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An analysis is made of the behavior of an isolated atom (or an impurity center in a semiconductor) in a strong 
electromagnetic field characterized by a photon energy slightly higher than the ionization potential of the 
atom (impurity center). It is shown that an increase in the effective ionizaton potential occurs in sufficiently 
strong fields so that one-photon absorption disappears. The role of two-photon transitions is discussed. 

PACS numbers: 32.60. + i, 71.70.Ej 

1. The Stark effect in an alternating field (dynamic ing density on approach to the continuum, the effect be- 
Stark effect) has been investigated intensively in the comes much more complex. We shall discuss the sys- 
case of two-level systems.' We shall consider the dy- tem shown in Fig. 1 and ignore excited states. 
namic Stark effect in the case of transitions from a dis- 

2. The wave function of an electron in the presence cre te  level to a continuum. The transitions can occur 
of an electromagnetic wave should satisfy the Schroding- 

in, for example, an atom or  an impurity center in a 
e r  equation 

semiconductor in a strong electromagnetic field of phot- 
on energy Rw slightly higher than the ionization potential 
I of the atom or  impurity center (Fig. l a ) .  We shall 
show that when the field is sufficiently strong, the ef- 
fective ionization potential increases so  that it becomes 
greater than the photon energy. One-photon absorp- 
tion then disappears. Manifestation of this effect de- 
pends on the profile of the linear absorption edge. If the ab- 
sorption r i ses  from zero,') there is a certain threshold o r  
critical field I t ,  beginning from which the effective ioniza- 
tion potential go becomes greater than i iw . One-photon ab- 
sorption vanishes when the field reaches the threshold 

Here, H i s  the Hamiltonian describing the stationary 
unperturbed states of an electron in atom; v is  the oper- 
ator of the interaction of an electron with the wave field, 
given by 

and 2 i s  the projection of the dipole moment operator 
along the direction of the electric field vector %' of the 
electromagnetic wave. 

value. In the range > g, a strong bound state i s  The wave function J ,  will be sought in the form 
formed: it represents a superposition of states at the 
discrete level and states in the continuous spectrum, 

- 
$=B, ( t )  ei@'40+ j Bs (t) gse-""h dE. 

and this bound state is localized near the atom in a r e -  
gion [ti 2 / m ( ~ '  - RU)]"~. Under these conditions the ab- 
sorption i s  entirely due to many-photon transitions. 

The threshold field intensity decreases on increase in 
the steepness of the absorption edge and in the hypothe- 
tical limiting case of a step-like edge of the linear ab- 
sorption process a localized state i s  formed in an elec- 
tromagnetic field no matter how low the intensity of this 
field. If there is  a system of excited levels of increas- 

FIG. 1. a) Discrete level and continuum in a weak electro- 
magnetic field with a photon energy Aw not exceeding the ioniza- 
tion potential I. b) Discrete level and a continuum in a strong 
electromagnetic field of amplitude I> %'=. 

Here J,, is  the wave function of an electron a t  a discrete 
level of energy E ,  = -I; II, a r e  the wave functions of 
electron states in a continuum, normalized to the 6 
function of the energy; E i s  the energy measured from 
the edge of the continuum. The integral in Eq. (3) im- 
plies, if necessary, also summation over other (apart 
from the energy) quantum numbers. 

Equations (1)-(3) yield the following expressions for 
the coefficients B,(t) and B,( t ) :  

dBO(t) 1 
- 

it? - =tiBBo (t) - - (8e-2'"' +K) d,B,(t) e-'E"h dE, 
a t  2 

0 (4) 

aBE(t) 1 a = - -  (eP+eP' e"'") d,,B, (t) em"". 
at  2 

Here, fin =fiw + E,=tiw -I; do, i s  the matrix element 
of the dipole moment operator corresponding to a tran- 
sition between a discrete level and a state in a contin- 
uous spectrum. In the system (4) we have ignored the 
terms describing transitions between the states in a 
continuous responsible for many -photon processes. 
The role of many-photon transitions will be discussed 
later. 

We shall assume that BE = 0 in the limit t = --, ex- 
press  B,(t) in terms of B,(t) using the second equation 
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in the system (41, and substitute the result into the first  
equation. We then obtain 

The terms oscillating at  a frequency 2w a r e  dropped 
from the system (6). 

3. The solution of the integral Eq. (6) can be found 
in the form B,(t)  a: eiAt . The quantity A i s  described by 

Here, v- 0. 

Equation (7) defines the quasienergy E,' of a discrete 
level perturbed by a field: E,' = E, - tiA - t in  (Fig. lb). 
The new "ionization potential" is  

We shall show that under certain conditions Eq. (7) has 
a real  solution A >  0. Then, I' > tiw and one-photon ion- 
ization does not occur. The function l (A) is  identical 
with the linear polarizability a t  a frequency w for an 
atom whose discrete level is  shifted by an energy i iA 

+fin downward (this corresponds to the replacement of 
E, with E,'). Apart from small terms -D/w, we can say 
that l(A) is  identical with the linear polarizability of an 
unperturbed atom ~ ( w ' )  a t  a frequency w ' ,  which is  less 
than the field frequency w by an amount D+ A: 

We can see from the system (8) that the right-hand 
side of Eq. (7) decreases monotonically on increase in 
A > 0, whereas the left-hand side r ises  monotonically. 
Therefore, there i s  a solution A;. 0 of Eq. (7) provided 
the right-hand side of Eq. (7)  corresponding to A=O i s  
greater than 52. 

If Id,, I' i s  finite for E = 0, it then follows that X(A) - w in the limit A > 0 and the solution A > 0 exists for 
any value of the field intensity. Then, for low values 
of A we have 

where w, i s  the frequency of the atomic order defined 
by 

The prime denotes differentiation with respect to E and 
within the approximations adopted here we can assume 
that Ew=Z. Solution of Eq. (7) in low fields then has 

the form 

A-on exp [-4hQl( I dm 1 YS-dP], 

which resembles the expression for the Cooper coup- 
ling energy in the theory of superconductivity. '' 

We shall now consider the case when Id,,l - 0 in the 
limit E -0. In this case the value of T((A) is  finite and 
the solution of Eq. (7) for real values of A > 0 exists in 
fields exceeding the threshold or critical value $, given 
by 

~:=~RQI$(O). (12) 

If ti 52<< I, which is true in the case under discussion, 
the threshold field is  much less than the atomic value. 

4. It i s  interesting to consider the behavior of A in 
fields lower than the threshold value. Then, A is  a 
complex quantity given by A =  A1+i r ,  where l? is the 
decay of the bound state due to the ionization of an atom. 
We shall see below that I A 'I and A ' <  0 so that Eq. 
(8) yields 

w -. 
%(A)  =~(O)+in(l&~l')~,-,~.. (13) 

Then, Eq. (7) gives 

It is clear from Eq. (14) that the shift and decay of 
the level a r e  governed by the shape of the absorption 
edge, i. e. ,  by the dependence of ldEOl2 on E at the 
threshold. We shall assume that at  the absorption 
threshold we have ld,012 = y,(E/Z)', where X, is a quan- 
tity of the order of r((0) and a i s  a positive number. It 
then follows from the expressions in Eq. (14j t h d  

We can now see that when the field increases from zero 
the value of A' r i ses  from A'= -D (this corresponds to 
a shift of the level energy) and vanishes at  the threshold 
field. The low-field decay I' i s  proportional to g2 and 
reaches it maximum at g2  = 8: /(1 + a )  and then vanish- 
e s  a t  the threshold field. The maximum value of r i s  
of the order of D(fiD/Z)u. Figure 2 shows schematically 
the field dependences of A' and I'. By way of example, 
we shall consider the exactly soluble problem of a cen- 
ter  with zero radius. We then havegs4 

FIG. 2. Dependence of A' (continuous line) and of the decay 
constant (dashed curve) on the applied field. 
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Here, a,= (82/2m1)112. In the case of a one-dimension- 
a1 delta potential, we obtain 

5. We shall now consider the problem of the wave 
function of an electron in a quasibound state in a field 
exceeding the critical value. It follows from Eqs. (3) 
and (5) that if B0( t )aeiAt  , we obtain 

where the quasienergy i s  E i  = -E(w + A). (We recall that 
zero on the energy scale i s  the boundary of the contin- 
uous spectrum. ) We may conclude from Eq. (16) that 
the wave function is  a superposition of a discrete state 
and of an electron cloud formed from the states in the 
continuous spectrum and having the dimensions (A2/ 
mAa)lf2 [this localization radius corresponds to the 
second term in the brackets in Eq. (16)]. The function 
(16) is normalizable and the normalization constant can 
be written in the form 

The quantity W gives the ratio of the probability of 
finding an electron in a cloud to the probability of find- 
ing it in a discrete state. If a t  the threshold we have 
Id, 1 2 =  E m ,  then in the range a! < 1 this ratio amounts to 
-(Sl/A)1-a(A52/I)m (in a field higher than the threshold 
value). We can see  that W - in the limit A + 0, i. e. , 
this occurs in the threshold field. However, even a 
slight excess above the threshold value causes W to de- 
crease and become a small  quantity ( A =  52 when g2 
= 21:). If a! > 1, then W -RSl/I and it i s  always small. 

We can easily calculate the average dipole moment in 
the state of Eq. (16) and find the effective permittivity 
of the medium governing the velocity of a strong wave: 

where 6,  i s  the contribution to the permittivity not as-  
sociated with the transitions under discussion, N i s  the 
concentration of the atoms, and ~ ( w )  i s  the atomic po- 
larizability. If 1 >  1, is real .  

6. We shall consider the behavior of our system af-  
ter  abrupt application of an electromagnetic field a t  a 
moment t = 0. We shall assume that BE= 1 for t < 0. 
Then, we find that Bo(t) i s  described by an integral 
equation differing from Eq. (6) only by the fact that the 
upper limit in the integral with respect to T i s  t .  This 
equation i s  easily solved by the Laplace transformation 
method and in the limit t - only the contribution of the 
S = iA remains (we a r e  assuming that the field i s  high- 
e r  than the threshold value and A is  real) .  We can eas- 
ily show that in this case we have 

where W i s  given by Eq. (17). Hence, it i s  clear that 
in a field which is not too high above the threshold an 
electron i s  most likely to remain in the state (16) and 
it will not be ejected from an atom. 

When a field i s  applied abruptly, its spectrum has a l l  
the frequencies including those of the atomic order.  A 
more interesting (and of greater practical importance) 
i s  the case when a field i s  applied slowly. We then find 
that B,(t) can be described by a differential equation. 
If we allow for the time dependence of the amplitude $, 
we obtain the following equation instead of Eq. (6): 

We shall make the substitution 

Bo(t)=bo(t)exp (ijA(tl)dt'}, 
0 

where A(t) satisfies Eq. (7) for  the value ff at  the mo- 
ment in question; then, b,(t) i s  described by 

1-1  1 dA (t) 
@=A(t)r- A(tf)dt'=--+. 

2 dt 
I 

In the last case we have allowed for the fact that A(t) 
does not change greatly over t ime intervals on the atom- 
ic scale and the expression in the brackets of Eq. (19) 
can be expanded a s  a se r i e s  in terms of T and it is  pos- 
sible to retain only the t e rms  containing the first  de- 
rivatives with respect to time. Then, Eq. (19) be- 
comes 

X2 4 ( A )  abo( t )  Xz dA d % ( ~ )  
[ j - x ~ l ~ = [  E -ZT 

This equations is  readily solved: 

Here, W i s  described by Eq. (15) for instantaneous 
values of '8' and A. Since b, i s  identical with the nor- 
malization constant A in the wave function (16) the prob- 
ability that an electron remains in a quasibound state up 
to t i s  

IBo12 
I 

- I A I '  =exp [-2 Jr(tl)dtl] . ~ ( t )  = ~ m  A (t), 
0 

Equation (21) describes the decay of a quasibound state 
up to a moment t, at which the field reaches its thresh- 
old value. The total decay probability in fields P( t )  
> gC i s  

The probability of decay i s  low if the atom i s  not ion- 
ized in a time that the field r i ses  to the threshold value. 

7. We shall now consider the role of two-photon ab- 
sorption. The decay constant r, representing two-phot- 
on absorption is  proportional to g4 and, therefore, its 
order of magnitude is 1 4 a E / ~ I .  If the field exceeds the 
critical value, we find that I?' - Sl (tiSl/Z). On the other 
hand, the maximum value of the one-photon decay con- 
stant is  r - Sl(Rf2/I)" [we recall  that a! is  the power ex- 
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FIG. 3. Optical transition of an electron from an impurity 
level of an acceptor type 44) to the conduction band. 

ponent in the dependence of the photoionization cross 
section on the excess of the photon energy above the 
ionization energy: o- (liw - I)']. If a = $, we find that, 
a s  in the case of negative hydrogen ions, two-photon 
absorption in fields of the order of the threshold value 
masks completely those changes in the one-photon ab- 
sorption which a r e  discussed above. However, if a! 
- - - 29  then in a wide range of fields the two-photon ab- 
sorption process should be much weaker than the one- 
photon process. 

The value a = corresponds to a hypothetical case 
of a one-dimensional potential and to a real case 
of an allowed transition between a deep center and a 
band state in a semiconductor. For example, it applies 
to a transition between an acceptor p-type state and an 
s-type conduction band, accompanied by the creation 
of a hole at an acceptor and of an electron in a band 
(Fig. 3). 

We shall conclude by estimating the threshold o r  cri-  
tical optical power. If AS2-10 meV and a,-30 A,  we 
find that $, =& St/a,- 4 lo5 V/cm, which corresponds 
to a power density of -10' W/cm2. The maximum value 
of the one-photon decay constant is  -10" sec-' (for a 
= 3 and I= 1 eV) whereas the two-photon absorption is 
an order of magnitude less. Light pulses rising to the 

critical power density in a time shorter than I"" should 
travel without absorption by the substance. 

Photoionization of an atom in a strong field was con- 
sidered by Kazakov et al .  using the general Fano theo- 
ry6 on the interaction of a discrete level with a contin- 
uous spectrum. Impurity-band electron transitions in 
the field of a strong electromagnetic wave were dis- 
cussed by Elesin. However, the treatments reported 
in Refs. 5 and 7 ignored not only the possibility that a 
level may split off from the continuous spectrum be- 
cause of the dynamic Stark effect, but also the effec- 
tive ionization potential. 

" ~ n  example of such a system is the negative hydrogen ion 
K or deep impurity centers in semiconductors. 

 he analogy between the problem of the interaction of a dis- 
crete level with a continuous spectrum (to which our problem 
is reduced) and the Cooper pairing was pointed out in the book 
by Baz', Zel'dovich, and ~ e r e l o m o v . ~  

3 ' ~ n  fact,since f(A) or its derivatives have a singularity a t  
A - 0, the conditions of validity of Eq. (20) a re  more strin- 
gent: the field should not vary significantly in time intervals 
- l /A.  
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