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A vortex lattice consisting of a finite number of vortices is investigated. The displacements of the vortices 
from the sites of a regular triangular lattice and the shape of its boundary under equilibrium conditions are 
calculated within the framework of the continuum theory of elasticity. 

PACS numbers: 67.40.V~ 

The theory of an infinite vortex lattice in rotating 
superfluid He4 has been constructed by Tka~henko. ' -~  
The existence of such a lattice has been confirmed 
both by the experimental observation of the waves by 
T k a ~ h e n k o , ~ - ~  and also by direct  photographing of the 
vortices in the rotating v e ~ s e l . ~  

Recently, theoretical investigations of vortex lattices 
in bounded volumes-finite vortex crystals-have a lso  
appeared. These investigations a r e  carried out both 
on the basis  of the continuum theory of lattice vibrations 
(elasticity theory) with the addition of the correspond- 
ing boundary  condition^,'.^ and with the help of num- 
erical  c a l c ~ l a t i o n s . ~ ~ ' ~  In particular, i t  has been 
established by the numerical calculations that distor- 
tions of the regular  t r iangular  lattice exist  a t  equilibri- 
um. They penetrate deep into the interior of the vortex 
crystal. According to Campbell and z iff ,lo displacement 
of the lattice s i tes  of the tr iangular  lattice increase 
like p5, where p is the distance to the axis of rotation. 
Close to the boundary of the crystal ,  the vortices align 
themselves into concentric rings, so  that the boundary 
of the crystal takes on a regular  cylindrical shape even 
without account of the walls of the vessel. 

In the present work we attempt to obtain these results  
within the framework of the continuum theory. We note 
f i r s t  that, because of the lack of correspondence be- 
tween the symmetry of the cylinder, whose shape the 
vortex crystal  tends to take on a t  equilibrium, and the 
hexagonal symmetry of the regular  triangular lattice, 
the crystal  shape deviates from cylindrical, Therefore,  
if we cut out a cylindrical region from the regular lat- 
tice, then not all its boundary vort ices will be located 
on one circumference; some of them can be located a t  
a distance from i t  of the order  of the lattice constant. 
This leads to the appearance of the so-called destabiliz- 
ing vortex velocity bv,,  i.e., to a deviation from the 
velocity of rigid-body rotation v, = a x  p. According to 
the numerical calculations of Ref. 10, 

6v,-p5. 

The destabilizing velocity makes the regular  lattice un- 
stable and deformed. 

In addition, we shall  consider a system of a la rge  
but finite number of vortices N in a rotating infinite 
superfluid liquid (the effect of the walls of the containel 
is not taken into account).') We f i r s t  replace the 
discrete vortices by a continuous velocity field and ne- 
glect the rigidity of the lattice. We have 

h 1 rotv.dZp=xN, r. -- -. 
m 

After minimization of the energy, 
v = 

E = P . J { ~ - Q ~ P V ~ I } ~ ~ P .  2 

(where p, is the density, v, is the velocity of the super-  
fluid component, 52 is  the frequency of rotation of the 
vessel)  we find in the rotating system of coordinates, 
that cur l  v, =251 in a cylinder of radius Ro = ( U N / ~ ~ Q ) ' ~ ~  
that is  coaxial with the axis of rotation, and cur l  v ,  = 0 
outside this cylinder. 

In o rde r  to take into account the effect of the faceting 
in tbe given approximation, it is  necessary to intro- 
duce on the boundary of the crystal  a displacement of 
the order  of the lattice constant b and directed normal 
to i ts  boundary (tangential displacements do not affect 
the shape of the crystal), 

6 ~ , ~ = 6 u ~  cos 110, 6un-b, (1) 

where 9 i s  the angle of rotation in the cylindrical sys-  
tem of coordinates. In the limit a s  b -  0, we have the 
following for  the destabilizing velocity field: 

rot 6vS=2Q6 (p-R,) 6u@cos n0. (2) 

In Eqs. (1) and (2), n is determined by the symmetry 
of the regular lattice, n = 6,12, 18 and so  on. Further,  
only the fundamental frequency is  taken into account. 
According to (2), cur l  bv, i s  equal to ze ro  everywhere 
except a t  the boundaries, which corresponds to the 
condition of incompressibility of the vortex crystal  
(see below). I t  follows from the condition of incompres- 
sibility of the liquid itself that divbv, also vanishes. 
The following destabilizing velocity field sat isf ies these 
conditions in the cylindrical sys tem of coordinates: 

Such a field increases the energy of the liquid by an  
amount 

6E (n,  6u0) =np.P2R02(6u0)Zln. (4) 
Attention must  be paid to the fact that the energy of 

the boundary distortion is  proportional in the two- 
dimensional ca se  not to i ts  "area" (i.e., R,), a s  in an 
ordinary crystal ,  but to the "volume" R:. This is 
due to the long-range interaction of the vortices with 
one another. 

The destabilizing velocity bv, , which determines the 
deviation from rigid-body rotation, makes the state 
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unstable. Absence of motion in the rotating sys tem of 
coordinates always corresponds to minimum energy. 
Obviously, the transition to the s ta te  with minimum 
energy will be  accompanied by a decrease in the energy 
of distortion of the cylindrical shape of the boundary 
due to displacements of the vort ices in the volume, s o  
that the elast ic  energy of the crystal  is increased. 

The hexagonal symmetry of the triangular lattice 
allows us to describe the vortex crystal  in t e rms  of a n  
isotropic solid.'' Moreover, i t  must  be taken into ac-  
count that only t ransverse  deformations can exist  in a 
vortex crystal  in the stationary state.' Longitudinal 
deformations always lead to motion with a finite f re -  
q ~ e n c y . ~ ~ '  Therefore, the theory of the elasticity of a 
vortex crystal  is obtained from the general  theory 
af te r  transition to infinite modulus of uniform compres-  
sion.'' The elast ic  energy is determined by the single 
transverse shea r  modulus G: 

, - p.xQ 
Eelast =G a,&Vp, G=p.eT - 7, 

8n 
(5) 

where c ,  is the velocity of the Tkachenko waves and u,, 
is the t ransverse  deformation tensor connected with 
the displacement u= curl# in the usual fashion. 

The potential $ = @, (e, is a unit vector along the axis 
of rotation) should the biharmonic equation AAIC, = 0. I ts  
solution, which gives the displacements the boundary 
that depend also on 9, just a s  the unrenormalized dis- 
placements (I), is  

no= (Anpn-'iBnpn+') cos n6, 

ub=- (Anpn-'+B(nf 2) pn+') sin n6. 

The constants A and B a r e  determined from the condi- 
tion that the sum of the energy 6, of distortion of the 
shape of the vortex crystal  and the energy of elast ic  
deformations be a minimum. Here we must  recognize 
that the resulting displacements on the boundary a r e  
composed of the unrenormalized displacement 6zp and 
the elast ic  displacements u,(R,, 8) .  Therefore, we must  
replace 6; in formulas (3) and (4) by the renormalized 
amplitude of the displacements 

The minimum of the expression 6 E b ,  6ii) + E ,,,,, gives 
the values of the constants: 

I t  can be verified that the vortices in the ground s ta te  
of the obtained finite vortex crystal  a r e  immobile in a 
rotating sys tem of coordinates. For  purely t ransverse  
displacements of an  infinite lattice, the velocity of the 
vort ices in the rotating system of coordinates is deter-  
mined by the 

This velocity cancels exactly the destabilizing velocity 
6v&, 6%). As a result,  we find that inside the finite 
vortex crystal  the elast ic  displacements of the si tes  of 
the regular  lattice increase like (P/R,)~, in complete 
agreement with the results  of the numerical experiment 
of Ref. 10. Such a dependence i s  valid not too close to 
the boundary of the crystal, since close to i t  we would 

need to take into account the t e rms  (P/R,)~ and subse- 
quent harmonics with n = 12,18 and s o  on. The experi- 
mental results1° provide the possibility of estimating 
6i/b. For  a vortex region consisting of 217 vortices 
this rat io is equal to 0.35 k 0.15. 

Thus, the assumption that unrenormalized displace- 
ments of the order  of the lattice constant a r i s e  on the 
boundary of the vortex crystal  is verified. F o r  the 
harmonics, that can be  considered within the f rame-  
work of the continuum theory (H << R,/b), the total 
normal displacement on the crys ta l  boundary 

a 8u" cos nft = - 8u0 cos n% 
l+a 

tends to zero ,  s ince (11 - 0 fo r  large R,. Such a behavior 
indicates a tendency of the boundary of the finite vor-  
tex crys ta l  to take the shape of a cylinder coaxial with 
the rotation axis. This agrees  with the alignment of 
vortices on the boundary of the crystal  along the c i r -  
cumference a t  equal distances from one another, a s  
observed in numerical experiments. However, the 
exact determination of the location of the vortices on 
the boundary requires a calculation of the displace- 
ment harmonics with very  high n - ~ , / b  which cannot 
be done within the framework of the continuum theory. 

'1 There i s  an irrotational region in the rotating vessel near 
the walls" and reduces their effect. In addition, metastable 
states can develop in any change in the rotational velocity 
of the vessel,  when the number of vortices formed is  less  
than equilibrium.12 In this case,  they always congregate 
around the axis of the vessel so  that their density corres- 
ponds to i ts  rotational velocity. The s ize  of the irrotational 
region increase in this case and the effect of the walls de- 
creases .  
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