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The electrical conductivity of a quasi-one-dimensional Peierls conductor with a charge density wave (CDW) 
whose wavelength is commensurable with the original lattice constant is studied theoretically. It is assumed in 
the model considered that the Fenni surface consists of two slightly curved planes, and that the order 
parameter A = [ A  IF is a continuous function of the coordinates. An expression is obtained for the current 
on the basis of the microscopic theory, and an equation is derived for the phase x with allowance for the 
pinning of the commensurable CDW. It is shown that the state with the coordinate-independent phase x is 
the energetially advantageous state. The conductivity of the conductor is investigated in detail in this case; it 
is shown that phenomena similar to the Josephson effect occur in the sample: in electric fields E weaker than 
the threshold field E,  the contribution to the conductivity u is made by the quasiparticles, while the CDW is 
slowed down; for E > E,  the motion of the CDW leads to an increase in u and to the generation of an 
alternating current with frequency connected with E. Also investigated are the inhomogeneous solutions for 
~ ( x ) :  chains of solitons and antisolitons. In the model considered the soliton is neutral, but it contributes to 
the current when it moves. The mobility of the solitons and their contribution to the conductivity are 
computed. 

PACS numbers: 72.10.Bg 

1. INTRODUCTION 

Experimental investigations carried out recentlyi* 
have confirmed the theoretical  prediction^^-^ that the 
charge density wave (CDW) produced during the Peierls  
transition in a quasi-one-dimensional crystal  contrib- 
utes to  the conductivity of such a crystal. One of the 
proofs of this is the fact that the conductivity a, of the 
crystal is a constant in fields of intensities E lower 
than some threshold value Eo, but increases with the 
field when E > Eo, attaining a value o, > at.  This be- 
havior of the conductivity is interpreted a s  follows. In 
fields E < E, the conductivity is due to the quasiparti- 
cles, the CDW being prevented from moving by i ts  pin- 
ning, which is due to the interaction with the impurities 
in the case of an incommensurable CDW o r  the com- 
mensurability effects in the case of a commensurable 
CDW. If the field E i s  higher than the threshold field 
Eo, then the CDW begins to  move and contributes to  the 
conductivity of the sample. The motion of the CDW is 
accompanied by nonstationary effects. Thus, the fol- 
lowing effects have been observed in NbSe,, which pos- 
sesses  a nonlinear current-voltage characteristic (CVC) 
due to an incommensurable C D W ~ ~ :  noise generation 
with several isolated frequencies in the nonlinearity re- 
gion of the C V C ~ *  and the appearance of singularities 
on the CVC upon the application of an alternating field 
El sin w t  to the sample.' A nonlinear CVC has been ob- 
served also in TaS,, in which the CDW period is four 
t imes longer than the parent-lattice constant8 (Q =7r/4a, 
where Q is the wave vector of the CDW and a is the 
parent-lattice constant in the direction of the filaments). 

The theoretical analysis of the Frijhlich mechanism 
for the conductivity of quasi-one-dimensional conduct- 
ors  with allowance for the pinning of the CDW has been 
performed largely with the use of the phenomenological 
approach. This approach has been used to estimate the 
CDW-breakaway threshold field Eo (Refs. 9 and 10) and 

to compute the contribution, due to  the CDW fluctua- 
tions, t o  the c o n d u c t i ~ i t ~ . ~ ' " ~  Guyer and ~ i l l e r ' l  have 
investigated uniform fluctuational CDW displacements, 
while Rice et ~ 1 . ' ~  have analyzed the nonuniform fluctua- 
tional distortions of the commensurable CDW-the 
phase solitons, i.e., the local nonlinear distortions of 
the CDW phase. In those papers in which the conduc- 
tivity of a conductor with a CDW is computed on the 
basis of the microscopic theory,'g14 the effects of the 
pinning of the CDW are  neglected. 

In the present paper we generalize the microscopic 
equations obtained in our previous paperi4 by taking in- 
to account the effects of the pinning of the commensur- 
able CDW, i.e., we consider the case in which the wave 
vector Q of the CDW and the reciprocal lattice vector 
a re  commensurable. The equations used are  valid pro- 
vided we can neglect the one-dimensional fluctuations 
and the localization effects (due, for example, to  the 
influence of the three-dimensionality). We shall derive 
an equation for the CDW phase x on the basis of the 
equations of the microscopic theory. 

This equation describes, in particular, the slipping 
of the CDW a s  a whole when E > Eo [the phase x depends 
only on the time: x=x(t)]. The motion of the CDW is 
not uniform in this case: in the motion with average 
velocity 

the CDW executes oscillations with frequency w equal 
in order of magnitude to  

where 1 =VT  is the mean free path. The current com- 
ponent due to  the CDW undergoes the same oscillations. 
The differential equation (which i s  of f irst  order in the 
time) for x in this case has exactly the same form a s  
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the equation of the resistance model of the Josephson 
junction for the phase difference (see, for example, 
Ref. 15). Therefore, there occur in a conductor with a 
CDW effects similar to the nonstationary Josephson ef- 
fects that occur in superconducting contacts." 

The equation for the phase x has, besides homogen- 
eous solutions, inhomogeneous solutions: x =x&, t). 
Some of these solutions are  solitons ( a d a x  > 0) and 
antisolitons ( a d a x  < 0). Phase solitons in conductors 
with commensurable CDW were proposed by Rice et 
a1.I2 They concluded that solitons and antisolitons 
could be treated a s  oppositely charged quasiparticles 
that should be created in pairs on account of the elec- 
tr ical  neutrality of the system. Such quasiparticles 
contribute to the current. Our conclusions concerning 
the solitons and antisolitons differ significantly from 
the results obtained in Ref. 12. The point i s  that a sol- 
iton (antisoliton) is a macroscopic formation, and i ts  
dimension is ,  a s  a rule, significantly greater than the 
Thomas-Fermi screening distance Y,, (we have in 
mind the screening distance Y,, due to both the 
quasiparticles and the CDW, since the CDW also 
screens off the electric field E). Therefore, the charge 
arising in a soliton a s  a result of the spatial variation 
of the phase is screened off, and, in consequence, the 
total charge of a static soliton (antisoliton) is equal to 
zero (the potential drop across  it i s  also equal to  zero). 
But there exists across a moving soliton (antisoliton) a 
potential drop whose sign i s  opposite to that of the total 
potential across the sample, and the solitons make a 
contribution to the conductivity, specifically, they in- 
crease it. This contribution is proportional to the num- 
ber of solitons in the sample. In real  samples of mac- 
roscopic dimensions, the solitons spread to many fila- 
ments, and the energy necessary for their formation is 
significantly higher than the thermal energy. Thus, the 
production of solitons (cp particles) a s  a result of the 
thermal vibrations is highly i m p r ~ b a b l e , ~ )  and the dom- 
inant contribution to the conductivity of the sample i s  
made by the uniform slipping of the CDW. Neverthe- 
less,  we shall find the solutions for the solitons, and 
compute their mobility, since they can, in principle, be 
produced near defects,'' o r  be excited with the aid of 
external influences. In the present paper we shall as- 
sume that the characteristic vibration frequencies w in 
the system ape smaller than the energy gap I A I .  

2. THE BASIC EQUATIONS 

Let us derive the equations that describe a quasi-one- 
dimensional conductor with a commensurable CDW. TO 
do this, let us generalize the equations obtained in our 
previous paper.14 In that paper we considered a con- 
ductor with a commensurable CDW and an energy spec- 
trum described by the formula 

where p,, and p, are  the components of the e,lectron mo- 
mentum in the directions parallel and perpendicular to 
the filaments andclr is the Fermi energy. It is assum- 
ed that IV(pL) where the function q(pL) describes 
the deformation of the Fermi . . surfaces, which arenear-  

ly flat. At the same time, 1111 > 7- ' ,  which allows u s  to  
neglect the effects of the localization of the electrons in 
the disordered potentials of the impurities (here T is 
the characteristic time of the scattering of the momen- 
tum by the impurities). 

We shall also neglect the one-dimensional fluctua- 
tions, which a re  suppressed by the effects connected 
with the three-dimensional character of the electron o r  
phonon spectrum,20 and the effects connected with the 
pinning of the CDW to the impurities. It follows from a 
number of  experimental'^^^ and theoretical3 investiga- 
tions that, at least in fairly pure samples, the CDW 
pinning caused by the commensurability i s  stronger 
than the pinning to the impurities. In particular, the 
threshold-field strength Eo i s ,  a s  a rule, much higher 
in the case of commensurable CDW than in the incom- 
mensurable CDW case, in which the pinning is due only 
to the impurities. Efetov and  arki in^' have shown that 
the phase fluctuations caused by the impurities do not 
destroy the long-range order,  and, consequently, do 
not cause significant pinning of the phase when 

where X is the dimensionless electron-phonon interac- 
tion constant; y- n being the commensurabil- 
ity order; w(k) is the phonon dispersion law; and d is 
the filament spacing. 

Let us  also note that, although we take only the elec- 
tron-impurity collision integral into consideration, the 
results  of the calculations can be applied also to  the 
case of momentum scattering by phonons if  the temper- 
ature is much higher than the Debye temperature. In 
this case the scattering i s  almost elastic, and the in- 
tegrals for the collisions with the phonons and the im- 
purities have the same form.I3 Since the interaction 
with the phonons does not lead to  the pinning of the 
CDW, we can neglect the above limitation of T in the 
case in which T is  determined by the scattering on the 
phonons. 

We shall, for simplicity, assume that the wave vec- 
tor Q of the CDW i s  parallel t o  the filaments: Q II p,,. 

To generalize the equations of Ref. 14 to the case of 
commensurable CDW, it i s  sufficient to derive the 
equations for the Green functions in the absence of ex- 
ternal fields. This is due to the fact that the commen- 
surability effects give r ise  to corrections of the order 
of (A/&,)"-2, which a r e  small  when n> 2 (the case of 
period doubling, i.e., the n = 2 case, i s  a special one, 
and we shall not consider it here). Consequently, we 
can, in computing the response to an external field, 
neglect the commensurability effects, and use the well- 
known results, X, of the linear-response calculation for 
a conductor with an incommensurable CDW.'~ This 
does not mean that we shall analyze only the linear 
problem, since the equations obtained a r e  nonlinear 
with respect to the CDW phase x [we should, in comput- 
ing the response of the system to an external field, 
separate out the phase factors eiX, and limit ourselves 
to the linear terms containing the coordinate ( x )  and 
time ( t )  derivatives of the order parameter A = JAleix]. 

993 Sov. Phys. JETP 54(5), Nov. 1981 S. N .  Artemenko and A. F. Volkov 993 



Let us consider, for example, the retarded Green 
function GR(p,p'). By proceeding from the FrGhlich 
Hamiltonian, we can derive for GR the equation 

(E-e,)GR(p, p') =ZgGB(p-q, p') (b.+b-,+)+6ppr. (2) 

In the presence of a CDW the anomalous averages 

a re  nonzero. In the case of commensurable CDW we 
should take into account not only the functions GR(p 
*&,PI, but also the functions G R ( p * n ~ , p ) .  As a result, 
we obtain an equation for the (nxn)-matrix Green func- 
tion GR(p,p'). This equation is given in Ref. 4 under the 
assumption that 

for al l  n except n = 1. But the appearance of a CDW 
commensurable with the wave vector Q automatically 
leads to the appearance of the CDW harmonics with 
wave vectors 2Q, 3Q,. . . , (n - 2)Q.22 The equations for 
the cR@,p ' )  then become complicated. We shall, for 
simplicity, limit ourselves to the consideration of the 
cases  with n = 3  and n = 4  (the results for all the cases 
of different multiplicities n a 3 a re  qualitatively identi- 
cal; they differ mainly in the numerical coefficients in 
front of the threshold-field strength E o ) .  

From (2) we obtain for the case with n = 4 the equa- 
tionZ1 

[€"I -'OR(p, p') =6,,,, 
re - -e l  - A  -A$ -A*I 

Only one order parameter A ar ises  in the case of three- 
fold commensurability (i.e., in the n = 3  case). 

Besides the functions eRu', let us also consider the 
Green function 6 (see, for example, Ref. 14). The 
function 6 consists of a regular and an anomalous part: 

In the equilibrium case 

As in Ref. 14, it is convenient for us  to introduce the 
Green functions integrated over the variable f = ( p , ,  
- pP )Q/2rn : 

The tilde indicates that we should take account of the 
commensurability effects in computing the g i k ,  i.e., 
take account of the small terms of the type Aso  in in- 
verting the matrix (ER)-l in (3). 

The commensurability effects should be taken into 
consideration only when the self-consistency condition 
is fulfilled. This condition can easily be obtained on the 

basis of the equations of motion of the operators b, and 
b*,. We obtain 

Here wa is the frequency of the phonons with wave vec- 
tor  Q and S is the area  of the Brillouin zone's c ross  
section in the plane p,, - p p  =O. The angle brackets de- 
note averaging over k, and integration over c :  

We a r e  interested in the frequencies w << ozo; there- 
fore, we can discard the time derivative in Eq. (6). 
Further, we should find the regular function 2"' with 
the aid of (3) and (4) and substitute it into Eqs. (5) and 
(6). The commensurability effects will then lead to  the 
appearance of t e rms  of the type 

Here we used the self-consistency condition in the 
zeroth order in the parameter &*/co. Then the Eqs. (5) 
and (6) can be rewritten in the form 

a= A * ~  
( ~ + U Q - ' - ) A = ~ - +  a t2 16- -  " A''A" cos 2X+b(d0,' ), 

eoZ h e,Z (7) 

Here g:i' is the Green function without allowance for 
the commensurability effects and x is the CDW phase. 
We neglect the corrections to the spectrum that ar ise  
a s  a result of the commensurability. 

Let us separate the imaginary and real  parts of (7). 
After simple transformations, we obtain for the phase 
x and the modulus of the order parameter in the semi- 
classical approximation in the parameter w/ 1 A 1 the 
equations: 

ax alAI 
- u p - ' [ 2 - - + 1 ~ 1  at at (9) 

where w is the oscillation frequency; for n = 4 

while for n = 3 ,  Y = ~ ~ A I / c ~ ,  where c ~ = E ( $ Q ) ;  for n > 4 
we have in order of magnitude y= )A1n-2/c:-2;i is the 
Green function whose phase factors have been separated 
out. It i s  connectedwiththe functioni by the transforma- 
t ion 

The function 2 satisfies an equation that can easily be 
derived from Eq. (18) of Ref. 14. We shall also write 
down the equations for the matrices pa', which a re  
defined in much the same way a s  (11). We can write 
the necessary equations in the form of a single equation 
by introducing the supermatrix 
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In the semiclassical approximation with respect to 
w/lA I ,  the equation for the matrix 2 has the form 

.. .. .. .. w a x -  
x.1~~. a &;) ;, + o,g (k;) ;,I) . h == - 2 - ax + v;z + 2 dX 3, 2 at 

where 2 is  the mass operator describing the scattering 
by the impurities, vl = 1 / ~ ~  and v, = 1/7, a r e  the rates of 
the collisions not involving and involving a change in the 
direction of the longitudinal momentum, cp is the elec- 
trostatic potential, 

Moreover, the matrix 2 satisfies the normalization re- 
lat ion 

The current density j is defined, a s  in the incommen- 
surable case, according to the formula 

The charge density p is found from the formula 

Here ki' = Y r l  is the screening distance for a static 
electric field E in the normal state, i.e., for T > T, (the 
field E i s  directed along the vector Q). The second 
t e rm in (16) arose because of the integration over high 
energies (& >> A, T). The expression for p in the case of 
superconductors contains a similar term.2324 

3. THE INHOMOGENEOUS STATIC SOLUTIONS FOR 
THE CDW PHASE (PHASE SOLITONS) 

Let us consider the simplest case of a stationary CDW 
in the absence of an external field, and let us analyze 
the possible solutions for the CDW phase X. Let us as- 
sume that the impurity concentration is low (v,, , << A) 
and also that the deformation of the Fermi surfaces is 
slight (q<< A). Then we can neglect q in the region of 
appreciable energies c = A, and thus eliminate from the 
equations the dependence on the transverse momentum 
kL. 

The equilibrium and spatially homogeneous CDW state 
is  described by the functions 

If;A' = g ~ ~ ~ ~ ; , + y ~ * ~ i & r  

which satisfy the Eq. (13) and the normalization rela- 
tion (14); here 

From Eq. (13) we find the corrections to the equilibri- 
um matrixz,, that are  due to  the presence in the crys- 
tal  of the self-consistent electric potential cpk) - cpeW 
and the phase x(x)"xeikX. The correction entering into 

the equation (9) for the phase has the form 

The correction determining the charge density (13) is 
equal to 

Let us substitute bg, from (17) into (9). We obtain an 
equation for the phase X: 

where L: = X V ' N ~ / ~  I A 1 'y and Ns is the fraction of con- 
densed electrons. It is given by the formula 

An equation of the type (19) is derived from pheno- 
menological arguments in Ref. 12, where it i s  used to 
analyze solitons. The latter  a re  those solutions to (19) 
(with E =0) in which the phase x varies over the dis- 
tance Lo from one constant value to  another: 

4 x=* - arctg [,$ez] 
n 

The plus sign corresponds to  a 2r/n phase change (sol- 
iton), while the minus sign corresponds to a -2r/n 
phase change (antisoliton), when x is increased. Rice 
et a1.12 assigned adefinite charge p- ax/ax to the 
soliton and p" - ax /ax  to the antisoliton. They 
assumed on the basis of the neutrality of the cry- 
stal  a s  a whole that the solitons and antisolitons 
a re  produced in pairs. But to find the soliton (or anti- 
soliton) charge, we must compute the charge density p 
with the aid of the formulas (18) and (161, and then 
solve simultaneously the Poisson equation and the equa- 
tion (19) for the phase. In the case of highly conducting 
quasi-one-dimensional conductors, the length of a soli- 
ton is significantly greater than the Thomas-Fermi 
screening distance3' Y T ,  . Therefore, the Poissonequa- 
tion reduces to the quasineutrality condition p = 0. 

The charge-density calculation yields 

Let us determine the derivative acp/ax from the condi- 
tion for local neutrality (p = 0) and substitute it into (19) 
[the last t e rm in (21) i s  negligible to first  order in the 
commensurability parameter y]. We obtain the equation 
for the phase 

a2x La- + sin nx=O, La=L,lNs (1 -Ns) - ' .  
ax2 

(22) 

A similar equation can be derived in the case of a gap- 
less conductor with a high impurity concentration (q  
>> v>> A).  Then L, = 8 F A  1 2y/a2v2~, where 
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Equation (22) describes both isolated solitons (anti- 
solitons) and soliton (or antisoliton) chains of different 
densities. In these solutions the coordinate dependence 
of the phase ~ ( x )  has the form of a staircase, each step 
of which gives a 27r/n phase increment (for the solitons). 
Furthermore, there exist solutions in the form of a 
sequence of alternating solitons and antisolitons; these 
solutions a r e  described by a periodic ~ ( x )  function. It 
is precisely these solutions that a re  regarded in Refs. 
11 and 12 a s  satisfying the total-neutrality condition for 
the crystal. In fact, for L >r,, all the solutions to Eq. 
(22) should satisfy the local-neutrality (or, more pre- 
cisely, quasineutrality) condition, which was required 
by us in the derivation of Eq. (22). The total charge of 
each soliton (antisoliton) is equal to zero. The soliton 
dimension (-L) is greater than the correlation length 
V/A because of the factor X/y, and at low temperatures 
the soliton dimension i s  even greater on account of the 
fact that Ns-- 1 at T = 0. 

Not all the solutions a re  stable against weak pertur- 
bations. To analyze the stability, we should generalize 
Eq. (22) t o  the nonstationary case. Then we obtain in 
place of (22) an equation of the type 

where the frequencies S2 and r will be computed in Sec. 
4. Let us linearize Eq. (24) with respect to  the devia- 
tions, 6x&, t)  =x&, t )  - xo(x), from the steady-state sol- 
utions xo(x) to Eq. (22). We obtain for 6x(x, t )  - xie-* the 
equation 

-L; %+ n cos nxo=S~, ,  8=.1(I-h).  
a 2  (25) 

Equation (25) has the solution xi- axa/ax, for which I 
= 0. If the function axa/ax does not have nodes (as ob- 
tains for chains consisting of solitons o r  antisolitons), 
then the solution corresponds to the ground state. Then 
the remaining solutions correspond to O >  0 and X > 0. 
Consequently, the soliton o r  antisoliton chains a re  
stable against weak perturbations. If the function ax,/& 
has nodes, then the state with I = O  i s  not the ground 
state, and there exist solutions X, for which I < 0 and X 
< 0. Consequently, a chain made up of an alternating 
sequence of solitons and antisolitons is  unstable. 

Finally, let us  compute the soliton energy. We shall 
proceed for the Lagrangian 

By v a r y i n g 2  with respect to x and cp, we can derive the 
equation (19) for the phase and the Poisson equation. 
Let us substitute into (26) the solution, ~ ( x )  and ~ ( x ) ,  
colBresponding to an isolated soliton. Performing the 
integration, we obtain for the soliton energy &, the fol- 
lowing order-of-magnitude estimate: 

where W is the area  of the sample c ross  section in the 
direction perpendicular to  the vector Q. For samples 
of macroscopic dimensions the magnitude of the coeffi- 
cient in the brackets i s  very large, since the screening 
distance rT, in good conductors is of the order of the 
interatomic distances. Thus, in the model of a continu- 
ous medium (and not of individual weakly interacting 
chains) under consideration, the energy necessary for 
the excitation of a soliton is much higher than the ther- 
mal energy. Such solitons, which extend over the en- 
t i re  sample (in the transverse direction), can, appar- 
ently, be produced only with the aid of external influ- 
ences. 

The potential drop across each static soliton i s  equal 
to  zero. This follows from the expression (21) for p. 
Thus, the electric field E in a soliton is sign-variable, 
and varies over a large distance L. Besides this char- 
acteristic variation length for the field E, there exists 
in a Peierls  dielectric the small  screening distance 
r-, . It is precisely this latter distance that determines 
the screening of the static field E parallel to Q in an 
open sample. Indeed, if the scale of variation of E i s  
small  compared to  L ,  then i t  follows from Eq. (19) that 

Then we find from (16) in the leading approximation 
that p = - (kg/4n)q. 

The Poisson equation yields 

Consequently, the electric field is screened off over a 
distance equal to the Thomas-Fermi screening dis- 
tance r,, , irrespective of the number of uncondensed 
electrons. 

4. THE SLIPPING OF A CDW UNDER THE ACTION OF 
A CONSTANT ELECTRIC FIELD 

The analysis performed shows that, in the adopted 
model, the homogeneous state of the conductor cannot 
be destroyed by the thermal fluctuations. In this sec- 
tion we study the spatially homogeneous state of the 
crystal in the presence in it of a constant electric field 
E ,  and compute the conductivity of the crystal in this 
state. To do this, we should find from Eq. (13) the lin- 
e a r  response to a perturbation of the form cpk, t )  - exp(-iwt +ikx). It i s  convenient to represent the ma- 
t r ix  @ in the form of a sum of a regular 

and an anomalous 2"' part. Let us again consider small  
v<< A and a slight deformation of the Fermi surfaces. 
For g"' we obtain from (13) an algebraic equation whose 
solution has the form 
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where 6A is the deviation of the gap from the equilibri- 
um value. The deviations of the  function^^^' from the 
equilibrium functions have the form 

With the aid of the expressions (29) and (30) found in 
the homogeneous case (i.e., for  k-- 0, but i k q = E f  0) 
we find from (9) and (10) the equations 

From the formula (15) we find the current 

Here Ns is defined in (201, 

a d e ,  
e 

hu Ns 
- 

a v d e  

7 
IAI 

1 "-'=-[=+J ~ ( v . E ' t l A l 4 )  

a, i s  the conductivity of the conductor in the normal 
state, 

The Eqs. (31)-(33) describe the variation of the phase 
and the amplitude of the commensurable CDW in the 
presence of an electric field E. It can be seen from the 
formula (33) that the current j consists of a normal- 
electron current, a CDW-polarization current, and a 
current generated by the slipping of the CDW. The last 
term can be written a s  j,, = ensu, where 

This way of writing it emphasizes the physical mean- 
ing of this term, and it is the way often adopted in the 
literature (see, for example, Refs. 7 and 8). 

Let us give the expressions for the parameters en- 
tering into Eqs. (31)-(33) in the limits of high and low 
temperatures4': 

where the deformation of the Fermi surfaces should be 
taken into account. 

From Eqs. (31)-(33) we can easily obtain the frequen- 
c ies  of the small  natural oscillations of the phase x and 
the amplitude f A I . At T = 0 we have 

Let us now consider the behavior of a conductor with 
a CDW in a constant field E. If the field E is weaker 
than the threshold field Eo, then it follows from (31)- 
(33) that x and A do not depend on the time, and that 

The current in this case is due to the uncondensed elec- 
trons: j =olE (its difference from zero at T = O  is due 
to the deformation of the Fermi surfaces). If E > Eo, 
then the equations do not have steady-state solutions: 
there occurs in the system a slipping of the CDW ac- 
companied by phase oscillations and small oscillations 
of the amplitude. 

Let the frequencies of the oscillations be low compar- 
ed to the natural frequencies (38). Then we can neglect 
the first two terms in (31)-(33) and the polarization 
current in (33). As a result, we obtain an equation sim- 
i lar  to the Josephson equation for a superconducting 
bridge: 

The Eqs. (39) have been investigated in detail in the the- 
ory of the Josephson junction (see, for example, Refs. 
25 and 26). Here we shall give only some results. 

In fields E < Eo, the CVC of the system is linear: j 
= olE. For E > Eo,  slipping of the CDW occurs and the 
CVC is nonlinear, its shape being dependent upon the 
resistance 2, of the external circuit at the oscillation 
frequency w in the system. Thus, for 2, << R (R is the 
resistance of the sample), i.e., for a given field E,  the 
shape of the CVC and the oscillation frequency w a re  
given by the expressions 

In the case in which 2, >>R, i.e., in the regime of a 
prescribed current, we have 

In this case the CVC is S-shaped. 

In fields E >> Eo, the CVC goes over into a straight 
line corresponding to  Ohm's law: 

The frequency and amplitude of the variable component 
(37) of the current for E>> Eo  a re  equal to  

E EOY (o )  L ,am 
o=noo - , 

E, '* = - 1 + ~ , l [ o , + ~  (o )  ]/o,ol 9 y(o)=- 2.W ' 
The logarithms in (36)-(37) arose because of the trun- 
cation of the diverging integrals at small  values of 5 ,  where L,,  and W a re  respectively the length andcross- 
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FIG. 1. Shape of the CVC in the absence of radiation (dashed 
curve) and in the presence of radiation of frequency w (con- 
tinuous curve). 

sectional area  of the sample. 

If there is applied to  the sample, besides the constant 
field E, a variable field E,=E, sin wt, then a step ap- 
pears on the CVC, i.e., a straight section parallel to  
the straight line j =olE (see Fig. 1). The position of the 
center of the step on the E axis for small E, is connect- 
ed with the frequency w by the relations (41) and (42). 
The height of the step for w>> wo is equal to ~ ~ n w o / w .  

The gap is also perturbed in fields E > Eo. For ex- 
ample, for E >> Eo we find from (31)-(32) that 

If the oscillation frequency w is comparable to the 
natural frequencies (38), then the first terms in Eqs. 
(31) and (32) a re  important. This circumstance leads 
to certain effects. For example, it i s  known from the 
theory of the Josephson effect that the presence of the 
second derivative a2X/at2 gives r ise  to  hysteresis on the 
CVC (in our case the hysteresis appears even in a pre- 
scribed E field). Furthermore, the oscillation ampli- 
tudes of the gap and, for example, the field E, will ex- 
hibit resonances. Using perturbation theory, we find 
from (31)-(33) that for E>> Eo and at low temperatures 

It can be seen from this that resonances occur at the 
natural oscillation frequencies. We have not computed 
the damping of the amplitude mode, since for this pur- 
pose we need to know the form of the Green functions 
for 5 -  q,  V .  But at low temperatures this damping con- 
tains the factor exp(- I A  [/TI, and is small. 

Using Eqs. (31)- (331, we can easily compute the sys- . 

tem's admittance Y(w) =j,/~, as  a function of the fre- 
quency in fields E weaker than the threshold field Eo: 
E < E o .  From the linearized equations (31 ) and (33) we 

FIG. 2. Frequency dependence of the real (continuous curve) 
and imaginary {dashed curve) parts of the linear admittance in 
the cases: a) wo >>yilzwo ; b) wo-x -y'lzwo. 

find 

The last two t e rms  in (44) give the contribution of the 
polarization and the slipping of the CDW to the conduc- 
tivity of the system. The frequency dependence of Y(w) 
in the cases of large and small  magnitudes of the pa- 
rameter wdywQ is shown in Fig. 2. 

Let us  also note that the gap i s  perturbed in the E #  0 
case  under consideration even in the approximation lin- 
e a r  in the field E,: 

5. MOTION OF THE SOLITONS UNDER THE ACTION 
OF A CONSTANT ELECTRIC FIELD 

The energy, (27), necessary for the production of a 
soliton of macroscopic dimensions is high, and such a 
soliton cannot be produced by the thermal vibrations. 
Solitons of this type can be  evidently be  excited with the 
aid of external influences. Furthermore, they can be 
produced in a crystal with an incommensurable CDW 
whose wave vector Q i s  close to the commensurable 
wave v e ~ t o r . ~ '  

Let us consider a soliton-containing crystal with a 
commensurable CDW. Upon the application to  the sam- 
ple of a constant field E ,  the solitons begin to  move and 
thus contribute to the conductivity of the sample. To 
compute this contribution, we should generalize the 
equations to the case in which the phase x and the poten- 
tial cp depend on both the time and the coordinates. To 
do this, we should find from Eq. (13) the linear re- 
sponse g(k, w) to  the perturbation caused by the poten- 
tial cp and the phase's derivatives a d a t ,  etc. Then, 
using the Green functions, we should determine the cur- 
rent j ,  (151, and establish the form of the equation (9) 
for the phase. It is quite difficult to perform this task 
in the general case, since the form of the resulting ex- 
pressions depends in a complex fashion on the relation 
between the parameters w and Dk2, whose w = sk,  s i s  
the soliton velocity, k - L-' o r  k - d-', d is the period of 
the soliton chain, and D =v2/2vz i s  the diffusion coeffi- 
cient. In all  the cases the equations for the phase x has 
the form of the sine-Gordon equation with w- and k-de- 
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pendent dissipative terms and an impressed force pro- 
portional to  the current j flowing through the sample. 

The computation of the coefficients of this equation in 
the pure case is especially complicated, since we must 
then know the behavior of the Green functions in the 
narrow energy range I E I - I A 1 -  q ,  v. If we do not find 
the form of the functions 2 in this energy region, then 
we can only make order-of-magnitude estimates of the 
coefficients in the equation for X. Such difficulties do 
not arise in the case of the gapless Peierls  conductors 
when the conditions A<< v<c 77 are  satisfied. At the same 
time, the case of the gapless conductor allows us to  
understand all the main properties of the system with a 
moving soliton chain. Therefore, we shall restrict  our- 
selves to the consideration of precisely this case.5' 

The Green functions 2 for a gapless Peier ls  conduct- 
or are  computed in Ref. 14; the homogeneous (i.e., k 
=0)  case i s  considered in that paper, but the general- 
ization to the inhomogeneous (kf 0) case offers no diffi- 
culty, although it requires tedious calculations. We 
give only the final result: the expression for the cur- 
rent and the equation for the phase 

i o  i o  
jm,*=ox { E ~ , ~  - 60-Dk2 [ I - 0 -  io-Dk2 -+ ( a + b / 2 ) } ,  

io lb uk" 
-E.,,z - - - ( E -  ) e x  - + x  (46) 

io-Dk' Zc. 

where a and b a re  given by the formulas (23). 

In solving (45) and (46) we use the quasineutrality con- 
dition divj  = 0, which allows us to eliminate the field 
E. Neglecting, where possible, the small a and b 
terms, we obtain an equation for the phase in fairly 
weak fields and for low soliton velocities s (i.e., for w 
= sk << DkZ): 

where the angle brackets denote averaging over the co- 
ordinate and LZ = ~ D / ~ ( I W ~ .  

Let us find the soliton velocity in weak fields (E), 
<< Eo. Let us find the solution to  (47) in the form of a 
stationary wave x = X(,X - s t ) .  Then we obtain for the 
case of low s the equation 

We can, in the zeroth approximation, neglect the first  
derivative and the t e rm on the right-hand side. Then 
we obtain an equation that coincides with (221, and de- 
scribes, for example, soliton chains with different 
periods d. Let us denote the solution to  this equation 
by xo. Let us  now multiply Eq. (49) by ax/ax and inte- 
grate over the period. For the soliton velocity s we ob- 
tain 

where ~ ( k )  i s  the complete elliptic integral of the sec- 
ond kind. The coefficient k i s  connected with the period 
d of the chain by the relation 

where K(k) is the complete elliptic integral of the first  
kind. 

It follows from the expression (50) that, in a given 
mean field @)x, the soliton and antisoliton move in op- 
posite directions, since axa/ax > 0 in a soliton and aXd 
ax < 0 in an antisoliton. Substituting 

into (48), we obtain the following expression for the 
current 

nzooLk n2Lk 
j= [a,+az 

2n'"ldEnE ( k )  
] ( E ) r  [ai+oz 2 n M ( k j ]  ( E ) .  (52) 

From this it follows that the contribution made to the 
conductivity by the solitons in the gapless state is equal 
to o , (~ /d ) (n~ /2n"~)  at low soliton densities (i.e., for d 
>> L) and equal to o, at high densities (d<< L). 

A similar analysis for the pure material shows that 
the correction made to the conductivity by a high-den- 
sity soliton chain at low temperatures is ,  in order of 
magnitude, equal to o l ( q / l ~  I (VJV)~ '~ ) .  

6. CONCLUSION 

The foregoing analysis shows that the most probable 
state of a Peierls  conductor with a commensurable CDW 
is the state with a spatially homogeneous CDW phase X. 
If the field E is  not higher than the threshold field Eo, 
then the CDW i s  stationary and only the free quasipar- 
ticles contribute to the conductivity. In fields E > Eo the 
CDW slips. This slipping i s  not uniform: a s  the CDW 
moves with a mean velocity ii proportional to ( E ~  - E;) ' /~ ,  
it executes oscillations with frequency proportional to 
a. The motion of the CDW makes to the conductivity a 
contribution that depends nonlinearly on the field E. 
Thus, there exists an analogy with the Josephson effect 
in point contacts: the CDW phase x corresponds to the 
order-parameter phase difference cp in superconducting 
contacts, while the field E corresponds to the pre- 
scribed current j in the contacts. A Peierls conductor, 
like a Josephson junction, should emit radiation in 
fields stronger than the critical field Eo, and when it is 
acted upon by external radiation its CVC should exhibit 
steps. The difference from the Josephson contacts con- 
s is ts  in the fact that the radiated power in the present 
case will be proportional to the volume of the sample. 

The parameters of the Peierls conductor that deter- 
mine the characteristic frequency oo and the threshold- 
field strength Eo depend on the Peierls-transition tem- 
perature T,, the sample temperature T, the magnitude 
7 of the deformation of the Fermi surfaces, etc. These 
parameters can vary greatly from material to material 

999 Sov. Phys. JETP 54(5), Nov. 1981 S. N .  Artemenko and A. F. Volkov 999 



(e.g., Tp varies f r o m  a few degrees  to hundreds of de- 
g r e e s ) ,  and, consequently, the  quantities Eo and wo can 
b e  observed in, f o r  example,  TaSS, in  which a commen- 
surab le  CDW (n = 4) is produced at Tp =218 K, and 
which has been found8 to p o s s e s s  a nonlinear CVC. The  
charac te r i s t i c  f ie lds  were of t h e  o r d e r  of 100 ~ / c m .  
Such a high threshold-field value should yield a high 
value f o r  the  charac te r i s t i c  frequency wo (up to f re -  
quencies in  the in f ra red  region). It is pre fe rab le  to ob- 
s e r v e  the effects  considered in pure  mate r ia l s  at low 
tempera tures ,  where  the conductivities O, and o2 differ 
great ly f r o m  each  other ,  and, consequently, the non- 
l ineari ty  should be strongly pronounced. 

Let u s  note finally that in the  adopted model, in which 
the  c r y s t a l  spec t rum (1) is prescr ibed ,  the  phases  on 
a l l  the f i laments  are identical,  and the CDW motion oc- 
curs synchronously in  the en t i re  volume of the  sample.  
In principle, t h i s  may not be  so if the  coupling between 
t h e  f i laments  is sufficiently weak. The question of the 
effect of the intensity of the interaction between the fil- 
aments  on the effects  considered r e q u i r e s  a separa te  
analysis.  

The authors  are grateful  t o  S.A. ~ r a z o v s k i ;  and A.V. 
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"some of the results of these investigations a r e  presented in 
Ref. 16. Let us note that the analogy with the Josephson ef- 
fect i s  noted in Ref. 17, and is investigated in somewhat 
greater detail in Ref. 18. The phenomenological approach 
is used in both of these papers. 

"1n Ref. 12 Rice et al. consider only one filament, and show 
that the energy required for the excitation of a soliton on such 
a filament is of the order of A (A is  the energy gap in the 
spectrum of the Peierls dielectric). 

3 ' ~ e t  us emphasize that the distance rm characterizes the 
screening in the temperature region above the Peierls transi- 
tion point Tp, where the conductor is a metal. However, in 
the case of the temperatures T < Tp being considered, the 
screening of the static field E is ,  a s  we shall see, also char- 
acterized by the distance r,, since the CDW also contributes 
to the screening. 

4 ' ~ e t  us  note that the expression for wo in Ref. 16 contains a 
topographical error :  IA/ T was printed instead of &IT. 

5'In order to make the neglect of the pinning to the impurities 
also admissible when the condition v > A  is fulfilled, we as- 
sume here h t  the large magnitude of v i s  due to the scatter- 
ing by the phonons, and not by the impurities. 
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