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Damping of phase oscillations of charged particles trapped by accelerating electromagnetic waves is 
determined for the specific case of a circularly polarized wave. The universality of the effect is deduced from 
the nature of the adiabatic invariant of the trapped particles for a broad class of waves. The physical origins of 
the effect are the moving apart of the walls of a potential well and the relativistic increase in the mass of the 
particles. The effect results in the acceleration of the particles to high energies and in anomalously strong 
absorption of the waves by these particles. 

PACS numbers: 41.70. + t 

The acceleration of particles trapped by electromag- 
netic waves traveling at an increasing velocity is  self- 
evident and has been discussed on many 
A nontrivial aspect of this effect i s  the retention of the 
particles in the trapped state, i.e., the problem of a 
change in the amplitude of phase oscillations of the 
trapped particles a s  a result of a change in the wave 
parameters. This aspect i s  discussed in Ref. 8 using 
an adiabatic invariant; it i s  shown there that such phase 
oscillations a r e  damped for a moderately fast decrease 
in the wave amplitude. Moreover, the law of conserva- 
tion of energy has been used elsewhereg to show that the 
acceleration of particles may continue until a wave 
transfers almost all its energy to the particles. 

We shall show that the strong trapping of particles by 
accelerating waves i s  due to a characteristic physical 
effect which is  collisionless relaxation of phase oscilla- 
tions. In decelerating waves such phase oscillations 
usually grow, i.e., the trapped particles a r e  not re-  
tained by a wave. The effect occurs in waves of any 
type which can ca r ry  trapped particles. They include 
waves with a phase velocity smaller than the velocity 
of light c, a s  well a s  amplitude-modulated waves, wave 
packets, and fronts. In the last  case  the trapping 
occurs at the group velocity and the confinement i s  due 
to an average longitudinal force resulting from an in- 
homogeneity of the wave amplitude. The physical origin 
of the effect is  the acceleration of the potential wells 
formed by the waves, so that we shall not consider the 
influence of some secondary factors such a s  the defor- 
mation of wells because of dispersion and absorption, 
particle collisions, etc. 

We shall consider a circularly polarized wave de- 
scribed by the vector potential 

A,=A(z )  cos Q, A,=-A(Z)  sin I$, (1 
$=ot- J k ( z ) d z ,  o=const, (2) 

where A (2) and k(z) a r e  sufficiently slowly varying func- 
tions, so that the process of separation of the explicit 
dependence on the phase J, i s  meaningful (we shall use a 
system of units in which the lengths and velocities a r e  
divided by the velocity of light c, whereas the momen- 
tum p, energy, and potential a r e  divided by mc, mc2, 
and mc2/e, respectively, where m and e a r e  the rest 
mass  and charge of a particle). 

We shall assume that the slow variation of the wave 
number k and the amplitude A along the longitudinal co- 
ordinate z i s  due to the presence of a weakly inhomo- 
geneous medium whose influence is  manifested by the 
existence of a permittivity ~ ( 2 ) .  We shall assume that 
the medium i s  such that the wave described by Eq. (1) 
i s  decelerated, & ( z ) >  1, and can carry  trapped parti- 
cles.  It should be pointed out that these particles can 
also contribute to the wave deceleration.1° 

In the case  of particles trapped by the wave of Eq. (1 ) 
there i s  an adiabatic invariant6'" 

where P>O is a parameter representing the intensity 
of phase oscillations: when P=O, the phase oscillations 
disappear, whereas for P= 1 the peak-to-peak ampli- 
tude of the oscillations reaches 2r, and for P> 1, the 
particle passes through; a combination of complete 
elliptic integrals B(P) varies monotonically from 8/4 
to 1 throughout the interval 0 < P < 1. 

Considerable acceleration of the trapped particles and 
a corresponding strong wave attenuationav9 follow from 
the adiabatic invariant of Eq, (3). When there a re  rela- 
tively few trapped particles, their acceleration in the 
k- w case can be divided arbitrarily into two stages: in 
the first  stage the wave amplitude A varies slightly be- 
cause the number of particles i s  small  and the change 
in the trapping parameter P i s  governed by the reduction 
in the denominator (k2 - w')~'~, i.e., phase oscillations 
relax and the particle confinement becomes even 
stronger; however, the wave energy i s  finite and we un- 
avoidably have the second stage when the reduction in 
A becomes so strong that it masks the reduction in the 
denominator of Eq. (3), the parameter P increases, and 
for  P= 1 the particles a r e  released. In view of the 
smallness of the denominator the value of A at the mo- 
ment of release i s  so small that we can speak of com- 
plete absorption of a wave and of the transfer of all i ts  
energy to the accelerated particles. The wave attenua- 
tion then increases with decreasing trapped-particle 
concentration N. However, this concentration clearly 
has a lower limit so  that trapped particles form a 
continuum relative to the wave: N>> k3. 
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It follows that the effect under discussion i s  due to re- 
laxation of phase oscillations of trapped particles in ac- 
celerating waves. We shall consider this effect in 
greater detail. We note particularly that in the case of 
a particle interacting with plane waves there i s  an in- 
tegral of motion 

p,+A,=C=const, (4) 

which allows us to eliminate the transverse momentum 
from all the equations. The longitudinal equation of mo- 
tion of a particle in the wave described by Eq. (1) 

d A  
y % = ~ A C  sin c p + ' -  (C cos c p - A )  

dz 
(5 

can be transformed with the aid of the equation for the 
energy Y 

a7 7 -=WAC sin cp 
dt 

and with the aid of the identity 

to the following equation describing the longitudinal 
velocity: 

i+(C-A,)' d2l. ' d A  2 + oACu, sin cp= (C cos cp-A)- + kAC sin cp .  (8) 2 )  dz d z  

In 4 s .  (5)-(8) the symbol cp i s  the angle between the 
vectors A and C: 

cp=$-tpo, C.=C cos rp,, c.=-c sin $,. (9 

Differentiating Eq. (2), we obtain 

The exact equation for cp(z) follows from E ~ S .  (8) and 
(10): 

1+C2+AL-2AC cos cp o2 
(k'fcp") +A' (C cos cp-A) 

(k+cp')2-oZ k+cp' 

The primes denote differentiation with respect to z. 

If we substitute cp'=cpl'=O, we obtain the following equa- 
tion for the equilibrium values of p=cpo: 

1+C2+A'-2ACcos cpo oak' -- A C 
k 

+ A1(C cos cpp-A) + '- (k2-o')sin cp,=O, 
kz-oZ k 

(12) 
The relaxation of the phase oscillations is important 
when A' i s  small; in accelerating waves we have kt< 0; 
and kZ- wz>O, so that sincpo>O. 

The existence of equilibrium states can be understood 
physically. In these states the longitudinal velocity and 
acceleration of a particle are  identical with the phase 
velocity and acceleration of the wave: 

o du, d o 
u;=- -=-- 

k '  dz dz k '  

The above equality applies if a particle experiences a 
longitudinal force 

F.=U,B sin Q (u,, B), (14) 

corresponding to a specific value of the angle cp (B 
=curlA is the magnetic field of the wave). 

We shall consider the stability of equilibrium states in 
the presence of small phase oscillations. We shall rep- 
resent the angle cp in the form 

where 6cp i s  so small that we can linearize with respect 
to it: 

I+C+Aa-2AC cos cp, @,,+ ( l+C2+A'-2ACcos q,, XI (aL-3k2)  

k'-o' (k=-o')' k 

kCA ' 
sln TO-  -sin cpo 6 q = 0  

o2 1' 

These equilibrium states a re  stable if the coefficient of 
6cp i s  positive (the coefficient of 6cp" i s  always positive). 
The stability of the equilibrium states implies the pres- 
ence of phase oscillations, i.e., the possibility of par- 
ticle trapping. 

The main result which follows from Eq. (16) is the 
positive nature of the coefficient in front of ucp' in the 
case of an accelerating wave characterized by kl<O. 
This implies a relaxation of phase oscillations. It 
should be noted that the coefficient of 6cp' may be great- 
e r  than that of 6cp, i.e., the angle cp may approach 
monotonically its equilibrium value. It follows that the 
confinement of particles by accelerating waves i s  very 
stable, which is identical with the result obtained above 
from the adiabatic invariant. 

It should be noted that a similar qualitative result i s  
obtained also on investigation of a change in the adia- 
batic invariant because of the finite nature of dk/dz 
(Ref. 12). 

We shall now show that the relaxation of phase oscilla- 
tions of particles trapped by accelerating waves i s  a 
fairly common effect. This follows from the nature of 
the adiabatic invariant of a broad class of weakly in- 
homogeneous steady-state waves with k=k(z) and w 
=const: 

where the integration is carried out during one period 
of the particle motion. This adiabatic invariant follows 
from the earlier" exact equation 

dY dk dA.  C-A, aA, - = y - - o a z - " - .  
dz d z  p, a z  

(18) 

The differentiation is carried out with respect to an ex- 
plicit slow variable z and the quantity 

Y - k y - o  (pz+A,)  
(19) 

i s  the integral of motion of waves with constant parame- 
ters. 

Bearing in mind that 

if it i s  assumed that the selected gauge makes the scal- 
a r  potential zero (this does not limit the generality of 
the treatment because the longitudinal wave field is de- 
scribed fully by the longitudinal component of the vector 
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potential A,), it can easily be shown that 

In the case of trapped particles the adiabatic invariant 
of Eq. (17) is 

where and $, are the values of the phase which cause 
the integrand to vanish. The factor (k2 - &)-' in front of 
the integral indicates a reduction in theswing amplitude 
of phase oscillations I zJ2 - h1 on increase in the phase 
velocity of the wave k ( z ) -  w, a s  long as the amplitudes 
A, and A, decrease moderately rapidly. 

The universality of the relaxation of phase oscillations 
follows from the universality of the adiabatic invariant 
(22): the latter i s  valid in the case of relativistic par- 
ticles in transverse, longitudinal, and mixed waves of 
arbitrary form, with all the parameters (wave number 
and, consequently, phase velocity, as  well as wave in- 
tensity and profile) varying slowly along the direction 
of propagation. 

A similar result i s  obtained for particles in ampli- 
tude-modulated waved3 and waves propagating along a 
static magnetic field.14 It should be noted that the re- 
sults of a direct numerical modeling of the behavior of 
trapped particles in accelerating waves traveling along 
a static magnetic field demonstrate that phase oscilla- 
tions a re  damped even for w/k< 1,15 which also implies 
relaxation of these oscillations. 

The relaxation of phase oscillations is easy to under- 
stand physically. In the case of nonrelativistic values 
of the phase velocity k >> w the acceleration of a wave 
increases greatly the wavelength; in the case of trapped 
particles this is equivalent to the motion of the walls of 
a potential well away from one another and it i s  to these 
walls that a particle gives up its vibrational energy. In 
the relativistic case of k-w=const an increase in the 
wavelength is unimportant but an increase in the mass 
of the trapped particles becomes significant and it i s  
proportional to (k2 - u~) '~ '~ ,  SO that the amplitude of 
phase oscillations also decreases. 

We shall conclude by noting that the confinement of 
particles in waves is governed by the parameter eE/ 
mcw (E is the electric field of the wave) and the effect 
is important in the case of sufficiently low wave fre- 
quencies. 'herefore, it follows from our mechanism 
that we can expect a dip of the electromagnetic radia- 
tion spectrum at low frequencies. 

The effect under consideration gives rise to a rela- 
tively small number of particles of high energies, typi- 
cal of cosmic rays. Therefore, the mechanism applies 
also to the generation of cosmic rays and the associated 
astrophysical phenomena." Moreover, such accelera- 
tion causes strong absorption of the wave energy and, 
therefore, it may be of interest for radiative plasma 
heating. We can thus see that trapped particles are  
well entrained by the carr ier  waves if the velocity of 
the latter increases; this is fairly universal and causes 
particle acceleration and anomalously strong wave ab- 
sorption. 
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