
the functions @ , ( P )  =@(-Z,,(CI)) and @,(I) = @(-z,,(cI)), 
where IJ. is equal to P or A, have an intersection point, 
then the abscissa of this point is in fact the sought 
phase-transition point in the thermodynamic limit. If, 
however, there is no intersection point, the phase- 
transition point is one of the limits of the bifurcation 
region. The plots of @,,,(A) shown in Fig. 5 and a com- 
parison of these plots with Fig. 4 confirm this assump- 
tion. Figures 5b and 5c represent the case when the 
phase-transition point A,, coincides with the boundary 
of the bifurcation region, while in Fig. 5d the phase- 
transition point is where @,(A) and @,(A) intersect. 

It should be noted in conclusion that in a number of 
papers (see, e. g., Refs. 3 and 4) the presence of crit- 
ical phenomena such a s  first-order phase transitions 
and hysteresis in cooperative resonant fluorescence 
was attributed to nonconservation of the square of the 
angulir momentum 2'. The model considered in the 
present article shows that this is not so. In our case 
j 2  i s  conserved both in the complete and in the fac- 
torized (classical) description. However, a s  seen from 
the results, hysteresis phenomena appear in the fac- 
torized model, and a nonequilibrium first-order phase 
transition appears in the exact solution in the thermo- 
dynamic limit. 

FIG. 5. The functions *,,,(A) = * [-zc,,z(A)l, a r e  calculated a t  
D = 0.5 (a);  0.9 (b) ; 3 (c); 5 (d). a, and G2 correspond to the 
branches AB and CD respectively. 
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