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Parametric absorption and the Langmuir turbulence in a plasma with a spatially inhomogeneous density are 
studied. Quantitative criteria for the applicability of the weak-turbulence approximation in the presence of a 
density gradient, which are connected with the suppression of the aperiodic instability of the Langmuir waves, 
are obtained. The efficiency of the parametric absorption of the pump waves and the Langrnuir-turbulence 
spectrum are found in the one-dimensional approximation with allowance for the convective transfer of the 
energy of the waves from the resonance region. The process involving the transfer of the absorbed energy to 
the plasma electrons is considered, and the spectrum of the hot electrons and the energy flux transported by 
them are found. 

PACS numbers: 52.35.Ra, 52.50.Gj, 52.35.Mw, 52.25.Fi 

1. The accumulation of a large quantity of experi - 
mental data on the action of high-power electromag- 
netic radiation on a plasma requires the construction 
of a nonlinear theory of parametric interaction of 
waves in a spatially inhomogeneous plasma. Thus far,  
the theory of parametric turbulence has been developed 
in sufficiently great detail only in the approximation of 
a spatially homogeneous plasma (see Ref. 1, a s  well 
as Refs. 2-7). As applied to a plasma with an in- 
homogeneous density, the theory of parametric turbu- 
lence i s  confined to either numerical computer cal- 
culations8 (in the limit of high radiation energy fluxes), 

ma with inhomogeneous density. The conditions of ap- 
plicability of the weak-turbulence approach to an in- 
homogeneous plasma a r e  obtained in Secs. 3 and 4 of 
the paper. In Sec. 5 we consider the question of the 
efficiency of the parametric conversion of the heating 
electromagnetic radiation into plasma waves, and de- 
termine the instability -saturation level. The princi- 
pal characteristics of the Langmuir-turbulence spec- 
trum in a plasma with a nonuniform density a r e  ob- 
tained in Sec. 6. The Cherenkov acceleration and 
heating of the electrons in a parametrically turbulent 
inhomogeneous plasma are  investigated in Sec. 7. 

o r  attempts, based on intuitive reasons, to apply the 
results of the theory of homogeneous-plasma turbu- 2 .  We shall consider a laminarly inhomogeneous 

plasma in which the density depends on the coordinate 
lence. x, but the temperature i s  constant. A pumping wave 

The qualitative peculiarity of the turbulent state in a 
spatially inhomogeneous plasma i s  due primarily to the 
joint action of two factors: the nonlinear interaction of 
the waves, which occurs also in a spatially homogen- 
eous plasma, and the convective transport of the waves 
between plasma layers with different densities. In the 
present paper we take these two effects into account 
together for the first  time, and formulate the bases of 
a nonlinear theory of convective parametric instabili- 
ties in a spatially inhomogeneous plasma. 

The entire discussion is based on the weak-turbu- 
lence approximation, since i t  can be asserted on the 
basis of the content of the present paper that recourse 
to the concept of strong turbulence i s  not necessary for 
a broad range of recent experiments on the action of 
laser  and high-frequency radiations on a plasma. This 
is due first  and foremost to the proposition, established 
in the present paper, that the aperiodic parametric 
instability of the Langmuir waves in a plasma with an 
inhomogeneous density can be so  strongly suppressed 
that the highly turbulent state does not occur. It is 
precisely because of this that, a s  shown below, the 

propagating in such a plasma excites parametric in- 
stabilities that turn out in a number of cases to be 
convective (see, for example, Refs. 10-12). We shall, 
without specifying the parametric instability com- 
pletely, assume that there is in the plasma a region of 
dimension L, (comparable to the density -inhomogeneity 
scale L )  where the conditions for parametric reso- 
nance a r e  fulfilled. There occurs a t  each point x of 
this region an exponential amplification of the Langmuir 
waves with frequency w,(x) [amplification factor u(x)]. 

We shall assume that the plasma is not isothermal 
(i.e., that T, >>T,), and consider the decay interaction 
of the Langmuir ( 1 )  and ion-sound (s)  waves to be the 
mechanism underlying the nonlinear saturation of the 
instability. (It i s  shown in Ref. 2 that this nonlinear 
process is the dominant process under the conditions 
in question.) The statistical theory of plasma turbu- 
lence is based on the kinetic equations for the Lang- 
muir and ion-sound wave numbers N:(w,k , ,  x) and 
N : ( w ,  k,, x).  These equations have the following form: 

a a 
- N L a ( o ,  k , ,x)+avl . -NIm=-2y ,"(o ,  k,, x ) N l w ( o ,  k , , x )  
at ax 

weak-turbulence approximation corresponds to the n oL,Z do' dk,' d o N  kk' 
conditions that a r e  of practical interest in connection +-- a n*Tn o,m,, zmj zdk~ ' ro"  ( z) { 6 ( o f - o - o " )  

with experiments on the action of moderate laser -ra- X 6 (k,'-k,-k,") 6 (a'k,,'-ak,,-auk,/) [ N , " ( o ,  k,, z) N,"' ( a ' ,  k,', x) 
diation fluxes on a plasma. In Secs. 2 and 3 we for - 
mulate the basic equations for the nonlinear interac- -N:" ( o n ,  k , " , ~ )  (N,"(o,k,,~)-N,"'(or,k,',x))] 

tion of the Langmuir and ion-acoustic waves in a plas- -6 (M-w'-w") 6 (k,-k,'-k,") 6 (ski,-o'k,,'-~"k,/) 
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X [ N l o ( o ,  k,, x)Nlo' ( o r ,  k,', x )  -N:" ( o n ,  kL1', x )  (Nlar  (a '  kLt,  x )  (1) 

- N ~ " ( ~ k l , t ) ) l } ,  
a a - N,"(o ,  k,, I )  +uu,,- N.'=-2ySo(o, k , ) N / ( o ,  k ~ ,  2 )  

at  a x  

X 6 ( o - o ' + o M )  6 (k,-k,'+kl")6 (uk.,-u'k,,'-~"k,?) 

X [Nlu' ( o ' ,  k,', x )  N,"" (o", k,", x )  + N S o ( o ,  k,, X )  

X (Nlo' ( a ' ,  k,', x )  -Nt0"(o", k,", x )  ) ] . 

Here the superscript o (= * 1) distinguishes the waves 
propagating in the direction of decrease ( o = i  1) and 
the direction of increase (o= -1) of the plasma density, 
the frequencies of the interacting waves a r e  assumed 
to be positive, ne and Te a re  the density and tempera- 
ture of the electrons, y i  is the damping rate of the ion- 
acoustic waves, and y: is the damping rate of .the Lang- 
muir waves. In the wave -generation region fl< 0. 
The equations (1) a re  similar to the equations of non - 
linear interaction of waves in a spatially homogeneous 

with the difference, however, that the 
wave frequency w has been introduced in place of the 
wave number k, a s  an argument in the functions N, k, 
being connected with w, a, and x by the eikonal equa- 
tion k,=k,(w, k,, x). For the Langmuir waves 

where u,, i s  the thermal velocity of the electrons and 
w,,(x) i s  the electron Langmuir frequency, while for 
the acoustic waves k, = ks,= [(w/u,)' - kt]'/2 (where u, 
= uTewri/wLe i s  the velocity of sound) does not depend 
on the coordinate. In the equations (1) the numbers N 
of quanta a re  normalized in such a way that the average 
electric field intensity E of the waves is given by the 
expression 

the group velocity of the waves along the inhomogeneity 
axis x being connected with k, by the relation u, 
= [ak,(w, k,, x)/awIq. The integration in the formula 
(3) is over the high-frequency region w 2 w,(x) in the 
computation of E ,  and over the low-frequency region 
0 < w < w,,(x) (where w,, i s  the ion-plasma frequency) 
in the computation of Es . 

3 .  To reveal the qualitative effects due to the spatial 
inhomogeneity of the plasma, we shall consider the 
one-dimensional turbulence case, in which the spectra 
of the Langmuir and ion-acoustic oscillations a re  con- 
centrated in the region of small k, values. Such a 
situation can be realized, for example, under condi- 
tions when the primary-instability growth rate has a 
maximum along the inhomogeneity direction. Formal- 
ly, the assumption that the turbulence spectra a re  
one-dimensional can be written in the form Nu(w, k,,x) 
= (2n)26(k,)Nu(~,x), which allows to perform the inte- 
gration on the right-hand sides of the equations (1) and 
write them for the steady state in the following form: 

a 
O U I  ((0, X )  -NIo (o ,  x )= -2r ra (u ,  x ) N I " ( ~ ,  5 )  

a x  
+ r [ P - " ( o + k l v , ,  x) -Pn(o-klu . ,  X )  1, 

a (4 
o u . - N a a ( o , x ) = - 2 y / ( w ,  x)N."(o ,  X )  +rP"(ol ( a ,  x ) ,  x ) .  

a x  

Here I' = W;,W,, /24neTevTe is the nonlinear -wave - 
interaction constant, k,(w,x) is given by the formula 
(2) with k, = 0, 

and the function Pu(w,x) i s  given by the relation 

P ( w ,  x)=Nl0 (o+k l (o ,  x )u , ,  ~ ) N ~ - " ( o - k ~ ( o ,  x)v , ,  X )  

+Ng0(2kl (o ,  X )  u,, x )  [N lm(o+k1  ( o ,  x )  us, x )  

-N , -" (o -kr (o ,  x )  u., x ) ]  

and i s  the energy flux of the Langmuir waves with 
frequency -w over the spectrum [i.e., along the f re-  
quency (w) axis in Fig. 11. 

To simplify the system (4), let us make a change of 
variable by introducing in place of the coordinate x the 
new variable 52 = 2k,(w, x)v,, which i s  equal to the f re-  
quency of the acoustic wave generated in the decay of 
the Langmuir wave of frequency w a t  the point x. Fur- 
thermore, assuming that the inhomogeneity scale 
L = - 1  a ln w;,(x)/~x]-' > 0 i s  a constant quantity, we go 
over to the dimensionless functions 

p ( o ,  8 )  = ( 2 ~ L I u I ) N ~ ' ( o ,  x ) ,  so (@,  Q) =(2rL lu . )NSn(2k i (o ,  2 )  0 6 ,  I ) ,  

P O ( @ ,  8 )  = ( ~ ~ L ~ v , ) ~ P ~ ( o ,  X I .  

Taking into account the fact that w,, << k,uTe << w,,, we 
obtain the following system of equations: 

9 )  
-00 - - --2hSa(w, 8 ) s o + p " ( o ,  Q ) ,  

ao 

where 

and the A: = 2Ly:/us: A: = 2Ly:/u, a r e  the dimension- 
less  damping constants for the waves. 

The system of equations (5) and (6) should be sup- 

FIG. 1. Direction of propagation of f ree  Langmuir and acous- 
t ic waves. The dashed straight line indicates the boundary of 
the region of Cherenkov absorption of the Langmuir waves. 
The hatched band is the region of parametric amplification of 
the waves. 
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plemented by boundary conditions describing the gen- 
eration, reflection, and damping of the interacting 
waves. Without allowance for the nonlinear interac - 
tion, the function 1+ describes the Langmuir waves 
traveling in the direction of increase of 51 in the (w, 52) 
plane, while the function 1- describes the waves t r a -  
veling in the opposite direction (see Fig. 1). The 
acoustic perturbations propagate along the w axis; the 
function s' describes the waves traveling in the direc- 
tion of decrease of the frequency w, while the function 
s' describes the waves traveling in the opposite d i rec-  
tion. 

The 51 = 0 line (the ordinate axis)  i s  the turning line 
for the Langmuir oscillations. If we neglect the non- 
linear interaction of the Langmuir waves near their 
turning line, then we should require the equality of 
the number of quanta arriving at, and the number of 
quanta departing from, the 51 = 0 line: 

The condition (7) has been written under the assump- 
tion that the system i s  f ree  from the aperiodic para- 
metric instability of the Langmuir waves. This, gen- 
erally speaking, l imits the applicability of the relation 
(7) to low turbulence levels. Indeed, the excitation of 
the aperiodic instability of the Langmuir waves is pos- 
sible in the case in which W,/n,T, > ( ~ , , 6 k ) ~  (Ref. 14), 
o r  in the case in which W,/n,T, > (Y, , /L)~/~ (Ref. 15),  
where W, is the energy density of the Langmuir oscil- 
lations, 6k is the spectral width, and rD, =v,,/w,,. 
In our one-dimensional model W, - wz,6kN, /2s, and 

where 6w is the frequency width of the turbulence spec- 
trum. Therefore, the neglect of the aperiodic insta- 
bility is justified when 

o r  when I(w, 0) S ( ~ W / W ~ , ) ' ~ ~ L / Y ~ , .  Below we shall 
show that this inequality is fulfilled under the practical- 
ly interesting conditions. 

At sufficiently high 51 > 51, = 2k,(w)u, (k, i s  the highest 
wave number for which the Cherenkov absorption of the 
Langmuir waves is still weak), the generation of the 
waves is impossible because of the presence of strong 
Landau damping. Therefore, the amplitudes of the 
Langmuir waves coming from the high-51 region should 
be small: 

The boundary conditions for the acoustic waves can be 
formulated in similar fashion. The turbulence region 
is bounded along the w axis (w -wo, the frequency of 
the pumping wave). Therefore, i t  i s  necessary to r e -  
quire that the amplitudes of the acoustic waves going 
into the turbulence region be small, i.e., that 

The Langmuir -wave generation occurs in the neigh- 
borhood of the decay line w = w,(51), where the damping 
constant A, is negative. Since the decay processes 
lead to the decrease of the frequencies of the interacting 
waves, i t  i s  clear that the turbulence region should lie 
in the region w < ~ ~ ( 5 1 ) ;  a t  the same time, the convective 
transport of the waves can, generally speaking, lead to 
some broadening of the turbulence spectrum toward the 
high-frequency region. 

4. Let us, tobegin with, consider the problem of the 
parametric instability of a Langmuir -wave packet with 
a prescribed energy flux density q and a spectral width 
A w. Let this packet propagate in the direction of in- 
crease  of the plasma density, and be completely ab- 
sorbed a t  the point 51 = 0. The assumption about the 
prescribed pump field corresponds to the requirement 
that the distribution function for the waves in the packet 
1-(w, 51)=lof ([w - w,] /~w) ,  where f(x) - ~ ( J c d x f ( x ) =  1) 
describes the shape of the packet and lo=4nrLq/  
v,woA w is the dimensionless energy flux density for 
the waves in the packet, be C2 independent. 

It follows from (5) and (61, when the nonlinear inter- 
action of the generated secondary Langmuir waves is 
neglected, that 'the intensity of the parametrically ex- 
cited 1' and s -  oscillations depends virtually on the 
variable .q = (w + 52 - w,)/A w alone. Taking this fact 
into account, we find that 

Consequently, the functions I+ and s- a r e  finite for 
all 7, i.e ., the parametric instability of the Langmuir- 
wave packet is convective, and the amplification factor 

coincides up to a constant factor with the corresponding 
expression obtained in the theory of the convective 
parametric instability (1 - 1 + s )  of a monochromatic 
Langmuir pumping wave. lo* l' At the same time, the 
spatial increment growth rate 

of the perturbations differs from the corresponding 
expression <,, in the case of a monochromatic pump: 

(here y,, i s  the increment of the ion-acoustic decay in- 
stability in a homogeneous plasma). The condition 
< [,, imposes a limitation on the spectral width of 
the pumping wave in which the weak turbulence theory 
i s  applicable, namely, 

where v, = (2qwo/3k,n,~,)112 i s  the oscillator velocity 
of the electrons in the pump field. For A w < A w,,, 
the pumping wave should be treated a s  a monochroma- 
tic wave. 
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The physical meaning of the inequality (14) consists 
in the fact that the quantity Aw,,, is the spectral width 
of the amplification band for a monochromatic pumping 
wave. The fulfillment of (14) leads the the broadening 
of the spectral width of the amplification band and, 
consequently, the decrease of the spatial increment. 

The amplification factor (11) was derived from above 
conditions of total neglect W the sound attenuation, i.e., 
under the assumption that y, << (A w/w)rN,. Allowance 
for the attenuation does not lead to a change in the 
relations (11) and (12) provided A w > y,. 

5. Let us now consider the question of the saturation 
level of the Langmuir turbulence excited in the plasma 
by some convective instability characterized by the 
spatial increment (0,, the spectral width A wo(x) of the 
instability band, and the excited-Langmuir-wave f re-  
quency w,(x). Here we shall assume that the quantity 
A wo is small compared to the nonlinear -transfer step 
i2=2k1(w,x)v,. The Eq. (5) inside the excitation region 
can be simplified if we take into account the fact that 
the energy transfer is accompanied by a decrease in 
the frequency, and therefore there is no flow of energy 
into the excitation region from the region of higher 
frequencies [i.e., p(w, + 0/2, 51) = 01. Furthermore, 
we shall consider the case of strong ion-acoustic 
wave attenuation, in which case the contribution of the 
acoustic waves in the expression for the energy flux 
across the spectrum can be neglected. Then Eq. (5) 
assumes the form 

a zoo - I"(0, 8) =2ho0l"(o, 8) -l"(o, 8) 1-"(0-8, 8) , 
dB 

(15) 

where A0, = 2L50,v1 /us is the dimensionless spatial in- 
crement. 

When the nonlinear interaction is neglected, Eq. (15) 
predicts the exponential growth of the number of plas- 
mons with amplification factor xi =(A W,/W)A~,. The 
last term on the right-hand side of (15) can be neglected 
when N, exp << [:v,/r, or  when x, <ln([,v,/rN,), 
where N, is the thermal fluctuation level of the Lang- 
muir waves a t  the point of entry into the amplification 
region. This condition establishes the possibility of 
using the linear theory of convective wave amplication 
in an inhomogeneous plasma. In the opposite case of 
large increments, the growth of the waves is termi- 
nated by the nonlinear interaction a t  the level 

o r  NT =25:v1/r. This estimate differs from the result 
of the theory of the homogeneous plasma7 in that i t  
contains Sou, instead yo, the increment of the primary 
instability. The region of applicability of the formula 
(16) is also different in our case. Let us demonstrate 
this in the particular case of the ion-acoustic decay 
instability. 

According to the condition (14), 5, should satisfy the 
inequality 5, s A w,/v,. In the case of the parametric 
instabilities the spectral width of the amplification band 
i s  proportional to the spatial increment A w, = to(aA kx/ 

aw)", where Ak,(x, w) is the detuning of the wave 
numbers of the interacting waves. The use of this 
relation yields the relation 

For the ion-acoustic parametric instability aAk Jaw 
=vil. Consequently, the turbulence theory is suitable 
only for the estimation of the saturation level of this 
instability inside the amplification band, i t  being 
suitable to the same extent a s  the theory that treats the 
secondary Langmuir waves as monochromatic waves. 
For  this reason, the formula (16) for the ion-acoustic 
instability coincides up to a numerical factor with the 
result obtained in Ref. 9, in which the nonlinear - 
saturation level is estimated in the course of the de- 
scription of the process of energy transfer across the 
spectrum in the quasimonochromatic satellite approxi- 
mation (i.e., with the use for the secondary -instability 
increment of an expression corresponding to a mono- 
chromatic pumping wave). 

Indeed, the power Q(x) dissipated in the plasma by 
the instability -excitation source a t  a given point x i s  
given by the integral over the wave-excitation region 
of the product of the spectral energy density of the 
Langmuir waves and the instability increment: 

In the case of the ion-acoustic instability, whose spatial 
growth rate is given by the relation (13), we obtain for 
the effective collision rate the expression 

which was obtained by us in an earlier paperg by another 
method. The assumption that the amplification band i s  
narrow compared to the energy-transfer step (i.e., that 
A wo <k,v,) limits the region of applicability of the 
formula (18) through the condition v,/v,, <k,r , , .  

The formula (18) is also inapplicable i n  relatively 
weak pump fields, in which the amplification length 5;' 
turns out to be greater than the acoustic-wave-attenua - 
tion distance v,/y,. In this case y,, < y,(~,/v,) ' /~,  and, 
as is well k n ~ w n , ' ~  the formula for 5, is no longer 
valid, and should be replaced by another: So=  y~,/y,v,, 
which takes into account the sound attenuation inside 
the amplification band. The use of this relation leads 
to the following expression for v,,,: 

which coincides with the result obtained in the theory 
of the homogeneous plasma.' But the formula (19) is 
valid not for y,, < y,, a s  is the case in the homogeneous 
plasma: bur in the broader pump field amplitude r e -  
gion where y,, < ~ , ( v , / v ~ ) ~ ' ~ .  This means that, for y,, 

> y,, the absorption is stronger in the inhomogeneous- 
plasma model than in the homogeneous case. 

A different situation obtains in the case of the two- 
stream instability, for which aAk,/aw -v;' and, con- 
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sequently, the condition (17) i s  strictly fulfilled. Here 
the quasimonochromatic approximation used in Ref. 9 
to describe the secondary decays i s  no longer applica- 
ble, and from (16) we have for v,,, the estimate 

(y,,= $kouE i s  the increment of the two-stream insta- 
bility and k o = 3 1 / 2 ~ o / 2 ~  is the wave number of the 
pumping wave), which coincides with the result of the 
theory of the homogeneous plasma. Let us emphasize 
that the assumption that the amplification band i s  nar- 
row compared to the energy -transfer step limits the 
region of applicability of the above-given formula for 
v,,, through the condition y,, > k,u,. 

The quantity v,, can similarly be estimated for other 
instabilities, parametric o r  other. 

6. The pump ,field energy transferred to the Lang- 
muir waves in the parametric-interaction region i s  
subsequently redistributed among other Langmuir and 
ion-acoustic waves. The combined influence of the 
nonlinear transfer over the spectrum a s  a result of the 
decay interaction and the convective transport of the 
wave energy along the inhomogeneity direction leads 
to the formation of a quasistationary turbulence spec- 
trum. 

Let us, to begin with, consider the case of strong 
acoustic-wave attenuation, when we can obtain the 
expression for the turbulence spectrum in i ts  explicit 
form. Neglecting the convection of sound and i ts  ef-  
fect on the flow of energy over the spectrum, we find 
from Eqs. (5) and (6) that16 

zooala(o,  s2)ias2=lG(o, Q ) [ ~ - ~ ( W + Q ,  Q ) - L - " ( ~ - R ,  P )  I ,  
(20) 

2k,s0(o, P)=l"(o+P/2, R) l -"(a-G/2,  P ) .  

Since under conditions of nonlinear saturation of the 
instability the width of the turbulence spectrum i s  a t  
least greater than the transfer step (i.e., 6w r a), the 
right-hand side of the first  equation in (20) can be 
written in the differential approximation l(w + 51) - l(w 
-a)  =2Qal(w)/aw. Then the system of two differential 
equations for the functions lo reduces to a single equa- 
tion for the function $(y,z)=l+(w, O)l-(w,a): 

The solutions to this equation that a r e  of interest to us 
should satisfy the boundary conditions (7) and (9). 
Furthermore, the intensities of the waves l*(w,, 0) a r e  
prescribed a t  the boundary of the amplification band 
a t  w=wd. 

The particular solution for $ satisfying the conditions 
(7) and (9) can be found by separating the variables. 
Then we have for 1' 

where the constant w,,, is the lower edge of the turbu- 
lence spectrum, while 51, determines the noise-varia- 

tion scale along the 62 axis. The prescription of the 
turbulence spectrum Z"(od, 51) a t  the boundary of the 
amplification region fully determines the turbulence 
spectrum in the region (w,, wm ), a s  well a s  the energy 
flux transported by the Langmuir waves from the 
parametric-absorption region into the Cherenkov- 
damping region: 

The obtained solution (21) is realized in the case 
in which the increment of the primary instability (or, 
more exactly, in which the spectrum a t  w = wd) is 
specially chosen, and is, from this standpoint, of 
limited interest. At the same time, the characteris- 
tics of this solution a re  typical of other increments 5, 
that a re  closer to reality. In the first  place, the 
quasistationary spectrum of the Langmuir turbulence 
preserves the energy flux.  In the second plane, the 
characteristic value of the turbulence level Z+(w, 51) 
depends weakly on the coordinate 51, and has the same 
order of magnitude both in the excitation region and in 
the neighborhood of the reversal  line for the Langmuir 
waves and near the Cherenkov -absorption region for 
these waves. 

These circumstances allow us to estimate the spec- 
tral  width 6w = wd - w, of the Langmuir turbulence even 
in the case in which an explicit solution to the equations 
(20) cannot be constructed. Indeed, on account of the 
above characteristics of the turbulence, the energy 
flux q ,  = (l/2a)w0bwN, transported by the Langmuir 
waves into the Cherenkov-absorption region is equal to 
the energy flux absorbed in the excitation region: 

Then, using the fact that N, depends weakly on the 
coordinate O, we obtain 

80=AoogoL,<oo. 

Consequently, the spectral width of the Langmuir tur- 
bulence i s  proportional to the spectral width A w, of 
the amplification band, the coefficient of proportionality 
(which i s  much greater than unity) being the ratio of 
the width L, = 3(kmyD,)'~ of the entire parametric reso- 
nance region [see (9)] to the parametric amplification 
length 5;'. 

In the case, considered here, of strong acoustic- 
wave attentuation [i.e., when ~ , ( a ~ k , / a w ) ' ~  < y,] the 
amplification band width is of the order of the sound- 
damping constant, i.e., A w, =y,, and therefore bw is 
proportional to the increment of the instability. In the 
case of a more intense pumping, A w,= <,, and there- 
fore 6w i s  proportional to the square of the increment. 

The region of applicability of the formula (22) i s  
limited by the requirement that the parametric turbu- 
lence region be free from the secondary aperiodic in- 
stability, i.e., the requirement that the L angmuir- 
noise level be low in the long-wave region, where such 
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aperiodic instability is possible. Recognizing that i t  
follows from the particular solution (21) that the tur- 
bulence level near the reversal line for the Langmuir 
waves is of the same order as in the amplification r e -  
gion, we can rewrite with the aid of (16) the condition 
(8) for the absence of aperiodic instability in the form 
of a limitation on the growth rate of the primary insta- 
bility: 

The presence of the inhomogeneity scale in (23) im- 
plies that an increase in L broadens the region of ap- 
plicability of the weak-turbulence theory. The limita- 
tion on L from above is given by the inequality (221, 
and is due to the requirement that the turbulence spec- 
trum be narrow. In the limit of the homogeneous plas- 
ma (i.e., for L - m), the applicability of the theory is 
due to the allowance for the collision-induced attenua- 
tion of the Langmuir waves. The spectral width of the 
turbulence in this case is given by the relation7 6w 
=kmvsyo/v,,, where v,, is the electron-ion collision 
rate. A comparison of this formula with (22) with a l -  
lowance for the substitution yO--(,v, allows us to give 
the condition for the negligibility of the collisions in 
an inhomogeneous plasma: v,,/v,, > L,A wo/w,, . It 
corresponds to the requirement that the dimension of 
the region of parametric amplification of the waves be 
small compared to the electron mean free path. 

7. The transport of the energy of the Langmuir os-  
cillations into rarefied layers of the plasma is accom- 
panied by a decrease in the phase velocity of the oscil- 
lations, and thereby leads to an increase in the Cheren- 
kov damping of them. The energy of the Langmuir os- 
cillations i s  then transferred to the electrons. This 
raises the question of the electron distribution function 
that results from the Cherenkov absorption of the 
waves. 

We consider below the Cherenkov heating of the elec- 
trons within the framework of the quasilinear approxi - 
mation. " Under the conditions of the one -dimensional 
inhomogeneity, when only the x component of the wave 
vector varies a s  a result of the wave departure, i t  is 
sufficient to use the one -dimensional quasilinear equa- 
tion, which we write in the following form (cf., for 
example, Ref. 17): 

where f o  i s  the distribution function of the electrons, c 
is their energy, o (= 1) i s  the sign of the electron- 
velocity component along the inhomogeneity direction, 
DO = 2neZw,,Nf(wR(~ ,x),x) is the diffusion coefficient, 
w, ( c ,  X )  = wL,(x)(l + 3T,/4~) is the frequency of the 
Langmuir wave resonantly interacting with the electron 
with energy c at the point x. 

If the spectrum of the Langmuir waves lies in the 
interval (w,, w, - 6w), then the quasilinear -interaction 
region in the (E ,x )  plane i s  a band bounded by the 
lines El(%) =$ T,L(x -xlY1 and E,(x) = $T,L(x -x2)" 

FIG. 2. Region of quasilinear diffusion. 

(see Fig. 21, where the points x, and x, a re  the r e -  
versal  points for the Langmuir waves of frequencies 
w, and wl - 6w respectively. 

Equation (24) has the character of the diffusion equa- 
tion, and consequently leads to the formation of a 
plateau in the distribution function in the case of a suf- 
ficiently large dimension of the diffusion region. 
Therefore, under the conditions of strong diffusion, 
i.e ., for D6x >> ( 6 ~ ) ~ ,  where 6x and 68 a re  the dimen- 
sions of the diffusion region in the neighborhood of the 
given point x (see Fig. 2), we can approximate the 
function f o  inside the interval ( E ~ ,  E ~ )  by a constant. 
Then it  is not difficult to verify that the distribution of 
the electrons flying out of the plasma should have the 
form depicted in Fig. 3. The dashed curve is the plot 
of the electron distribution function f ;(E) for x <xl .  
We shall, for definiteness, assume this to be a Max- 
wellian distribution with temperature T,. Beyond the 
diffusion region, i.e., in the region E > c,(x), the elec- 
tron distribution function f ' , ( ~ )  differs from the Max- 
wellian distribution, since i t  describes particles that 
have already interacted with the waves. 

To find the distribution function f i ,  i t  is sufficient to 
use the electron-flux conservation law [which follows 
from (24)) - 

r=rn.-' j d e p ( e ,  x) =const. 
0 

Differentiating this relation with respect to x, we ob- 
tain the following equation for the determination off ',: 

where 6~ = E2(x) - cl(x) = $ (~W/W,,)C~/T,. Let us note 
that this equation has been obtained in the strong-dif- 

FIG. 3. Shape of the distribution function f + (E, x )  under 
conditions of intense diffusion. 
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fusion limit, i.e., for D ~ x > > ( ~ E ) ' ,  which, according to 
(16) and (22), imposes a definite limitation on the en- 
ergy of the accelerated electrons: 

e<e,,= ( o ~ . / ~ ~ v . )  "T.. (26) 

The quantity E,, is the maximum energy of the hot 
electrons, and does not, for the typical parameters 
realized in a laser  plasma, exceed (20-30)Te. It i s  
natural to require that f ;(E,,,) =f *,(E,,). Then the 
solution to Eq. (25) can be represented in the form 

de" 
X."P (- Im) +fo+(e."d 

From this it can be seen that a significant difference 
between f and f ar ises  in the case in which the width 
of the diffusion region 6~ > T,. Such a situation i s  
realized a t  electron energies E 2 T ~ ( W ~ / ~ W ) ' ~ ~ .  

The relations obtained for the distribution function 
allow us to find the relation for the variation of the en 
ergy flux of the Langmuir waves a s  a result of the 
Cherenkov absorption of them. The total energy flux 
of the Langmuir waves and the electrons is conserved 
in the course of the quasilinear interaction, i.e., - 

q,+ (z) +me-' d s e  f +  ( e )  = const. 
(I 

Differentiating this relation with respect to the coordi- 
nate x ,  and using the explicit form of the function f',, 
we find the law governing the decrease of the energy 
of the Langmuir oscillations a s  a result of the Cheren- 
kov absorption: 

In contrast to the linear Landau damping, the rate of 
decrease of the energy flux does not, according to (26), 
depend on the magnitude of the flux itself, and i s  deter-  
mined only by the number of resonant particles. The 
relation obtained provides an estimate for the minimum 
energy of the accelerated electrons for a given Lang- 
muir-wave energy flux q,: 

s,,,,=Te In =To In ( o ~ i / E o ~ r e ) .  (28) 

Here for q ,  we have used the expression 

which i s  derived in Sec. 5, and which relates the in- 
crement of the primary instability with the energy of 
the pumping wave in the instability excitation region. 

Within the limits of applicability of the quasilinear 
theory, the quantity under the logarithm sign in (28) is 
always greater than unity. This means that the entire 
energy absorbed in the plasma is transferred to the 
epithermal electrons. 

8. The foregoing analysis allowed us to estimate the 
fraction of the heating-radiation energy that can be 
absorbed in an inhomogeneous plasma a s  a result of 
the excitation of parametric instabilities, and to follow 
how this energy i s  transferred to the plasma particles. 
The redistribution of the absorbed energy in the plasma 
occurs in several stages. 

First ,  the nonlinear interaction of the parametrically 
excited waves leads to the formation in the plasma of a 
spectrum of Langmuir turbulence that ensures the 
transfer of the absorbed energy across the spectrum 
and in space, so  that short-wave Langmuir energy 
equal to the absorbed energy flows toward the region of 
lower densities. Secondly, the Cherenkov interaction 
of the short-wave Langmuir waves with the electrons 
leads to their attenuation and the formation of a "tail" 
of accelerated electrons. 

The estimates obtained in the homogeneous-plasma 
model for the pumping-wave energy parametrically 
absorbed in the plasma retain their values in the case 
of convective instabilities in an inhomogeneous plasma 
if the instability growth rate yo is replaced by the 
product of the spatial growth rate 5 ,  and the group 
velocity of the ~ a n ~ m u i r  wave. 

It i s  also important to note the broader region of 
applicability of the theory of weak turbulence in a 
spatially inhomogeneous plasma. Thus, if the theory 
of weak turbulence in a collisionless homogeneous 
plasma does not, strictly speaking, have a region of 
applicability at al l  (the nonlinear evolution of any per- 
turbation leads to the formation of a Langmuir conden- 
sate),  in an inhomogeneous plasma the convective 
transport of the energy of the Langmuir waves into 
the Cherenkov-absorption region guarantees the ab- 
sence of aperiodic instability even under conditions of 
fairly intense pumping. Thus, the formulas obtained 
above for the ion-acoustic parametric instability a re  
valid if the condition L/rDe > (m,/me)312, which follows 
from the relation (23), is fulfilled. A similar condi- 
tion obtains for the two-stream parametric instabili- 
ty: L/rDe > m,/me. 

The significant broadening of the conditions of ap- 
plicability of the theory of weak turbulence in an in- 
homogeneous plasma leads to a qualitative broadening 
of the range of real  plasma-physics problems to which 
the results of such a theory can be applied. 

')A similar problem in the case of the convective saturation 
of the two-stream instability is  considered in Ref. 18. 
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