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The behavior of a Peierls dielectric (PD) with a doubled period in a uniform electric field is investigated within 
the framework of the microscopic approach. It is shown that the electric field suppresses the gap A ,  in the 
conduction-electron spectrum and creak pairs of free carriers by tunneling. The latter process ensures in 
fields eEc -A&;'K, = &/A,) a smooth transition of a PD into the metallic phase. Temperature effects in 
PD are considered. 

PACS numbers: 77.50. + p, 71.30. + h, 71.45.Gm 

INTRODUCTION 

Experimental and theoretical studies of quasi-one - 
dimensional compounds that undergo a metal-insulator 
Peierls transition have attracted much interest re-  
cently. It is known that the Peierls transition is ac-  
companied by lattice-structure changes and by the onset 
of an energy gap in the electron spectrum. This gap 
separates the filled electronic states from the conduc- 
tion band. Below the transition point, the dielectric 
state is characterized by a microscopic lattice dis- 
placement 

u(5)  -A cos (%krt.+cp), 

where k, is the Fermi momentum, a determines the 
gap in the carr ier  spectrum, and the phase shift q ( x ,  t )  
characterizes the charge -density wave. 

The thermodynamics of the Peierls transition in the 
absence of external field was considered by many 
workers (see, e.g., the reviews'). In later studies2-' 
i t  was noted that there can exist in the Peierls phase 
nontrivial conduction mechanisms connected with 
soliton-type collective excitations in the electron-ion 
system. 

The simplest type of Peierls transition i s  a phase 
transition with doubling of the period. In this case 
the Peierls shift u, -(-1)"~ and there is no phase 
degree of freedom. ' According to present notions, 
such a situation i s  possibly realized in chains of poly - 
acetylene (CH),. W e n  not doped, (CH), is a semi- 
conductor with a large energy gap A - 1 eV. However, 
even a weak (-0.5%) doping of the polyacetylene leads 
to a noticeable conductivity, due apparently to the ap- 
pearance of free large -radius polarons. These polar - 
ons constitute each a bound state of an electron and a 
lattice soliton. 2 1 7 * 8  Favoring this assumption i s  the 
large conductivity of doped (cH), with complete ab- 
sence of Pauli magnetic susceptibility of the free car-  
r iersg in a large range of doping densities. 

In connection with the observed anomalous properties 
of the conductivity of (CH), (Refs. 6 and 91, great in- 
terest attaches to the development of a consistent 

microscopic theory of the behavior of a Peierls dielec- 
tr ic (PD) with doubling of the period in an external 
electric field E at  a finite temperature T. This ques- 
tion was f i rs t  considered in Ref. 10, where i t  was 
shown that the influence of a constant external field 
leads to suppression of the gap in the PD spectrum, 
and in final analysis to the restoration of the metallic 
state. This conclusion was based on an analysis of 
the thermodynamics of PD in an external field E. In 
the present paper, within the framework of the mi- 
croscopic approach, we analyze in detail the mech- 
anism of the destruction of a PD in an electric field. 
The electric field plays a twofold role in the Peierls 
phase. First ,  i t  decreases the energy gap1' (the ef- 
fect of polarization of the PD). Second, a probability 
of tunnel formation of  article-hole) pairs of free 
ca r r i e r s  appears even in arbitrarily weak electric 
field. l1 Whereas the first  aspect of the action of the 
field on the PD can be treated within the framework of 
thermodynamics, the processes of pair production from 
the ground state of the PD (vacuum) is of purely dy- 
namic origin. 

A consistent theory of a PD in an electric field should 
include a detailed analysis of the dynamics of the free 
carr iers  in the conduction band (of the holes in the 
valence band). There a r e  two limiting cases here. It 
is known (see, e.g., Ref. 12) that in the absence of 
scattering mechanisms the motion of the charge in the 
band is finite and periodic, with a spacial period L,, 
-fiv,/eEa (v, is the Fermi velocity, a i s  the lattice 
constant, and e is the electron charge). The field 
does not lead in this case to formation of direct cur- 
rent, and the PD, despite the production of carr ier  
pairs, remains in this sense an insulator (the high- 
frequency conductivity, naturally, differs from zero). 

For organic quasi-one -dimensional compounds i t  is 
the opposite limit which is realized, with the mean 
free path much less than L,,. The produced free 
carr iers  produce in this case a direct current. This 
is precisely the situation investigated in the present 
paper. The nonstationary character of the behavior of 
PD in an electric field, due to the instability of the 
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vacuum, doesnot make i t  possible to employ the ther- of solitons a s  quasiparticles of a one-dimensional 
modynamic approach in the entire range of electric Peierls chain. 
fields and temperatures. Therefore a t  the parameter 
values a t  which the effects of particle production from 
vacuum become of the same order of magnitude a s  the 
polarization effects (strong nonstationarity), the very 
concept of a thermodynamic phase transition becomes 
meaningless, and the restoration of the metallic state 
proceeds smoothly (without singularities in the kinetic 
coefficients). 

Free  charges in PD a t  equilibrium exist in the form 
of solitons of the order parameter 

where A, is the equilibrium gap and to = ffvF/Ao (Refs. 
2 and 6-8). The formation of a soiiton is due to the 
interaction of the two subsystems that make up the PD: 
rapid electronic (t, -E/A,) and slow lattice [t,-~"'~/ 
w (2kF)] subsystems, where h.=g2/affv,, g is the elec- 
tron-phonon interaction constant, and w(2kF) is the 
frequency of the bare phonons with momentum 2kF 
(Ref. 1). The ratio (t,/t,)2 = a'<< 1 ensures applica- 
bility of the self-consistent-field theory to the descrip- 
tion of the PD at  low temperatures. The soliton en- 
ergy E,= 2A0/a (Ref. 13 and 2) is determined by the 
contribution of the fast electronic processes, and i ts  
mass M, is connected with the inertia of the lattice, 
M, - E , / ( ( Y V ~ ) ~ .  

An electric field E introduces into the problem new 
time scales that characterize the charge production 
by tunneling 

t? - h/eE X'.', 

where d i s  the Compton wavelength, with k = 6, for 
electrons and kS = cut, for solitons. In a large field 
interval a2E, < E < E,, E, - Ag/ffev,, and T i  < t,, s o  
that tunnel production of free electron-hole (e -h) pairs 
takes place a t  a fixed lattice configuration A = A,. This 
makes i t  possible to consider, in the field interval 
indicated above, the effects of production and polariza- 
tion of the ground state of the PD at  the electron level. 
The soliton character of the carr iers  manifests itself, 
of course, in the calculation of the mobility in the 
steady -state conduction regime. It was precisely under 
such physical conditions that we have formulated and 
investigated the model of a PD in an external field a t  
low temperatures. The low temperature means that 
a free-carrier density i s  ensured completely by the 
tunnel decay of the ground state of the PD in the elec- 
tr ic field and the characteristic energies of the parti- 
cles in the field a re  eEAvF/T >> T. 

An entirely different situation takes place a t  thermo- 
dynamic equilibrium, when the equilibrium densities 
of the particles and their kinetic energies a re  governed 
by the temperature (eERv,<< T2). It i s  clear from the 
foregoing that for PD with double the period there can 
be no free electrons and holes a t  equilibrium. There- 
fo-e the thermodynamics of PD at  T<< A, (this condition 
i s  always satisfied in real quasi-one-dimensional sys 
tems, since the temperature of the three-dimensional 
ordering turns out to be much lower than A,, Ref. 1) 
should be based from the very outset on the treatment 

The nonzero density of the order-parameter solitons 
a t  nonzero E and T means formally the absence of 
long-range order in the one-dimensional system.14 
At T << L\, and E << E,, however, their density is ex- 
ponentially low and one can speak of a one-dimensional 
PD and of a rarefied soliton gas in it. It behooves us 
here to analyze in greater detail the concept of a 
homogeneous PD in an electric field. Let us imagine 
that the field penetrates into the Peierls chain in- 
homogeneously, forming a periodic domain structure. 
The energy of such a structure (with allowance for 
the field energy) exceeds the energy of the homogeneous 
state. Indeed, the energy gain in the presence of a 
field is connected in final analysis with the increase 
of the dielectric constant c . This gain can always be 
realized by decreasing A uniformly. In the upshot the 
inhomogeneous structure experiences a net loss of en- 
ergy, due to the A gradients. This situation differs 
in principle from type-I1 superconductors, where the 
magnetic field stabilizes the inhomogeneous structure 
of the order parameter. 

In this paper we construct a microscopic model of a 
homogeneous PD with doubling of the period in an ex- 
ternal electric field a t  finite temperature. Within the 
framework of the method of functional integration, 
using the formalism of the generalized f function, we 
consider the effects of polarization of the ground state 
of the PD and of production of f ree  carr iers .  We ob- 
tain for T = 0 an exact expression for the real and 
imaginary parts of the ground-state energy, and also 
calculate the temperature corrections in the region 
where the temperature is low compared with the 
characteristic energy of the pair produced in the field 
E .  The thermodynamic description becomes possible 
in the opposite limit, where the temperatures a re  high 
compared with this energy. The equilibrium value of 
the gap A is determined in this case by the tempera- 
ture, and small field corrections account for the weak 
violation of the thermodynamic equilibrium. The Ap- 
pendix contains the necessary mathematical formulas 
that arise in the calculation of the functional deter- 
minants by the generalized f -function method. 

MICROSCOPIC MODEL OF PEIERLS DIELECTRIC 
WITH DOUBLED PERIOD I N  AN ELECTRIC FIELD 

The microscopic treatment of the PD i s  traditionally 
based on the Friihlich Hamiltonian, in which the nor- 
mal coordinates of the lattice with wave vector q = 2k, 
a r e  replaced by mean values. Following the standard 
procedure (see, e.g., Refs. 15 and 16), we write the 
Hamiltonian in the form 

Here o i s  the electron spin, q=\k*,o,, and a, a re  Pauli 
matrices. We recall that the following simplifications 
were made in the derivation of (1): the dispersion law 
of the bare electrons was normalized near k = kF 
[c(k) ~ v , ( k  - kF)], and the lattice kinetic energy 
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was left out. The term (2) determines the quantum 
fluctuations of the field A, which a re  small in the pa- 
rameter a2<< l. It will therefore not be taken into 
account in the calculation of the ground-state energy 
of the PD (the adiabatic approximation). 

The constant electric field A, = (0, -Et), y = 1, 2 i s  
included, as usual, by lengthening in (1) the derivative 
a/ax- a/ax - reA2. We shall find it convenient hereafter 
to change to the Lagrangian form of the PD model. 
According to (11, the density of the Lagrange function 
in an electric field is given by (R= v, = 1) 

where D, = a, -ieA, and y, = (us, iu,). The Lagrangian 
(31, which will hereafter be the starting point in our 
calculations, corresponds to the known Gross -Neveau 
model. 13, 14.11 

Simple estimates show that in fields E > a z ~ / e R v ,  
i t  is possible to disregard the soliton character of the 
carr iers  in the PD, and to analyze the influence of the 
electric field a t  the level of the Lagrangian of the bare 
electrons (3) (A= const). 

We proceed to calculate the energy of the ground 
state in the model (3). The complete solution of the 
problem consists of calculating the vacuum-vacuum 
amplitude in the presence of a source J that lifts the 
degeneracy b- -b: 

At a temperature T = 0, expression (4) determines the 
ground-state energy of the PD in the presence of an 
external field E .  At E = 0 and T f 0 Eq. (4), following 
the standard substitution t - 4 7 ,  determines the par-  
tition function of the system, if the functional integral 
i s  calculated over periodic fields (with period P 
= 1 /T) and antiperiodic fields \k and 9 (having the 
same period) (see, e.g., Ref. 18). 

What happens to the system when simultaneous ac-  
count is taken of the electric field and of the tempera- 
ture? A temperature implies specified equilibrium 
densities of the stable excitations in the system (soli- 
ton-antisoliton pairs), and i ts  influence in the absence 
of a field reduces only to a renormalization of the gap. 
Inclusion of the field leads to a distortion of the dis- 
tribution functions, so  that one can speak of thermo- 
dynamic equilibrium (i.e., of a temperature) only if 
the density of the nonequilibrium particles is low. 
(Temperatures higher in comparison with the char- 
acteristic energy of the pair in the field, eE  << T2.) In 
the other limiting case (eE >> T2), which i s  investi- 
gated by us, the dynamics of the system is determined 
mainly by the field, while the temperature describes 
small equilibrium fluctuations in each dynamic state. 

Proceeding to specific calculations, a short remark 
is appropriate concerning the experimental setup for  
the study of the polarization of the PD in an electric 

961 Sov. Phys. JETP 54(5), Nov. 1981 

field. It is known that a longitudinal field can act on 
the system in two ways (see Ref. 19). In one case the 
induction D (the charge on the capacitor plates) is 
specified and in the other the field E ,  which is deter- 
mined by the potential difference. Bearing in mind 
the use of the calculations for a possible explanation of 
the nonlinear current-voltage characteristics of PD 
(see, e .g., Ref. 201, we shall consider the problem in 
the second formulation. 

To calculate the energy of the ground state as a func- 
tion of a homogeneous order parameter A(E, T) i t  is 
convenient to change from W to the effective potentialz1 

which has extremal properties with respect to A. The 
effective potential is a convenient quantity in the in- 
vestigation of the properties of systems with spontan- 
eous symmetry breaking. In a zero field and a t  zero 
temperature, V,,,(A) coincides with the energy of the 
ground state of the system with order parameter A, 
and a t  T # 0 the real  part  of V,,, determines a t  equi- 
librium the free energy of the s y ~ t e m . ~ ~ * ' ~  

For the model (3), recognizing that the field A is 
classical, and also integrating in (4) over the Fermi 
fields, we havez3 

The trace symbol implies summation over the matrix 
indices and integration with respect to the coordinates. 
An effective method of calculating the functional de- 
terminant, whereby account is taken automatically of 
temperature effects, was proposed in Ref. 24 (see also 
Ref. 25). According to Ref. 24, the spare of the 
logarithm of the electric operator A?, is represented in 
the form 

Sp In a.-In Det Q.=-c'(0) -c(O) In cnz, (7) 

where A, i s  the set  of eigenvalues of the operator h,, 
and c, is a normalization constant. To apply Eq. (7) 
in our case, we change over to imaginary time t - - i ~  
and rewrite V,,, in the form 

A 1 
V.U= - + - { f '  (0) +t(O)ln cnz], 

g"LB 

where LP is the value of the two-dimensional space (in 
our case L is the length of the chain and P =  1/T). 

Our problem was reduced to finding the eigenvalues 
of the operator (iy,D, - A), and to their use to con- 
struct the generalized 5 function. It is most convenient 
to calculate ~ ( s )  using the eigenvalues of the quadratic 
operator 

x=- (. ~ T , , D ~ - A ) ~ ( ~ T ~ D ~ + A )  e, 

In Det ia.='/, In Det E. 

Using the commutation properties of y matrices in 
Euclidean space 

[rP, rYI +=-2aPv7 (12) 
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we obtain 
a=- ( a , - i eA , )Z+Az+~2eo ,~ , . ,  

~ = / ~ i  [ ] - F , . = ~ w A . - ~ ~ P .  

In Euclidean space (r,x), E plays the role of the 
"magnetic" field H. In the later calculations we shall 
retain the symbol H until we make the transition to the 
(t,x) space in the final formulas, where H - -iE. 

The equation for the eigenvalues of the operator k is 
of the form 

where p, is the conserved momentum along the x axis 
and p = i 1. Equation (8) is the known equation for the 
parabolic-cylinder functions. Thus, the transition to 
imaginary time reduces the problem to a calculation of 
the energy of a two-dimensional fermion in a magnetic 
field. Allowance for the presence of two bands means 
summation over the p-projection of the "spin" of the 
two-dimensional electron. It is easily seen that (14) 
has exact periodic solutions only a t  H =  0. Turning 
on the field disturbs the periodicity of the solutions 
(14). It is this which reflects formally the fact that 
the electric field violates the thermodynamic equi- 
librium. 

Starting from the physical picture described earlier,  
we can determine the spectrum (14) in two asymptotic 
regions. We s tar t  with the case of a weak field. 
Equation (14) has an antiperiodic solution 

@,- exp { in  (2n+ l ) r lB}  

under the conditions 

(p,l BeHB, e H p Z a l ,  eH<A2. (15) 
The corresponding temperature spectrum A:) is of the 
form 

We note that in contrast to the case H = 0, the quantity 
lpxl lies outside of the interval of eHP (15). 

In the opposite limiting case of strong fields (low 
temperatures), when 

( p , - e H ~ ) ' p e H ,  A: A ,  (17) 

the integrability condition calls for the vanishing of 3, 
a s  T - a. The spectrum of (14) is then equivalent to 
the spectrum in the Landau problem of an electron in a 
magnetic field, subject to satisfaction of the standard 
inequality 

IP , -~HTI<~HB,  (18) 

which determines the degree of degeneracy of the en- 
ergy levels with respect to p,. Thus, in the region 
(171, (18) we have 

We note that in real time the inequality (18) means 
that pair production by an electric field takes place 
after a finite time interval, and outside this interval 
the field only accelerates the pairs. 26 

At T# 0 the parameter p, in the last  case varies in a 
limited interval determined by the inequalities (17) 
and (18). Therefore a t  T = 0 the state density turns 
out to be a function of p,, even though the spectrum 
(19) does not depend on p,. 

Using the form of the spectrum of Eq. (14) in various 
asymptotic regions of the values of T and H, we pre- 
sent explicit expressions for r; (s). 

In regions (15) 

(20) 
where a, is a constant of the order of unity. Integrat- 
ing with respect top,, we obtain 

The second term in (21) and the contribution of the 
term epH in the f i rs t  term describes small "field" 
increments to ~ ( s ) .  This means that the summation 
over p = i 1 must be carried out only when the correc- 
tions a r e  calculated. 

In the region of values of the parameters H and T 
(eHPZ>> I ) ,  the state density v(p,) is, according to 
inequalities (17) and (181, 

(a, is a constant of the order of unity), and C'")(S) 
takes the form 

where n,, -eHp >> 1 . We shall hereafter assume the 
upper limit of the sum over n (23) in the principal ap- 
proximation in (e~p')- '<< 1 to be infinity. In analogy 
with (21), the second term in (23) determines small 
temperature corrections to the principal field con- 
tribution to t;(s). 

BEHAVIOR OF PD IN STRONG FIELDS (AT LOW 
TEMPERATURES) 

We investigate first  in detail the case of zero tem- 
perature (23). In this limit, the sum over n can be 
calculated exactly: 

where 

is the generalized Riemann C function (see, e.g., Ref. 
27). 

Using the known properties of g(s, a) we obtain 
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eE nAZ 
ImV --ln I-exp -- 

2 1 ( e E k o A o ) } '  

The self -consistency equation a Re V,,,/aA= 0 deter- 
mines the function A(E): 

As a result, the expression (6) for V,,, takes the form 

(\k is the logarithmic derivative of the r function). 

Equation (34) was f i rs t  obtained (by another method) 
in Ref. 23, where i t  was concluded that a critical 
phase-transition field exists 

The equilibrium value of the order parameter A(H) 
is determined from the condition that the effective po- 
tential be a minimum: 

where C is the Euler constant. The presence of Im V,,, 
[ ~ q .  (33)], however, makes i t  possible to consider the 
polarization A(E) of the PD only a t  Im VOff <<Re V,,,. 
Actually, the imaginary part  of the effective potential 
determines the characteristic lifetime of the system.22 
Naturally, i t  i s  meaningful to speak of equilibrium 
properties only when this time is long, i.e., when the 
condition that Im V,,, be small is satisfied. At the 
same time, a s  E - E, the gap vanishes (A - 0) and 
Im V,,, -- -03, while the lifetime of the system T 

= -2/Im V,,, tends to zero. 

The constant c,, using the normalization" 

can be easily connected with the gap A, in the absence 
of a field: 

&=a exp{-nAv,lgZ). (30) 
The conditions (28) express the fact that V,,,, by 

definition, is extremal with respect to variations of A. 
Indeed, Vet, = -3"(A, E),  whereY' is an increment, due 
to the polarization of the medium, to the Lagrangian 
density of the electromagnetic field (see, e.g., Ref. 
28), while the last expression in (28) is simply the 
'equation of motion" for the field A. The renormaliza- 
tion condition (29) calls for certain comments. Our 
scheme for calculating the ground state agrees in i t s  
idea with the scheme used in quantum electrody - 
namics. 28 There is, however, a difference connected 
with the renormalization procedure. In PD (see also 
Ref. 171, the gap in the spectrum is not a specified 
quantity, but is obtained from the condition that the 
energy be a minimum. Therefore the natural physical 
condition for the renormalization of Vef, is a fixed 
equilibrium A = A, in a zero field. For the investi- 
gated model, all the remaining quantities a re  then 
fully defined." In this respect there i s  a qualitative 
difference from quantum electrodynamicsz8 where the 
renormalization reduces to a fixing of the physical 
charge, and allowance for the polarization of the 
vacuum leads only to corrections, nonlinear in EZ, to 
the Lagrangian of the electromagnetic field; 

The very concept of a PD in a field E i s  meaningful 
so  long a s  the notion of the gap in the spectrum is 
valid, i.e., up to fields E s E, <E,, where E, is ob- 
tained from the condition 

Therefore the formal conclusion of the existence of a 
phase transition, obtained from an analysis of Re xff 
only, is not valid, because of the intense production of 
pairs of free carr iers ,  while the transition into the 
metallic state is smooth, without singularities in the 
kinetic coefficients. A consequence of the condition 
(35) should be the vanishing of the high-frequency ab- 
sorption peak of the PD at  E -E, [of the order of lo5 
V/cm for (cH),] and the simultaneous appearance of 
the plasma edge that is typical of metals. 

It is clear from the foregoing analysis that i t  is 
meaningful to speak of a PD and of the polarization of 
i t s  ground state A = A(E) by an electric field only at 
small E (e~[,<<&), when the particle production i s  
exponentially suppressed: 

Substituting (30) in (27), we obtain V,,, a s  a function 
of A and H: 

in this case 

We recall the connection between Im V,,, with the 
density of the produced particles. The square of the 
modulus of the vacuum-vacuum amplitude is (see, e.g, 
Ref. 26) 

Equation (31) is the final result, in which i t  is neces- 
sary to return to the ( x , t )  space by making the sub- 
stitution H- -iE. Separating the real and imaginary 
parts of V,,, and restoring the dimensionality, we have 

where 10, ) are  the vacuum states a s  t - i m ,  and f i s  
the time interval during which the field acts. Let n, 
be the probability of production of a pair of carr iers  
in the state p .  The probability that not a single pair 
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is produced during the entire of action of the field E is It is seen from the foregoing equations that 

i.e ., the temperature influences mainly the pair -gen- 
eration process. In the case q<< 1 we have 

Recognizing that the p ,  interval that i s  essential for 
particle production is finite [see (1811 and assuming n,, 
to be independent of the momentum, as is confirmed 
by direct cal~ulat ion,2~ we have 

In the other limiting case, E = 0 and T f  0 (cf. Ref. 
2 5) we have Comparing (39) with (38) and (33) we obtain 

n= exp(-nA2/eEA,E,), 

and for the intensity of particle production (per unit 
length and unit time) we have 

- 2 dp. eE 
~ , - n = - J - n , = - e x  nA' a 2n nh 

Using the regular representation of the function D 
(see the ~ppend ix)  we obtain 

Equation (40) coincides with the results of Ref. 11 for 
the one -dimensional problem a t  equal masses of the 
electrons and holes. 

We return now to expression (32) where Re V,,, . It 
is easy to write with i t s  aid an expression for the in- 
duction D (E << E,) (Ref. 28): 

An expression fo r  g'" '(0) can be obtained in explicit 
form in the limit of high (PA<< 1) and low (PA >> 1) 
temperatures. At low temperatures 

where pf i s  the density of the one-dimensional chains 
in the sample. The appearance of pf in (41) is due to 
the three -dimensional penetration of the field into the 
sample. From (41) and (32) follows directly the stand- 
ard  expression for the dielectric constant of a PD in the 
linear -response limit"? 

and a t  high temperatures 

(51) 
Here @(I)  = -C i s  the Euler constant, and ~ ( 3 )  =I. 202. 
From (48), (49), and the expression for V,,, we get 

where w;=4rre2npf/m is the square of the plasma fre-  
quency, mu, = m/2, n is the linear density of the con- 
duction electrons. For the parameters of polyacety- 
lene we have E,, = 15, which correlated well with the 
experimental data. 

i t  is easy to obtain an equation for the equilibrium gap 
a t  T = 0, which naturally coincides with (30). 

The minimum of V,,, determines the equilibrium 
value of A(T). It is easy to verify that the expansion of 
V@,, a t  PA<< 1 coincides exactly with the free-energy 
functional of the PD in the Ginzburg-Landau form: 

ROLE OF TEMPERATURE EFFECTS 

We consider now the temperature corrections to (24). 
The expression for the temperature increment to g(")(s) 
is of the form 

From this follows formally the existence of a critical 
temperature T, of the second-order phase transition, 
a t  which the gap A vanishes.' 

At arbitrary q i t  is impossible to evaluate exactly the 
sums in (43). We confine ourselves therefore to cal- 
culation of the asymptotic values in two limiting re -  - 
gions, q>> 1 and q<< 1 (the details of the calculations 
a r e  relegated to the Appendix). For q >> 1 we have 

As noted in the introduction, the thermodynamics of 
a one-dimensional PD should be constructed from the 
very outset in terms of stable states-solitons. We 
note, however, that the interactions of chains can lead 
a t  certain temperatures to a decay of one-dimensional 
solitons and by the same token to restoration of the 
electronic systematics of the states in the PD. 

We proceed now to consider the field corrections to 
the free energy of the PD, recalling that the thermo- 
dynamic approach has a limited applicability i f  an elec- 
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tric field is present in the system. For the field cor- 
rection in (21) we have 

1 
-8&(6' ( s )  a i -  
BL 

29eE (+) --" Z: { D ( s ,  ~ ( b ' + i e ~ p h ~ , ) ' ~  
P-* I 

Using the properties of the D functions (see the Appen- 
dix), we can find that 

We note that according to the inequalities (15), the 
radicand in (53) must be expanded in powers of eERvF/ 
A'. It is clear that the summation over b= i 1 in (53) 
leaves only odd powers of E ,  i.e., the field correction 
(55) determines the imaginary increment to the free 
energy of the system: 

(56) 

The main effect of the field in the indicated tempera- 
ture region reduces to the appearance of a current in 
the system and to a weak (because of the small imag- 
inary part of the free energy) distortion of the equi- 
librium distribution of the particles. 

Let us analyze expression (561, which allows us to 
determine the density of the particles taken out of the 
thermodynamic-equilibrium state by the external 
field. It i s  easily seen that Im 6Veff is proportional to 
the free energy of a one-dimensional harmonic oscil- 
lator of frequency A with Fermi filling of the energy 
levels. Therefore the linear density of the nonequi- 
librium particles (with energies in the interval [A, (A2 
+pZ)lJz], where p,= cu,eEPRVF<< A) is equal to the 
probability of observing a particle with energy (A2 
+p2,)lJ2, (-PC <px <pel, integrated over the phase 
volume 

The inequality eEP << 1 makes % always smaller than 
the equilibrium density of the carr ier  pairs, and the 
influence of the nonequilibrium group of particles on 
the thermodynamics of the system can be neglected. 
In other words, this means that the average time T 

= -2/Im Vett that the system remains in a thermody - 
namic-equilibrium state is long. 

We conclude this section with a few words concerning 
the numerical coefficients a, and a,, which appear in 
the calculations of the field and temperature correc - 
tions to Veft . Usually such coefficients a re  deter- 
mined by matching together the asymptotic solutions in 
the intermediate region. In our case, however, such 
a matching i s  impossible both from the formal mathe- 
matical point of view and from the physical. Indeed, 
owing to the strong nonstationarity, in the region where 
the characteristic energy of the pair in the field be- 
comes equal to the temperature one cannot speak of 
equilibrium thermodynamics. Therefore the values of 

a, and a, - 1 cannot be determined exactly in our ap- 
proach and they must be found from a solution of the 
kinetic equation in the intermediate region. 

CONCLUSION 

We discuss now briefly the possible manifestations 
of the instability of a PD in an electric field. In the 
presence of free electrons (holes) in the band, small 
fluctuations of the lattice, with q = 2k,, become un- 
stable and this leads in final analysis to formation of 
strongly coupled electron-lattice states-solitons and 
polarons. The polaron of the Gross-Neveau model has 
an energy E, = 2 3 / 2 ~ , / r  (Ref. 13) and carr ies  a charge 
i 1 e 1 ,  and a spin 1/2, whereas the charged solitons 
have no spin. Simple estimates show that in strong 
fields cuzE, << E < E, the characteristic time t ,  -x- ' /~/  
w(2kF) of the small lattice fluctuation i s  sufficient for 
the tunnel-produced electron-hole pair to beoome 
separated far  enough from each other to make energy - 
wise possible the-formation of only e and h polarons. 
The current carr iers  in strong fields a re  therefore 
apparently the polarons, and an increase of the conduc- 
tivity should be accompanied by an increase of the 
Pauli magnetic susceptibility. In the case of weak 
fields, E s a2E,, direct production of charged soliton- 
antisoliton pairs should take place. The probability of 
this process i s  additionally suppressed (the solitons 
a re  heavy) compared with the production of e-h pairs, 
and this decreases the conductivity substantially. A 
detailed analysis of this group of problems requires a 
separate investigation. 

We have described above the picture that can take 
place a t  low temperatures eE  P 1. At high tempera- 
tures eEp2<< 1 the carr iers  in the PD a re  thermally 
activated spinless solitons. 

The authors thank S. A. ~razovski; ,  L. N. ~ulaevsk;, 
A. A. Gogolin, I. 0. Kulik, and D. I. ~ h o m s k i l  for nu- 
merous helpful discussions and for valuable advice. 

APPENDIX 

We present here a brief derivation of the equations 
needed to work with temperature D-functions (50) and 
not found in the handbook literature: 

To obtain the expressions in the main text, we need to 
know D1(O,a), D(-1/2,a), and D(0,a). We therefore 
obtain for D(s, a )  a representation that is valid, in con- 
trast  to (Al), also for R e s  < 1. Recognizing that the 
D functions are  universal in all thermodynamic cal- 
culations by the generalized 5 -function l ; ( ~ )  method, we 
present two different regular representations of (Al) 
(in analogy with the known representations of Hermite 
and Riemann for the Riemann 5 functionz7). 

REPRESENTATION OF D IN THE HERMITE FORM 

For this purposez5 we use the known Abel-Plana 
formulaz7 in the form 
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1 -  " " f (l+it) -f (i-it) 2 f ( n ) = T f ( l ) + j f ( ~ ) d ~ - i j  e2n,-1 at 
-1 

(A2) 
I 0 

as applied to (Al) we have 

Equation (A3) is regular in the entire range of s, with 
the exception of the points s = 1/2 -n  (n = 0, 1, 2, .  . . 1. 
The calculations yield 

D(O, a)=-I, (A4) 

Expressions (A4) and (A5) a r e  used to calculate the 
corrections (53). The functions D(-1/2,a) and Dt(-1/2, 
a )  a re  needed to find t; (0) in (47) and a r e  singular. 
In the equations for t; (0) and t; '' (O), the singularities 
cancel out and the answer is determined by the asymp- 
totic forms of the regular parts of the function (A3) a t  
s = -1/2. Their calculation entails no particular dif- 
ficulty [ ~ q s .  (50) and (51)]. 

REPRESENTATION OF THE D FUNCTION IN THE 
RIEMANN FORM 

Using the Riemann transformation, we represent 
(Al) in the form 

(A61 
Here 8,(z 1 T ) ,  and 8 is the Jacobi function. The inte- 
gral  (A6) converges at Re s > 1/2, and to calculate 
D(0, a )  and D1(O, a) i t  is necessary to regularize (A6). 
To this end we transform 8,(z 1 T ) ,  using the imaginary 
Jacobi transformationz7: 

O* (+ 1 - +) = (-i~)'~ exp (T2) - o ~ ( ~ I T ) .  (AV 

Using (A7) we have 

I "  n 11s 
D(s,a)==- z J e ( - a x )  ( (  -1) 

Us )  

where K,,(z) i s  a Macdonald function. Introducing the 
incomplete gamma functions y* (s , x)  and r ( s  , x)  (see 
Ref. 27) 

which a re  regular for all s and x, we obtain 
r ( ~ - v  ) I? (s, a') 

D (s, a) =-7' (s, a') + - n'"r' (s-I/,, aZ) -a-'' - r ( 4  r(s) 

Since a Macdonald function of half -integer index re- 

duces to exponentials, the ser ies  we need (s = 0) can be 
easily calculated. Calculations with the aid of (A10) 
yield a result that coincides with (A4) and (A5). 

We determine now the sums of the numerical ser ies  
that ar ise  in the calculation of the asymptotic form of 
the second term in Eq. (43) a t  q<c: 1 

" ce 

p(s)= a-"n+l)", o(s) = n-4(n+l)-'1a. 
-1 "-1 

(A13) 

It follows from (A12) and (A13) that 

Regularizing the ser ies  with the aid of the Abel-Plana 
formula, we obtain 

C=pl(0) + ST(-'/z) 0-3.26: D=Er('/,) +0'(0)-2~(1)-2c ( I / , )  z-l0.3%, 

(A161 
i.e., 6Veff a t  q<< 1 [cf. (44) and (45)] is equal to 
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