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A new theoretical formula for the unstable-state excitation probability is given which takes account of the so. 
called virtual transitions. An improved version of the experiment for measuring the Lamb shift and the 
spectral line shape is proposed. The gauge-invariance problems encountered in line-shape calculations are 
discussed and solved in this experiment. 

PACS numbers: 3 1.30.J~ 

1. INTRODUCTION Kuo-Ho yang3 has proposed for line-shape calcula- 

An unstable state is characterized by some energy 
distribution. It has been successfully measured in 
Lamb-shift experiments. Microwave radiation of 
frequency k induces transitions in hydrogen atoms 
from the metastable 2S state into the short-lived 2 2 ~ , , ,  
state. The dependence of the number of atoms r e -  
maining in the 2S state on the difference k -u, where 
x i s  the difference between the energies of the 2 s  
and 2P levels, is measured. This function will be 

tions a nonstandard method in which the states of the 
atom a re  described by the eigenfunctions of a gauge- 
invariant operator that, generally speaking, does not 
coincide with the Hamiltonian's free part determined 
in the usual fashion. This method yields in any poten- 
tial gauge the same results as the E *q  interaction. 
This can be considered to be the solution to the Lamb 
problem. But Kuo-Ho Yang3 considered an electron 
interacting only with an external electromagnetic field. 

called the line shape of the 2P level. In Sec. 3 we discuss the general case in which the 

Lamb1 has pointed out that the observed line shape 
agrees with the result of the calculation (performed 
in the Weisskopf-Wigner approximation) in which the 
microwave field is described by an external scalar 
potential equal to E *q (q  is the electron coordinate 
and E is the microwave electric field). But a similar 
calculation in which the same field is described by 
the corresponding nonzero vector potential A and a 
zero scalar potential yields another line shape that 
does not agree with observed shape. Lamb writes: 
"Of course, the difference between the perturbations 
E *q  and -A p/m just corresponds to a gauge trans- 
formation under which the theory i s  known to be in- 
variant, s o  that both perturbations must lead to the 
same physical predictions. Nevertheless, a closer 
examination shows that the usual interpretation of 
probability amplitudes i s  valid only in the  former 
gauge. . . " (i.e., for E *q). 

This problem has been discussed in a number of 
papers. In Refs. 2 -4, the choice of the E *q interac- 
tion i s  justified. In Refs. 5-7 i t  is asserted that the 
same result i s  obtained with either interaction, but in 
fact this was demonstrated for processes described by 
the S matrix, i.e., processes of the scattering-reac- 
tion type. In Sec. 2 of the present paper we show why 
the measurement of the line shape and the Lamb shift 
itself should not pertain to this type. We indicate a 
modified experiment in which they should be measured. 
This experiment i s  not described by the S matrix. It 
can be shown that, in the case of this experiment, the 
standard calculations yield different theoretical line 
shapes in different gauges (see Secs. 2 and 4), s o  that 
the Lamb problem i s  not removed by Fried's5 and 
Davidovich and Nussenzveig's6 investigations. A simi - 
lar  problem ar ises  for other observable quantities 
(see Sec. TV of Ref. 3) .  

electromagnetic field is quantized. We consider the 
form of quantum electrodynamics proposed in Refs. 
2, 8-10. We show that the free part  Ho of i t s  Hamil- 
tonian i s  invariant under any gauge transformations. 
Also invariant a re  the eigenfunctions of Ho that de- 
scribe the initial and final states and the interaction 
Hamiltonian HI. We obtain with the aid of such Ho 
and HI gauge-invariant results for Unon-S-Matrixn ob- 
s e r v a b l e ~ ,  in particular, for the line shape measur - 
able in the experiment suggested in Sec. 2. In the 
Coulomb gauge of quantum electrodynamics, for ex- 
ample, these results a re  obtained by a complex non- 
standard method. At the same time, the standard 
computations yield the same S matrix in any gauge. 
We show that the E *q-type interaction ar ises  in the 
form of the theory under discussion. 

In Sec. 4 we propose for line-shape calculations a 
formula, (20), that takes account of the so-called vir- 
tual processes. 

The gauge-invariant methods, discussed in Secs. 3 
and 4, of computing line shapes predict that the ex- 
periment proposed in Sec. 2 should yield the same 
line shape a s  the existing experimental techniques 
based on Lamb-shift measurements (see, for example, 
Refs. 11 and 12). 

2. LINE SHAPE AND GAUGE INVARIANCE OF THE S 
MATR l X  

1. Fried5 has performed the following Lamb-experi- 
ment-related computation. A microwave photon of 
frequency k falls on an atom in the 2S state. The 
probability amplitude T for transition into the final 
1s-plus -a-Lyman-photon - y  state is computed (as a 
function of k). The main contribution is made by the 
"resonance channel" k + 2s - 2P- 1s + y. But other 
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intermediate channels, e.g., k + 2S - 3P- 1S + 7, 
which a r e  characterized by strong energy noncon- 
servation in the virtual transitions k + 2.9 -- 3P and 
3P- IS  + y ,  a r e  also possible. Denoting the contribu- 
tion of all such background channels" by B, we repre - 
sent T a s  R +B in the case of the A  * p  / m  interaction. 
In the case of the E *q interaction we correspondingly 
have T t=R '  + B'. Fried showed (in the f i rs t  nonzero 
approximation) that, although R# R', T = T'. A  simi- 
l a r  calculation is reported in Ref. 6. It turns out in 
that case that B' is small, s o  that R + B R'. 

The equality T = T' can be regarded a s  a manifesta- 
tion of the well-known property of nondependence of 
the (renormalized) S matrix on the choice of the gauge. 
Let us emphasize that al l  the other known demonstra- 
t i o n ~ ~ ' ~  of the equality of the results  given by the 
A * p / m  and E *q interactions pertain to S-matrix 
processes. 

2. But only the resonance term, and not the total 
amplitude, i s  directly related to the Lamb shift. In 
fact i t  is the level shift of just the 2P state that we a r e  
interested in. If the Ubackground7' is substantial, then 
the experiment should be modified in such a way that 
i t  singles out precisely the resonance term. For ex- 
ample, i t  is necessary to measure (as a function of & )  

the number of Lyman photons emitted after the beam 
of hydrogen atoms gets out of the range of action of 
the microwave field. Then the contribution of all the 
nonresonance channels will decrease: in contrast to 
the resonance contribution, i t  will not increase in 
time (the extent of energy nonconservation in the tran- 
sition k + 2P- 3P is much greater than the width of the 
2P level corresponding to a lifetime of 1.6 x lo-' sec). 

This 'purer" experiment is no longer described by 
the S matrix, since i t  provides information about the 
intermediate phase of the k + 2S - 1S + y process, and 
not just about the initial and final phases (it can be 
asserted further than only the delayed y photons a re  
measured in the experiment). For this experiment, 
the A  *p/m and E *q interactions give different an- 
swers (R and R' respectively). 

3. Let us note that, instead of R o r  R', i t  is suf- 
ficient to compute the k + 2s- 2P transition probability, 
since the experiment can be se t  up in such a way that 
the subsequent decay 2P - IS  + y will be registered 
with probability equal to 1. It is precisely the k + 2S - 2P transition probability that was computed by Lamb, 
and is computed by Newton et al. in Sec. 4.2 of Ref. 
11. A  new formula for i t s  computation will be pro- 
posed in Sec. 4. 

3. QUANTUM ELECTRODYNAMICS WITHOUT A 
GAUGE GROUP 

A new form of quantum electrodynamics applicable 
to localized charges has been proposed by Power and 
Z i e n a ~ , ~  Wooley,8 Babiker et al.,' and the present 
author.1° We show in Ref. 10 that it can be regarded 
a s  another gauging of electrodynamics (along with the 
Coulomb gauge, for example), with the condition (8) 
(see below) a s  the gauge condition. In this section we 

show that this condition i s  s o  strong that this form of 
the theory actually does not contain a gauge group, and 
therefore there should be no grounds for the appearance 
of difficulties with the gauge noninvariance of Ho and 

HI. 

We shall limit ourselves to the consideration of the 
simple case of one spinless electron interacting with a 
quantized electromagnetic field. The generalization 
to the case of second -quantized Dirac electrons offers 
no difficulties (see Ref. 10). 

1. The new gauge i s  obtained from the Coulomb 
gauge by means of the canonical transformation 0' 
= S+OS of the Coulomb gauge operators 0 with the fol- 
lowing operator S :  

The integral in (1) is evaluated along the straight line 
joining q to the coordinate origin, which is located at  
the center of the potential W binding the electron. 
The Hamiltonian of the Coulomb gauge in the case un- 
der  consideration has the form 

H= [p-eA,  ( q )  I2/2rn+ W ( q )  +I/,  dJz [ELZ ( x )  +HZ ( x )  1. (2 

We have 

q'--S+qS=q, A,'=A,, H1=fI,  

pf=S+pS=p+eVA(q), 

Using (3) and (4), we obtain 

~-eA,(q)-p'-e[A~(q)+~A(~)] --p'-ea(q). (6) 

Here a =A, + V A can be regarded a s  a new potential. 
Its expression in terms of the magnetic-field operator 
is found in Refs. 8 and 10: 

As can be seen from (4) and (7), the operators p' and 
a a r e  connected with p and A, by an operator gauge 
transformation. The potential A, satisfies the gauge 
condition div A, = 0. The following condition can be 
imposed on the potential a: 

It is not difficult to verify that the mean part  of (7) 
satisfies the condition (8). The imposition of the con- 
diton (8) forbids the inverse transition to the Coulomb 
gauge with the aid of the gauge transformation that is 
the inverse of (4), (7), since A, does not satisfy (8). 

The Hamiltonian (2) expressed in terms of the new, 
primed operators i s  given in Ref. 10: 

9' 

H =  (p'-ea)Z/2rn+W ( q ' )  -e 5 @.ELf ( 5 )  
(I 
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Here E = S*E,S# El (see Ref. 10) and 6" i s  the 
"transverse pa r t  of the 6 function." For a discussion 
of the last  (divergent) t e rm in (9), see  Sec. 4.2 of 
Ref. 2. 

2. The theory described by the Hamiltonian (2) is 
invariant under the gauge transformation 

Here x should be a harmonic function, i.e ., V- VX = 0, 
since div A,= 0. If we require that the potentials A, 
and A, + V X  decrease a t  infinity (we a r e ,  of course, 
talking about their matrix elements), then vx - 0 a t  
infinity. If A X  = 0 everywhere, then VX = 0 also 
everywhere, and the group (10) does not exist.  But 
we a r e  considering here  physical sys tems located in a 
finite volume V (e.g., within the confines of a labora- 
tory). If (10) exists  only for points x belonging to the 
portion V of al l  space, then A X  does not vanish 
everywhere, and therefore VX can decrease a t  infinity 
without vanishing identically. For example, an in-  
finite current-carrying solenoid induces a nonzero po- 
tential A, - V x in the surrounding space. Another ex -  
ample i s  the Uquasi-gauge" transformation (26) in 
Ref. 10. 

Let  us  show that even this gauge freedom is not 
possessed by the potential a and the new electron mo- 
mentum p'. Let us try to write 

Since (8) should be valid for  5 and a ,  we have 

if V encompasses the entire region V, in which the 
electron is localized. It turns  out that ~ ' ( q )  i s  a con- 
stant, and Vx'=O. 

It can be shown that the gauge transformation (11) 
with OX' + 0 can occur only if V does not encompass V,: 
V, u V+ V, Ve l,n V+ V,. But such a transformation is 
accompanied by changes in the observables. For ex- 
ample, let (11) be induced by a solenoid whose mag- 
netic field H i s  equal to zero  outside V [it follows 
from (7) that a should have the form of a gradient 
wherever H = 01. In the ca se  under consideration the 
region of localization of H should intersect  Ve [other- 
wise, (11) would be valid for  V,, and then VX' = 01. 
Such a field H leads, for  example, to the observed 
splitting of the levels. 

We use the designation Uquasi-gauge" for those 
transformations of operators which have the form of 
ordinary gauge transformations only in a certain 
(simply-connected) portion of V of a l l  space. The 
volume V should encompass the entire physical sys -  
tem under consideration. Then the transformations in 
question will not be accompanied by changes in any 
observables measured inside V, and will be indis- 
tinguishable from ordinary gauge transformations in 
the region V. 

The gauge invariance of p' follows a lso  from the in-  
variance of the right-hand side of (4) under (10). Let 

u s  note that, under (lo), we have A(q) - A(q) - ~ ( q )  
+ ~ ( 0 ) .  (Of course, we would be more precise if, r e -  
maining within the framework of the new gauge, we 
talked about the absence of gauge freedom for  p'.) 
Also invariant under any (both ordinary and quasi-) 
gauge transformations a r e  the operator H,' =pt2/2m 
+ W, its eigenfunctions (describing the atomic s ta tes  
in the new gauge), and the interaction Hamiltonian. 

3. Finally, we can, using (4), now give in the or i -  
ginal Coulomb gauge the operator  corresponding to 
H,' = p"/2m + W(q). But H,' does not commute with 

a s  well a s  with the photon-number operator. As a 
consequence, we cannot describe even the simplest, 
"atom unexcited, no photon" state [even if we manage 
to find the eigenfunctions of the operator (p - eVA)'/ 
2m + w]. We also have to modify the description of 
the photons. If we a r e  able to do  everything correctly, 
then we shall obtain the s ame  result  that is obtained in 
the new gauge in the standard fashion. 

4. Let us  consider (9) in the dipole approximation, 
which corresponds to the replacement of A,(q) in (2) 
by A,(O). Setting q = O  in (61, and using the equality 
a(0) = 0, which follows from (71, we obtain 

Thus, in this approximation the interaction of the 
electron with the photons i s  described by only the third 
t e rm in (9): 

(the E * q  interaction). The transition to the dipole 
approximation i s  expounded in grea ter  detail in the 
preprint  of the present  paper. l3 

4. PROBABILITY FOR ELECTROMAGNETIC 
EXCITATION OF AN ATOM 

1. Let u s  to begin with suppose that we have at  t = O  
a n  atom in the ground state and one photon with energy 
k (state +,). The amplitude of .the probability of find- 
ing a t  the moment t the state @,, i.e., the "atom in 
n-th excited state,  no photonsn state,  i s  equal to 

The probability for  excitation of the atom is usually 
defined a s  /A,,, 1 2 .  But /A,, 1 is only a par t  of the total 
probability of finding the atom in the n-th state: 

Here we sum over al l  the s ta tes  of the type "atom in 
n-th state,  arbi trary number v of photons with arb i -  
t r a ry  polarizations 6 and momenta." It is precisely 
(13) that corresponds to the experiment in which only 
the excitation of the atom (and no accompanying pho- 
ton) is detected. Naturally, the energy in the ma- 
jority of the @,-- Qi, transitions in (13) is not con- 
served if by energy we mean the eigenvalue of the free 
par t  of the Hamiltonian. As i s  well known, the proba- 
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FIG. 1. 

bility of such "virtual transitions" i s  not equal to zero 
for finite t .  In particular, the atom can be excited, 
and, moreover, can emit a photon with any momentum. 

Let us note that the just described process occurs 
whether or not the photon k i s  present a t  the beginning. 
An expression of the type (13) is not equal to zero  even 
if a s  the initial state we take the lowest state @,, i.e., 
the Matom in ground state and no photons* state, in- 
stead of @,. Therefore, the observable probability for 
excitation of the atom should be associated with only 
that of (13) which stems from a physical cause: the 
presence of a photon in the initial state. We define 
this part a s  

From P,, ,we have subtracted the "theoretical back- 
ground,"i.e., the probability for ucauseless" transi- 
tions. Let us emphase that, in (14), the state @,, 
like @,, should be normalized to unity. 

In the lowest-order perturbation theory the matrix 
elements of the first  sum in (14) a r e  represented by 
the diagrams in Figs. l a  and lb ,  while the matrix 
elements of the second sum (the subtrahend) a re  repre- 
sented by the diagram in Fig. lc. In these diagrams 
the ground state of the electron in the atom i s  repre- 
sented by a heavy line; the excited state, by a thin 
line. 

Similar definitions involving "background* subtrac- 
tion a re  proposed for other cases in Refs. 14-17. 

Let us note that the virtual transitions a re  in no way 
taken into account in the Weisskopf -Wigner approxi - 
mation. These transitions may not occur if the states 
of the atom and the field a re  described in a special 
fashion. Then (14) is equal to 

2. We shall represent (13) a s  the average over the 
state 9, of the Heisenberg operator for the number of 
electrons in the n-th state: 

The latter may be found not by determining the opera- 
tor U(t, 0) (it may not existlg), but by solving the equa- 
tions for the Heisenberg operators of the theory. 

We shall need a second-quantized description of the 
nonrelativistic electron. The Hamiltonian (2) corre-  
sponds to the single-electron sector of the Harniltonian 
j d 3 x ~ ( x ) ,  where 

H(x) =-++ (x) [(-iV-eA1)'/2m+W(x)] $(x) + [ELZ(x) +H2(x)] /2 

(see, for example, Ref. 19). The operator +(x) is ex- 
panded in terms of the eigenfunctions of H ,  =p2/2m 
+ W(q): 

where S, denotes summation and /or integration over 
the spectrum of H,. In terms of the electron and 
photon creation operators, a*, and d ( k ,  c )  respective- 
ly, the states @,, $, and @, in (14) can be written as: 

Qa-ao+a+ (k, E )  Qo, Q,=a,+Oa, Qo=ao+O0. (16) 

Here at creates an electron in the ground state and 51, 
is the particle -free state. 

Let us consider the electron-number operator N, 
= a:a, for the n-th state. Let us expand a;a, in terms 
of the operators II, of projection onto states with a 
definite number N of electrons at the n-th level. 
There can be in these states electrons a t  other levels, 
as well a s  an arbitrary number of photons. We have 

Only the single-electron part  II, of the operator has 
been written out. If our nonrelativistic spinless elec- 
trons obey the Fermi statistics, then there cannot be 
two electrons in the same state, and then II, = 0. In 
view of (17) and (181, we have 

(19) 
We have used the fact that U(t, O h , ,  like a,, i s  a 
single-electron state; therefore, only II, from (171, 
and what is more only that part  of II, which has been 
written out in (la) ,  makes a contribution to (19). 

Let us introduce the Heisenberg operators a,(t) 
= U'(t, O)cu,U(t, O), and rewrite (14) in the form 

In this definition, the a:(an) can be the creation (an- 
nihilation) operators for the second-quantized Dirac 
electrons. 

3. In the new gauge the atomic states a r e  described 
by the eigenfunctions cp:(x) of the operator Hi  =pJ2 /2m 
+ W. Although this operator is not equal to H, = p '/2m 
+ the cp:(x) analytically coincide with the eigenfunc - 
tions of H, i f  we choose the same canonical represen- 
tation, -iV, for p' and p in the two gauges. Similarly, 
we can choose identical representations for the photon 
operators a(k, c)  and a'(k, c )  a s  well. Thus, 9, and 
9, will be described in like manner in the new and 
Coulomb gauges. But the interaction terms in (2) and 
(9) will be dissimilar. Therefore, the probability, 
W:,, computed in the new gauge can differ from the 
probability, W,,, computed in the Coulomb gauge. 
These probabilities have been computed in the exactly 
soluble model of an oscillator electron dipolarly in- 
teracting with an electromagnetic field. l3 It turns out 
that WL,+ W,,, although the level shifts and level widths 
a r e  found to have identical values in the two gauges. 
Specifically, W:, differs from W,, by the factor k2/xZ, 
where H. i s  the difference between the energies of the 
excited and ground states of the atom [see the formulas 
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(50) and (53) in Ref. 21. The importance of this  d i s -  
crepancy f o r  the determination of the Lamb shif t  h a s  
already been discussed by Power and zienauz and 
Fried. 

I thank R .  N. Faustov, E. L. Feinberg, and V. I. 
Ritus  for  useful discussions.  
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