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A macroscopic theory is proposed for the phase transition occurring in the yrast band of a nonaxially 
deformed nucleus with spin I > 50. The transition is connected with the smooth variation of the nonaxial 
deformation, and is a consequence of the shell effects that occur in a nucleus when a subshell with a large 
single-particle angular momentum j near the Fermi surface begins to fill up. When the sign of the nonaxial 
deformation changes, the rotation of the nucleus about the axis with an intermediate moment of inertia 
becomes unstable. Therefore the transition through the critical point I ,  is accompanied by a 90" rotation of 
the angular-momentum vector relative to the body system of coordinates. The phase-transition parameter, 
which determines the character of the rotational spectrum of the nucleus, is the quantity ly 112, The phase 
transition region is characterized by interstztion of the bands, approach of the side bands to the yrast band, 
and a high degree of forbiddenness of the E2 transitions in the yrast band near the critical point. The 
indicated effects are computed for the nuclei of the rare-earth elements with neutron numbers N ranging from 
92 to 96. 

PACS numbers: 2 l.lO.Re, 27.70. + q 

5 1. INTRODUCTION not remain constant. It begins to vary appreciably from 

1.  The atomic-nucleus levels that possess the least 
energy for a given spin I form the lowest band, which 
is  called the yrast band. This band has now been ob- 
served in certain nuclei up to quite large spins (I- 30). 
The states in the yrast  band can be of either a single- 
particle o r  a collective nature.' In both cases the level 
energy depends on the level spin in approximately quad- 
ratic fashion. 

The single-particle states in the yrast  band a r e  in fact 
many -quasiparticle excitations in which the angular mo- 
menta of the individual quasiparticles a r e  aligned in the 
direction of the symmetry axis of the deformed nucleus. 
The number of quasiparticles and the energy of a quasi- 
particle in such an excitation a r e  proportional to the 
spin of the excitation, which explains the quadratic de- 
pendence of the energy on I. The experimentally found 
coefficient of proportionality in this dependence is  close 
to the value ifs, where f s  is the moment of inertia of 
the solid sphere. From the classical  point of view, the 
noncollective states of the yrast  band correspond to the 
rotation of the nucleus about the symmetry axis. The 
lifetime of the noncollective levels i s  of the order of 
nanoseconds, and these levels form the high-spin iso- 
mers  observed in nuclei with almost filled neutron 
(N= 82) o r  proton (Z= 50) shells. 

The collective levels of the yrast  band a r e  rotational 
states of the deformed nucleus. The ground state of a 
well-deformed nucleus i s  a prolate ellipsoid of revolu- 
tion, and the roational band based on this state corre- 
sponds to rotation about an axis perpendicular to the 
symmetry axis of the nucleus. As the angular momen- 
tum increases, the ground-state-based band goes over 
at'' I- 16 into the yrast  band, which consists of bands 
that a r e  based on the excited states of the nucleus, and 
whose levels a r e  for some reason the lowest for the 
spin region in question. 

the instant when the centrifugal energy in the rotating 
nucleus becomes comparable to the shell energy. The 
deformat ion varies in such a way that the rotational 
energy of the nucleus is a minimum. Since the moment 
of inertia of an oblate nucleus is greatest when the nu- 
cleus rotates about i ts  symmetry axis,  the nucleus t r i e s  
to go over from the prolate into the oblate state a s  the 
spin in the yras t  band increases. Therefore, starting 
from spins 1-30-40, the nucleus i s  nonaxial, and the 
yras t  band corresponds to the rotation of the nucleus 
about the axis with the greatest moment of inertia. Lo- 
cated above and parallel to the yras t  band in the non- 
axial nucleus i s  a system of side bands corresponding to 
the precessional motion. Such a structure of the spec- 
trum in the region of the lowest rotational band of a de- 
formed nucleus does not contradict the experimental 
data available at  the present t ime, and, in particular, 
agrees with the fact that there a r e  no isomeric states. 
In an axially deformed nucleus, the many-quasiparticle 
excitations with a large angular-momentum component 
along the symmetry axis of the nucleus would be iso- 
meric states.  

In recent years,  the study of the yras t  band of a rotat- 
ing nucleus has become a rapidly developing field of nu- 
clear physics. Significant progress was made in this 
field thanks to the use of reactions with heavy ions to 
excite the rotational states.  Attractive in this direc- 
tion i s  the unique information that can be obtained about 
the structure of the atomic nucleus by studying the 
yras t  band. The lat ter  circumstance is  due to the ef- 
fects of the Coriolis force in the rotating nucleus. 
This force plays a more important role in the nucleus 
than under ter res t r ia l  conditions, or  even in molecular 
spectra. In particular, the effect of the Coriolis force 
on the nucleons in the subshell with the maximum 
single-particle angular momentum j near the Fermi 
surface allows us  to explain the backbending of the mo- 

The deformation of the nucleus in the yrast  band does ment of inertia in the ground-state-based band.' 
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2. Another phenomenon connected with the nucleons 
in a subshell with a la rge  j near the Fermi  surface is  
the change in sign of the nonaxial deformation of the 
nucleus. Equilibrium-deformation computations per -  
formed in Refs. 3 and 4 with the aid of the Strutinsky 
shell-correction method for nuclei in the yras t  band 
show that, in the spin region 5 0 < I <  60, the shape of 
certain nuclei var ies  with increasing I in such a way that 
the nucleus becomes axial a t  some spin value I, and 
then nonaxial again at  a higher spin value, with the non- 
axial deformation parameter  y of opposite sign. 

Let u s  illustrate the physical picture of this pheno- 
menon for a model nucleus consisting of nucleons con- 
nected with a soft rotator. We wri te  the Hamiltonian of 
the entire system in the form 

where H ,  i s  the Hamiltonian of the noninteracting nu- 
cleons that move in the self-consistent field of the nu- 
cleus,  J i s  the total angular momentum of the nucleons, 
and V is  the rotator 's  deformation energy which depends, 
besides on y, on the axial deformation parameter  0. 

Let us  consider extremely la rge  spins for  which the 
t e rm x, J:/2fk in the Hamiltonian (1) can be neglected 
and the rotator moments of inertia f, can be considered 
to be the moments of inertia of a rigid body. They a r e  
determined by the geometrical dimensions of the rota-  
t o r ,  which is  an  ellipsoid with semiaxes 

where R, = 1. 2A1 l3 fm (A i s  the number of nucleons in 
the nucleus) and 6 = (45/16n)1'2p. In determining the 
equilibrium deformation in the yras t  band for  such large 
spins, we can consider the rotation to be c l a ~ s i c a l . ~ '  

The rotation-nucleon interaction i s  strongest for the 
nucleons located a t  the levels with j -A l l3  near the Fe r -  
mi surface. For the rare-ear th  elements these a r e  the 
il,/, levels for  the neutrons and the hll/, levels for  the 
protons. These levels a r e  distinguished by parity from 
the other states of the filled shell. Therefore, j for  
them i s  a good quantum number, s ince the admixture of 
s tates with other j a s  a result  of the deformation and the 
rotation corresponds to transitions to a neighboring 
shell. Consequently, the subshell with the maximum j 
near the Fermi  surface can be considered to be isolated. 
If we limit ourselves in the Hamiltonian (1) to only this 
subshell, then its single-particle part  H, will have the 
form 

x6 
hj=ej+-  { ( 3 j z ~ Z - j z ) ~ ~ ~  T+V3(jz~2-jy-z)sin y}, 

6j(j+f) 

where E ,  is  the energy of the j-th level in the spherical 
nucleus x i s  the quadrupole-quadrupole interaction con- 
stant and the jk ,  a r e  the single-particle angular-momen- 
tum operators. The summation in H ,  i s  over a l l  the 
nucleons in the subshell. 

We can assume that, for  the spins I under considera- 
tion, the angular momentum of the nucleon i s  not cou- 
pled to the deformation, and is  oriented along the direc-  
tion of the axis of rotation of the nucleus. In this case  
the energy levels of the subshell form an  equidistant 
spectrum with spacing3' I/fl. The deformation slightly 
distorts  the alignment. Analyzing the deformation with 
the aid of perturbation theory, we find that the level 
characterized by the component v of the angular mo- 
mentum of the nucleon along the axis  of rotation shifts, 
a s  y var ies ,  in proportion to the quantity4' y[3v2 - j(j 
+ 111. 

The total energy of the nucleons i s  obtained by sum- 
ming the single-particle energies of a l l  the filled levels 
in the subshell from v = j  to v= v,. Performing simple 
calculations, we find the dependence of the energy of 
the nucleus on y: 

where E, i s  that part  of the energy which does not de- 
pend on y ,  C, i s  the coefficient of stiffness with respect  
to the y deformation, the quantity b i s  proportional to 
6, and the moment of the inertia A of the axial rotator 
about an  axis  perpendicular to the symmetry axis i s  
equal to 

Expression (3) allows us to determine the equilibrium 
nonaxial deformation of the nucleus. Noting that the 
Coriolis energy i s  small  compared to the centrifugal 
energy, we obtain 

As follows from the last  formula, the cr i t ica l  spin I, 
depends on the population of the subshell with a la rge  
j near the Fermi  surface. Calculations in the square-  
potential-well model show that 1,- 90 for nuclei contain- 
ing 94-98 neutrons (isotopes of E r  and Yb). In Mosel's 
 calculation^,^ performed by the Hartree-Fock-Bogolyu- 
bov method with the Skyrme interaction, the nonaxiality 
of the ~r~~~ nucleus disappears near I= 80. The quan- 
tity a can be  estimated after  determining the stiffness 
Cy from the energy of the y vibrations in the adiabatic 
approximation. If we use for  the mass  parameter  of 
these vibrations the empirical  expression6 By = 1.5B2, 
where B, i s  the hydrodynamic value of this  quantity, 
then a =2" on the average for the above-indicated iso- 
topes of E r  and Yb. In Ref. 4 this quantity i s  found to 
be equal to 3". 

The point I, in the yras t  band coincides with the point 
of intersection of the bands corresponding (from the  
classical  point of view) to the rotation of the nucleus 
about two mutually perpendicular axes: the  y '  axis  for 
y < 0 ( I<  I,) and the x' axis for  y > 0 (I> I,). Because 
of the instability of the rotation about the axis  with the 
intermediate moment of inert ia ,  the upper pa r t s  of these 
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bands cannot exist. In this sense we can speak of a 
"phase transition" in the yrast  band. It i s  convenient 
to study this transition by measuring the dependence of 
the moment of inertia of the nucleus on the square of 
the rotation frequency. For a < a,, = l/bIo this depen- 
dence should have the characteristic s shape. 

We should expect the interaction between the collec- 
tive degrees of freedom of the deformed nucleus to be 
strong at the phase transition point. Below we shall 
limit ourselves to the consideration of only the rota- 
tional degrees of freedom, taking the nucleus to be a 
rigid nonaxial rotator with variable principal moments 
of inertia. 

52. NONAXlAL ROTATOR WITH LARGE ANGULAR 
MOMENTUM 

Let us first  discuss the method of describing the rota- 
tional states of the nonaxial nucleus with a large spin. 

1. The group of operators for the asymmetric top 
consists of the operators of the angular-momentum 
components along the fixed (I,) and moving (I,,) axes, 
and of the operators D:, that connectthe physical quan- 
tities in the body and laboratory coordinate systems. 
This group can be realized in the basis of polynomials in 
four complex variables7 [,, t,, T ,  and b .  In this repre- 
sentation the wave function of the top has the form 

where M is the angular-momentum component along the 
z axis and q,, is  the eigenfunction of the Hamiltonian 
( f i =  1) 

ZZ=~/ , (A,Z. .~~A~Z, .~+ A,Z,.~), A,=l/ak. (8) 

Integration in the space of the functions (7) is  defined 
with-the aid of the invariant measure 

The variables [,, [,, T ,  and f a r e  defined in the entire 
complex plane. The last variable is  the sterographic 
projection of a point, specified by the polar angles 9 
and @, of a sphere of radius $ on the plane passing 
through the southern pole: 

f=ei" ctg (6/2). 

The angles 9 and @ determine the orientation of the vec- 
tor I in the moving coordinate system. 

It is  convenient to represent the function p in the form 

and make a change of variable 5 = eic (z = x + iy) , mean- 
ing conformal mapping of the plane of the complex var- 
iable C on the sheet 0 < x < 2n. The operators for the 
angular-momentum components along the moving axes 
in the space of the functions J I ,  which a r e  trigonometric 
polynomials, have the form 

d 
I; =Zcos z- (sin 2)-, I,,=- d d Zsinz-(cosz)-, I,,=-i-. (11) 

dz dz dz 

The Hamiltonian (8) is  invariant under rotation through 

180" about any axis of the body coordinate system. The 
corresponding operators R,*(n) transform the function 
J, in the following manner: 

R=,(n)$(z) =(-I)'$(-z), R,. (n)$(z) =(-I)'$(=-z), RZ.=R,.~,..(12) 

Below we shall need one more finite-rotation operator: 

Hz. (n/2)$ (z) =$ (z+n/2). 

2. Let us first consider the positive values of the 
nonaxiality parameter y. In this case,  a s  follows from 
the formulas (2), the rotator is  extended along the z '  
axis, and its principal moments of inertia satisfy the 
relation fl > f ,  r f , .  Substituting the expressions (11) 
for the angular-momentum component operators into the 
Hamiltonian (a), we obtain the ordinary differential 
equation 

(el+ sinZ z)- - 
1 dZ' 1 - - sin 22 -+ e +-z(z-1)cos 27, $=0, 

d, ( dz 2 I (13) 

which depends on the spin 1 and on the 

The rotational energy can be expressed in terms of the 
eigenvalues e of this equation a s  follows: 

E=~/~(A,+A~)Z(I+I)+~/,(A,-A,)~. (14) 

Equation (13) is  invariant under the transformations 
(12). We can therefore introduce the quantum numbers 
r, and Y,, which assume the values *1 andare the eigen- 
values of the operators R,, and R, respectively. In a 
nucleus with an even number of neutrons and protons, 
we can have only integer values of I. Moreover, the 
symmetry of the inner wave function leads to a situa- 
tion in which a l l  the rotational states of the nonaxial 
nucleus have r, = r, = + l .  In a l l ,  for a given value of 
I there a r e  $+ 1 states if I is even and (I- 1)/2 if I is  
odd. We shall label these states by the subscript n. 
The lowest (n= 0) band of an even-even nucleus con- 
tains levels with even spins. Its wave function, which 
i s  a solution to Eq. (13), has the form 

q r + i  
(z) = 2 A,,, cos 2mz. 

Equation (13 ) i s  also invariant under the transforma- 
tion R,,(n/2) with the simultaneous replacement of 5' 
by -(t2 + 1) and (2 by -e. This transformation (it is  de- 
noted hereafter by 1) is equivalent to the interchange 
of the x' and y ' axes. 

3. To determine the E2-transition probability for the 
region of the yrast  band, we use the operator D&, 
found in Ref. 7, and the expressions (7), (9), and (10). 
After straightforward but quite tedious transformations, 
we obtain the following formula for the computation of 
the reduced probability for transition between levels 
with different values of the quantum numbers n and I: 
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In the last expression 

and the operator is  connected with the quadrupole- 
moment components q,, in the body coordinate system 
(q2, =q0,qZ2 =q2,-, =q2) in the following manner: 

It should be noted that the internal state of the nucleus 
was assumed to be fixed in the above-considered tran- 
sitions. 

4. Let us transform Eq. (13) with the aid of the sub- 
stitution 

$(z) = (e2+sin' z) '*-"'12u (z) . 

The differential equation for the function u has the form 

where E = e + ~ , / 2 , ~ , = 1 ~ + I - l .  Thespectrumofthe  
rotational states with a given spin I is determined by 
eigenvalues E contained, a s  simple classical estimates 
show, in the interval 0 < E < (1 + t2)12. The minimum 
energy corresponds to rotation about the x' axis; the 
maximum energy, to rotation about the z '  axis. 

Equation (18) contains a large parameter ( c ,  = (I + 
and this allows us to use the quasiclassical approxima- 
tion to describe the rotation of a nonaxial nucleus in the 
case of large spins. The quasiclassical approximation 
breaks down at the points where the function g(c  , z )  
vanishes. The zeros of this function play an important 
role in the construction of the quasiclassical solution, 
determining the form of the wave function and the eigen- 
value spectrum. In all, the interval 0 Gx< n contains 
four such points, which a r e  the sterographic projections 
of the turning points of the classical trajectories5' on 
the plane of the complex variable b .  

TWO reversal points B(a/2,yB) and B1(n/2, -yB 1, where 
y~=argch [2 (s+s--e+ [(s+%-E) (S_=--E)] '1.) 1 ", 

s*=(z+'/z) (1+5')"*E/2, 

a r e  always located on the straight line x=r /2 .  The 
positions of the two other points A and A', whose coor- 
dinates a r e  determined from the equation 

sin z,= [2 (s+s--e- [ (s+'-e) (s-~-E)] ") 

depend on the magnitude of the parameter 5 and the 
eigenvalue E . If6' 5 > 1/(21+ 1) then, in the region 0 
< E < E ,, these reversal  points a r e  located on the real  
axis symmetrically with respect to the point z = n/2 
(Z,=XA or  r -xA). AS E increases, the points A and A'  
approachthe latter along the real  axis if E > E,, pass over to 
the straight line x = r/2 when E > E,, andbegin to move away 
from eachother alongthis straight line as c i s  increased 
further (z, = n/2* iy,). 

The construction of the quasiclassical solution to Eq. 
(18) with four reversal  points in the complex plane is  
described in Ref. 7. The energies of the rotational 
states of the nonaxial nucleus a r e  determined from quan- 
tization conditions, which, depending on the disposition 
of the reversal  points, a r e  given by one of the equa- 
tions: 

where the phase Go i s  equal to n/4 and 3n/4 for even, 
and odd I, respectively. 

The accuracy of the determination of the energies 
from the quantization conditions (20) and (21) deter- 
iorates considerably when the eigenvalues fall within 
the interval I E - C, I < ( I+  8)5. In this interval the turn- 
ing points A and A '  a r e  so close to each other that the 
regions around these points where the quasiclassical 
approximation is  inapplicable overlap. Formally, the 
indicated energies correspond to the rotation of the nu- 
cleus about the axis with the intermediate moment of 
inertia f,. It will be shown below that these energies 
determine the phase-transition region. 

In the limit of large 5, we can obtain from the quan- 
tization condition (21) the rotational spectrum of a 
slightly nonaxial nucleus, a spectrum which consists 
of bands each with a definite angular -momentum com- 
ponent K along the symmetry axis. An exception is the 
yrast  band with K = 0, whose energy cannot be deter- 
mined from Eq. (21). This circumstance is  explained 
by the fact that, in the quasiclassical approximation, 
the energy in the band is  expanded in powers of the pa- 
rameter (I/5K)2. 

In the case of negative y,  the axis of greatest moment 
of inertia i s  the y 'axis,  i . e . ,  In order to 
determine the rotational spectrum of the nucleus, we 
should use in this case the transformation 9 (see 
Subsec. 2 of this section). By applying this transfor- 
mation to Eq. (18), we can obtain quantization conditions 
similar to (20) and (21). 

5. A cruder approximation is  the oscillator approxi- 
mation. It allows us to describe only that part of the 
rotational spectrum of a nonaxial nucleus which per- 
tains to the region of the yrast  band (c - 0). If &/&, 
<<I, then the region of small  z, which corresponds to 
the classical trajectories near the point 9 =n/2, + = 0,  
is  decisive in Eq. (18). These trajectories correspond 
to the precession of the angular-momentum vector about 
the axis with the largest moment of inertia. 

In the limit lzI<< 1 Eq. (18) goes over into the Schro- 
dinger equation for an oscillator with frequency 

and "mass" rn = $5'. This is  an equation of a complex 
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variable; therefore, the condition for the wave func- 
tion to be bounded should be replaced by the condition 
for the norm of the wave function to be finite. The lat- 
ter  condition selects a solution in the form of Hermite 
polynomials. We present the final expression for the 
eigenfunctions of the Hamiltonian (81, which determine 
in accordance with the relations (7) and (10) the wave 
functions of the rotational states of the nucleus in the 
region of the yrast  band: 

nn! 

x exp - - moIz2 , (3 
where a = [(I + 5 2 ) 1 1 2  - l y ( l +  t 2 ) l r 2 .  The energy of these 
states, which can be found from the expression (14)) 
i s  equal to 

In the case of even-even nuclei the quantum number 
n assumes only even values. 

Substituting the wave functions (23) in (10) and using 
(15)-(17) we obtain, to f irst  order in I- ' ,  the reduced 
probabilities for E2 transitions in the yrast band6: 

where 

a re  respectively the quadrupole moment of the nucleus 
and the measure of its asymmetry with respect to the 
x '  axis. These formulas show that an excitation occur- 
ring in the yrast  band will induce a y-quantum cascade 
corresponding to transitions in the same band. 

To describe the region of the yrast  band for negative 
values of y, let us use the transformation g. According 
to this transformation, the variable z should be replaced 
by n/2 + z .  Therefore, the vector I will precess about 
the 9 = n/2, c$ = n/2 direction, which coincides with the 
y '  axis. In other words, the change in sign of y causes 
the angular-momentum vector to turn through 90' in the 
body coordinate system. The wave function $ ( z )  for 
such a motion is  obtained from the function (23) by re -  
placing z by n/2 + z and 5 2  by 

while the energy is obtained from the expression (24) by 
interchanging the subscripts for the x '  and y '  axes. 

The oscillator approximation considered above is  ap- 
plicable when the angular-momentum component in the 
plane perpendicular to the axis of rotation is  small. 
This requirement leads to the following condition: 

$3. THE ROTATIONAL SPECTRUM OF A NONAXIAL 
ROTATOR I N  THE PHASE-TRANSITION REGION 

The phase-transition region i s  characterized by ap- 
proximately equal moments of inertia f l  and &. We 
shall assume that the initially positive difference A, 
-A,  decreases, changes sign, and becomes negative. 

1. Let us  first  consider the positive values of A, 
-A, .  The small values of this quantity correspond to 
large values of the parameter t2 ,  for which values the 
turning points A and A' a r e  close to the point z = n/2. 
The quantization condition (20) in this case gets sim- 
plified: 

pQ (h)  +2 arctg('/, exp [-pX(h) I )  =n (2n f1 lZ ) ,  (27) 

p=(2~+i ) / e ,  (28) 
where the functions cP and X a r e  defined a s  follows: 

K and E being complete elliptic integrals of the first and 
second kinds. The roots 

a,,= I E,-EO 1/(1+1/2)2 (29) 

of Eq. (27) that lie in the interval 0 A  6 1 determine 
the bottom part (E, < E,) of the spectrum of the rotator 
for a given spin I. The quantum number n assumes all  
integer values from zero to 

To determine the top part  (&,>> co) of the spectrum, we 
should use the quantization condition (21), which in the 
region in question reduces to the equation 

The roots of this equation (0 < A <  -) together with the 
expression (29) determine the energies of the levels 
with the quantum numbers n,' + 1, n,'+ 2, . . . ,1/2, where 
the whole number 

Generally speaking, n,' < no, which i s  explained by the 
breakdown of the quasiclassical approximation because 
of the drawing together of the turning points. 

2. The drawing together of the turning points is  a 
sign of the phase transition. In order to analyze this 
phenomenon, let us  consider the classical trajectories 
of the system. They can be determined after averaging 
the Hamiltonian (8) over the coherent state, found in 
Ref. 7, of the nonaxial rotator. If the orientation of the 
vector I i s  specified by the polar angles 9 and @, the 
equation of the trajectories has the form 

There a r e  two degenerate (with respect to the direction 
of the vector I) families of trajectories: around the 
north and south poles if E, < c < &,(I + E 2 ) ,  and around 
the points c$ = 0 and n on the equator if 0 < E < co. These 
two families a r e  separated by two separatrices with 
energy c = c,. 

In the phase transition region, when 5 is  large, the 
separatrices approach the equator, and the energy zK of 
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the lowest level approaches E,. Therefore, the classi- 
cal  trajectory corresponding to the lowest level with en- 
ergy &, < &, is located near the equator in the left o r  
right hemisphere (Fig. 1 ). The turning points a and a '  
of the classical trajectories approach the point on the 
equator with +=n/2 a s  4 increases. The turning points 
symmetrical to a  and a' on the opposite side of the 
sphere approach the point + = 3n/2, which also lies on 
the equator. 

The points A and A '  a r e  the sterographic projections 
of the turning points a and a ' ,  since, by definition, 

Consequently, the drawing together of the turning points 
A and A'  is a consequence of the drawing together of the 
two degenerate classical trajectories. Because of this, 
tunneling from one trajectory to another becomes pos- 
sible, as a result of which the motion of the angular- 
momentum vector ceases to be localized, and its end 
moves over the whole sphere near the equator. This 
circumstance leads to the intensification of the zero- 
point oscillations of the vector I, an intensification 
which is  characteristic of the phase transition region. 

In deriving the quantization conditions (20) and (21), 
we assumed that the reversal  points A and A ' a r e  iso- 
lated points, i. e. , that the regions around these points 
where the quasiclassical approximation is  inapplicable 
do not overlap. Let us  determine the condition of ap- 
plicability of this approximation. To do this, we find 
from the equation 

the radius of the circle inside which the quasiclassical 
approximation is inapplicable, and compare i t  with the 
distance between the points A and A'. If these points 
a r e  located on the rea l  axis ( i ,e . ,  if & <  c,), then they 
will be isolated when 

If, on the other hand, the points A and A '  a r e  located on 
the imaginary axis (i. e. , if E > E,), then the condition 
for them to be isolated has the form 

p { 2 [ A ( l + h ) ] " ( a r g s h  A"") 3 } " > l .  (32) 

The inequalities (31) and (32) together with Eqs. (27) 
and (30) allow us  to determine the region of p values 
where the quasiclassical approximation breaks down be- 
cause of the drawing together of the reversal  points. It 
is natural that this region depends on the quantum num- 
ber n. Thus, for  the yrast  band in the quasiclassical 
approximation breaks down for p values lying in the in- 

FIG. 1. Classical trajectories of a nonaxial rotator in the 
phase transition region near the point @ = a/2 on the equator. 

terval 0 .28<p < 1.90. 

The breakdown of the quasiclassical approximation be- 
cause of the drawing together of the turning points does 
not lead to any difficulties whatsoever, since, in the 
f irst  place, the accuracy of the computations for suf- 
ficiently large I is  fairly high even in the region where 
these points approach each other and, in the second 
place, we can use the quasiclassical approximation with 
parabolic cylinder functions, which approximation is 
f ree  from the above-considered shortcoming. 

3. As has already been said, the phase transition can 
be detected by detecting the intersection of the bands. 
Another sign of the phase transition is the decrease of 
the energy interval aE, between the f irst  side band 
( n = l )  and the yrast  band (n=O): 

a s  the phase transition point I, is  approached. It i s  con- 
venient to refer  this energy to the quantity [(A, -A,)(A, 
-A,)]'/'. Then, according to the expressions (14) and 
(291, the dimensionless "excitation energy" will have 
the form 

The roots h, and A, a r e  found from Eq. (27) o r  (30) a s  
a function of the parameter P. 

In the quasiclassical approximation the excitation en- 
ergy e, depends only on the parameter p - 2I( l y I )'", 
(28), which determines the proximity of a rotator with 
variable moments of inertia to the phase transition 
point p=O. The function e,(p), (331, which is repre- 
sented in Fig. 2 by the continuous curve, shows that 
the excitation energy decreases a s  the point p = 0 is 
approached. To determine e, in the vicinity of this 
point, we can use perturbation theory, assuming the 
decrease of nonaxiality to be small6: 

The corresponding curve i s  represented in Fig. 2 by 
the dotted line. 

FIG. 2 .  The energy of the lowest excitation in the rotational 
spectrum of a nonaxial rotator. The curves, which correspond 
to different approximations, are described in the text. The 
points represent the results of the exact diagonalization of the 
Hamiltonian (8) for specific nuclei: 0) 9,nlS4, A) 3rf6', 0 )  

~ r ' ~ ~ ,  0) ~ b ~ ~ ~ .  
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For sufficiently large p ,  the exponential terms in 
Eqs. (27) and (30) a r e  small, and we can derive for the 
excitation energy the analytic expression 

eI(p) =np/[2K(Y=)], (34) 

where is the root of the equation 

E ( Y m )  -AK (I=#) -rc/2p. 
. . .. (35) 

In the limit E = 0 (A* = 1) we obtain from the formula 
(34) the precession frequency (22): 

The condition of applicability of this approximation is 
the inequality p >> 1, which can be derived from Eq. (35). 
It is  natural that it coincides with the general condition 
(26) in the limit of large 5. The approximation (34) i s  
close to the harmonic approximation, a s  follows from 
Fig. 2, in which the corresponding curves a r e  repre- 
sented by the dashed and dot-dash curves. 

The excitation energy for negative values of the dif- 
ference A, -A, can be obtained by using the transfor- 
mation 9, which i s  equivalent to the replacement of the 
quantity 6 by q, (25). The form of the dependence e,(p) 
will not change in the process. Thus, in the quasiclas- 
sical approximation the excitation energies to the left 
and right of the phase transition point should lie on the 
same curve. 

Figure 2 shows the excitation energies, obtained 
through a numerical diagonalization of the Hamiltonian 
(81, for certain nuclei of the rare-earth elements in 
which the phase transition in question should be ob- 
served. In Table I we give the values, taken from Ref. 
4, of the parameters a ,  I,, and f l  (near I,) necessary 
for the computation. The quantity p was computed from 
the formula 

into which enters, besides the moment of inertia f L  [see 
the formula (4)], the rigid-body moment of inertia 5, 
about the symmetry axis of the axial rotator: 

We chose nuclei for which the deformation parameter 
f l  is approximately constant in the phase-transition r e -  
gion (50< I <  60). 

It can be seen from Fig. 2 that the quasiclassical ap- 
proximation describes well the excitation energy near 

TABLE I. Nucleus. 

the phase transition point (the excitation energy was 
computed for spins I= I,* 1, I, tt2). The insignificant 
discrepancy for too large p is due to the inapplicability 
of the expression (33) in that region. It should be noted 
that, in spite of the slow variation of the nonaxial-de- 
formation parameter near the transition point ( a  << l), 
the quantity p > 10 for levels with spin I,* 1. Conse- 
quently, we can use the harmonic approximation to de- 
scribe these states. 

4. Let us  consider two levels in the yrast band be- 
tween which the phase transition point I, is located. If 
their spins differ by two units, then the nonaxial defor- 
mation of the nucleus has opposite signs in these states, 
and the angular-momentum vector has, according to the 
foregoing, different orientations in the body coordinate 
system. Therefore, the E2 transitions between these 
levels will be weakened. 

Nucleus 14 B 

To estimate the degree of forbiddenness,of the E2 
transitions, let us compute the overlap integral for two 
functions (7) of the nonaxial rotator that correspond to 
deformation parameters (i. e.  , y values) of opposite 
signs: 

2.8" 

0.7" 

1.8' 

7.3" 

2.1' 

, a m 2  
a a ~ r i t 2  
ed~rg4 
,JbF 
m~bA!4 

where the function $,,, = $$,, corresponds to y < 0. 
Since the quantity p i s  large in both states, we can use 
the harmonic approximation (23) for these functions. 
Simple calculations lead to the following result: 

where the quantity q2, which is given by the expression 
(25), differs from t2 in that the xl-  and yl-axis sub- 
scripts have been interchanged. If e2=q2>> 1, i. e. , 
if the transition point I, i s  located exactly halfway be- 
tween the levels in question (the Sm154, ~r"~* '"  nuclei), 

then the expression (36) gets simplified: 

22 * 
11 * 
17.5 

59 ** 

29 ** 

5 1  1 0.20 

and the degree of forbiddenness i s  determined by the al- 
ready known parameter p. Because of the large mag- 
nitude of this parameter, the overlap integral i s  small 
(see Table I), so that the lifetime of the upper level with 
spin I, + 1 can be of the same order of magnitude a s  the 
lifetime of the low-lying rotational states of the nucleus. 

1.5.10-' 

1.1.10-~ 

Z.I.~O-~ 

1.0. lo-' 
1.5.10-I 

55 

55 

52 

54 

If the phase transition point i s  close to one of the lev- 
els of the yrast band, then the degree of forbiddenness 
can be estimated by considering the transition between 
an axial and a nonaxial state. In this case the overlap 
integral i s  equal to 

0.22 

0.24 

0.11 

0.20 

and the degree of forbiddenness, a s  follows from Table 
I (the ~ b ~ ~ ~ , ~ ~ ~  nuclei), is  not high. This result can be 
explained by the fact that in this case there is  no pre- 
ferred orientation for the angular -momentum vector in 
the axial state. 

T o r  spin I. + 1. 
** For spin I. + 2 . 

Finally, let us  estimate the degree of forbiddenness 
resulting from a change in the magnitude (but not in 
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sign) of the nonaxial deformation. If the values of the 
nonaxial deformation for two neighboring states of the 
yrast  band, to which correspond the parameters 5, and 
t2 ,  differ by the amount Ay, then the overlap integral 
i s  equal to 

All the quantities e2, 020, and 0; found above deter- 
mine the forbiddenness of the E2 transitions that stems 
from the differences among the rotational states of the 
nucleus. A change in the deformation of the nucleus 
caused by a change in the nuclear, self-consistent field 
leads to an increase in the degree of forbiddenness be- 
cause of the difference among the internal states. But 
this effect, being a smooth function of the spin I, does 
not depend on the proximity to the phase transition point. 

$4. CONCLUSION 

As the angular momentum of the nucleus in the yrast 
band increases, the shape of the nucleus begins to 
change appreciably at spin values 1-40, when the orbital 
energy becomes comparable to the change that occurs in 
the rotational energy of the nucleus when its shape 
changes. Thus, a transition from the oblate to the pro- 
late shape has been found to occur in the Tell8 nuclei at 
1-30 (Ref. 8) and Er15' nuclei at 1-40 (Ref. 9). This 
result was obtained from indirect data; for the mea- 
surement of the deformation in the yrast  band for such 
spins is  not possible at present. Therefore, it is ex- 
tremely important for us to indicate the phenomena 
that a r e  connected with a change in the deformation, 
and have a significant effect on the rotational spectrum 
of the nucleus in the region of the yrast band. 

As an example of such phenomena, we can cite the 
above-described phase transition, which occurs when 
the sign of the nonaxial deformation of the nucleus i s  
changed smoothly. This transition i s  a consequence of 
the shell effects that occur in nuclei in which the sub- 
shell with the largest single-particle angular momentum 
j near the Fermi surface has just began to fill up. The 
phase transition parameter, which determines the char- 
acter of the rotation of the nucleus i s  the quantity 
l y 11:. Therefore, even when the equilibrium nonaxial 
deformation in the vicinity of the transition point I, is 
varied slowly, the rotational spectrum of the nucleus 
in the transition region changes markedly, since I, 
>> 1. The phase transition region is characterized by 
the intersection of bands, the approach of the sides 
bands to the yrast band, and a high degree of forbidden- 
ness of the E2 transitions in the yrast band in the vicin- 
ity of the point I,. 

In the paper we have developed a macroscopic theory 
of the phase transition on the basis of a model of a rigid 
rotator with variable principal moments of inertia. The 
question of the applicability of this model requires fur- 
ther investigation. It i s  well known that, in the adia- 
batic approximation, the amplitude of the zero-point y 
vibrations for the ground state of a nucleus lies in the 
range from 8 to 19" (Ref. 6), i. e . ,  exceeds the coef- 
ficient a in the formula (5) by a considerable factor. 

We should expect the amplitude of the zero-point vibra- 
tions in a rotating nucleus to be smaller, since, accord- 
ing to the expression (3), the rigidity of t h e y  vibra- 
tions i s  appreciably greater because, of the centrifugal 

' term I: / f .  Nevertheless, the y -vibration-rotation in- 
teraction near the critical point I, can to some extent 
"smear out" the above-indicated effects. This will not 
occur in nuclei in which the y vibrations a r e  actually 
two-quasiparticle excitations [as, for example, in Yb17' 
(Ref. lo)]. 

It should also not be forgotten that the yrast band for 
so  large spins is  the envelope of a large number of in- 
tersecting bands with different single-particle struc- 
tures. Therefore, the question of the adequacy of the 
rotator model (like the computation of the probability 
for transition between states with different deforma- 
tions) comes under the purview of the microscopic the- 
ory. Finally, the question of the applicability of the 
phase-transition concept to the nucleus, which is,  
strictly speaking, not a macroscopic system, i s  a non- 
trivial one. 

 ere and below all numbers pertain to the nuclei of the rare- 
earth elements. 

 his assumption is inadmissible at  the point I. because of the 
strong spin (I) fluctuations (see below). 

3 ' ~ t  is assumed that the nucleus rotates about the axis, x ' ,  with 
the largest moment of inertia ( y >  0). The final result (5) and 
(6) will not change if the rotation i s  considered to be about an 
arbitrary axis in the x'y' plane. 

4 ' ~ n  a sufficiently narrow range of spins in the vicinity of I,,, 
the parameter y is  small, and the axial deformation R can be 
considered to be a constant. In this region V -  Vo + cy2 .  

5 ' ~ e  have in mind the classical trajectories of the end of the 
vector I on a sphere of radius I. 

6'0nly such values of this parameter will be needed by us be- 
low. The small 5 values correspond to an almost axial ro- 
tator extended along the y' axis. 
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