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In a sufficiently strong electric field that clamps the electrons to a helium surface, a situation is possible 
wherein the entire charge is gathered in a bounded region called a multielectron dimple. Such dimples are 
stable to thermal fluctuations if the number of electrons is N>10, and they can be described by a linear 
equation if N <  10'. Under the indicated restrictions on N, the dimple is calculated by a variational method in 
a macroscopic approximation. Field dependences are obtained for the dimple energy, the charged-region 
radius, the charge-distribution density, the hydrodynamic mass, and the mobility. Light refraction by the 
surface of the dimple is examined in detail. It is proposed to use optical observations to determine the dimple 
charge. To this end, the field dependences of the dimensionless focal lengths are calculated for the refraction 
of light by the center of the dimple (focusing) and b i  the boundary of the charged region (defocusing). 

PACS numbers: 67.90. + z, 73.25. + i, 78.20. - e 

The instability of a charged surface of liquid helium 
was predicted theoretically by Gor 'kov and ~hernikova.'  
They have shown that in a sufficiently strong clamping 
field the surface should acquire a macroscopic periodic 
structure, with energy considerations favoring a struc- 
ture of hexagonal symmetry. Leiderer and wanner 
have recently succeeded in observing experimentally 
this phenomenon by means of light reflection from the 
restructured helium surface. The hexagonal symmetry 
of the produced structure was confirmed, and i t  was 
also shown that under certain conditions there can exist 
limited regions with hexagonal short- range order up to 
individual dimples into which all the electrons from the 
surface a r e  gathered. 

In our preceding paper3 we discussed the possible 
mechanisms of nonlinearity of a charged surface. I t  
was shown that the main nonlinearity is due to the onset 
of surface sections f ree  of electric charge. As indi- 
cated in Ref. 3, the period of the produced structure 
should first  vary with increasing field, so a s  to ensure 
a minimum energy. At a certain field value, the 
charge-free regions come in contact, so that the 
distribution takes the form of the periodically arranged 
isolated sections. The charge of each of them will 
hereafter be conserved, and since the average charge 
density is maintained constant, the lattice period should 
also remain constant. With further increase of the 
field, the sizes of the charged sections decrease, so 
that in the limit we obtain a lattice of weakly interacting 
dimples. 

the surface. These equations a r e  analyzed in Sec. 2 
as applied to the problem of single dimple, so that a 
numerical solution of the problem can be obtained using 
optimal variational functions. In Sec. 3 a r e  summarized 
the results  of a numerical calculation of the energy of 
the dimple, of the radius of the charged region, the 
charge distribution, and the hydrodynamic mass and 
mobility of the dimple. Section 4 deals with the refrac- 
tion of light by the dimple, an experimental investiga- 
tion of which can contribute, in particular, to the de- 
termination of the dimple charge. 

1. QUALITATIVE DISCUSSION, DERIVATI'ON OF 
EQUATIONS 

The f ree  surface of helium tends to assume a hori- 
zontal position under the influence of the surface ten- 
sion and of the force of gravity. This interaction is 
quantitatively characterized by a surface- tension co- 
efficient (Y and by the product pg, where p is the density 
of the helium and g is the free-fall acceleration. The' 
spatial scale of the deformation of the surface under 
the influence of a concentrated external force is deter- 
mined by the capillary radius ((~/pg) ' /~=0.05 cm, if i t  
is assumed that (Y ~ 0 . 3 5  dyn/cm and p ~0 .145  g/cmS for 
~ e ~ .  In experiments with a charged surface there a r e  
two controllable parameters- the surface density of the 
charge n(r) (r  is the coordinate on the unperturbed sur- 
face) and the external electric field E. These quantities 
have the same dimensionality, and their characteristic 
scale is (apg)'l4 ~ 8 0 0  ~ / c m .  Dividing this result by the 
electron charge, we obtain for  the characteristic elec- 

An investigation of the equilibrium shape of a charged tron density a value 5 x 10' ~ m - ~ .  The scale of the 
surface encounters in the general case great  difficul- 
ties. I t  is useful to solve f i rs t  the problem of a single charge in a square with a side equal to the capillary 

radius is a5/4(pg)-3/4 and corresponds to the charge of multielectron dimple, since such dimples a r e  the sim- 
plest experimentally observable objects whose existence 

1.3 x loT electrons. I t  follows from this that the dis- 

and properties a r e  due to the same interactions a s  the cre te  character of the electric charge can be neglected, 

instability of a uniformly charged surface. We present inasmuch a s  the calculations involve only the surface 
density of the charge. 

accordingly in Sec. 1 a qualitative description of the 
investigated phenomenon, obtain quantitative estimates In the case of a charged surface i t  is necessary to 
of the quantities encounterecl in the problem, and de- take into account, besides the surface tension and the 
rive equations but determine the equilibrium shape of force of gravity, also the interaction of the charge with 

505 'Sov. Phys. JETP 54(3), Sept. 1981 0038-5646181 /090505-08$02.40 O 1982 American Institute of Physics 505 



the field E and the Coulomb interaction between the 
charges. If we measure the length in units of (a/pg)'l2, 
the field E and the charge density n(r) in units of 
(c~pg) ' /~,  and the energy %' in units of cy2/pg, then the 
total energy of the charge surface can be written in the 
form 

where [(r)  is the deviation of the liquid level from hori- 
zontal and 1 stands for the three-dimensional vector (r, 
5). 

Expression (1) contains terms that a r e  quadratic in 
5 and n (the energy in the gravitational field and in the 
field E), a s  well a s  more complicated terms (the sur- 
face and Coulomb energies). To determine the shape of 
the surface {(r) and the charge distribution n(r)  it is 
necessary to minimize Eq. (1) with respect to these 
functions, a practically impossible task in the general 
case. We therefore turn to a situation wherein the di- 
mensionless charge density is small, n(r) << 1, so that 
in a certain range of fields the specific forcd nE acting 
on a unit surface is also small. In this case the surface 
displacement is 5 -En << 1, so  that expression (1) can be 
simplified by retaining only the surface-energy contribu- 
tion a (V[)2 and by putting l= r  in the denominator of the 
las t  term. As will be shown below, a t  E 2 1 the im- 
portant values a r e  r - E-2. The inequality 5 <<r (or, 
equivalently, I V  5 I << 1)  is thus equivalent to the inequal- 
ity nEs << 1. This means in turn that a t  n << 1 there exists 
a field region 1s E << n-1/3 in which the energy of the 
charged surface is given by an energy quadratic in 5 and 
n, namely 

We now assess  the possibility of neglecting the tem- 
perature effects. This calls for the temperature to be 
l e s s  than all the energies encountered in the problem. 
We have taken the energy unit to be the quantity (r2/pg 
-log eV, which exceeds with a tremendous margin all 
the conceivable temperatures. The energy eE5, which 
characterizes the interaction of an individual electron 
with an external field E, is much lower. This energy 
is measured in units of eas/4(pg)-i/4 = 40 eV = 4.6 x lo5  
K. In the case of a dimple with dimensionless charge 
Q << 1 we have 5 - EQ, so  that a t  E - 1 the energy eE5 is 
of the order of 1 K at Q In terms of the number 
N of the electrons in the dimple this means that expres- 
sion (2) is valid a t  10 << N<< lo7,  where the lower limit 
signifies neglect of the temperature effects, and the 
upper means going from expression (1) to the quadratic 
expression (2). 

We wish to solve the problem of the equilibrium shape 
of the surface, i.e., of the minimum of the functional 
(2), at a given surface charge Q. This condition can be 
taken into account if we add to it, before we take the 
variation of (2), the term 

where the Lagrange multiplier A must be  obtained after 
solving the equations for [(r) and n(r) from the condi- 
tion 

As a result of the variation we obtain the system of 
equations 

It is seen that the Lagrange multiplier A coincides with 
the total electrostatic potential in the regions occupied 
by the electrons. Equation (4) was obtained by variation 
with respect to n(r). This method of deriving the equa- 
tions implies tacitly that the sign of the variation is 
arbitrary. If we recall that n(r) 2 0, then we must con- 
fine the limit of applicability of Eq. (4) to those values 
of r where n(r) > 0. 

Equations (3) and (4) a r e  suitable for the description 
of the most general case of charge distribution on a sur- 
face, provided separate Lagrange multipliers a r e  intro- 
duced for each of the isolated charged regions, and that 
these multipliers a r e  determined after solving the prob- 
lem for specified charges in each region. In the sim- 
plest case there is only one such region, which we shall 
call a dimple. 

We now present a qualitative description of the in- 
vestigated phenomenon. To this end, i t  is convenient 
to exclude from the functional (2) the aurface deforma- 
tion [(r) and to rewrite the functional only in terms of 
the charge density n(r). This is a trivial task if it is 
recognized that the solution of the homogeneous equa- 
tion (3) is given by a Bessel function KO(?-), and leads to 
the result 

It is seen that because of the interaction with the 
clamping field E there is produced between the point 
charges on the helium surface, in addition to the usual 
Coulomb repulsion, also an attraction force determined 
by the potential E~K,,(T)/~~. This potential decreases 
exponentially a t  r >> 1 and increases like ln(l /r)  a s  r 
-- 0. In both cases the attraction cannot compete with 
the Coulomb repulsion. I t  is clear therefore that with 
increasing field E the potential V(r) must have a mini- 
mum at  some finite r. Calculation shows that the mini- 
mum appears at Em = 3.1 59 and corresponds to r,  
= 1.332. We indicate for comparison that the instability 
of a uniformly charged surface se ts  in a t  E,= (4n)'l2 
m3.545. At the instant of appearance of the minimum 
V(rm) ~ 0 . 3 2 7  4, so  that the bound- state energy exceeds 
the energy of the charges removed to infinity. With in- 
creasing field, the minimum of V(r) becomes deeper and 
goes through zero at E = 3.670 and ro 30.5951. In fields 
E >> 1 the minimum of the potential is reached at r 
= 27~E'~ and is equal to - E 21n(~/n) .  

Thus, in a sufficiently strong field E, two point 
charges on the surface of the helium a r e  capable of 
forming a bound state with a radius of the order of the 
capillary constant. The main properties of these states, 
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grating by parts in the interval (R, m )  the term with 
(05)' in Eq. (2) and substituting 

namely their existence in a field region bounded from 
below, the positive energy in  sufficiently weak fields, 
and the independence of the characteristic size on the 
value of the charge, will be shown below to remain in 
force also in the case of a dimple with a continuous 
charge distribution. we obtain 

2. VARIATIONAL SOLUTION OF THE PROBLEM OF 
THE SINGLE DIMPLE 

I t  is clear from general considerations that a single 
dimple should have circular symmetry, so  that the 
charged region is a circle with a certain radius R. Out- 
side the circle we have n(r) =0, and the solution of Eq. 
(3) is given by the Bessel function KO@): 

We have taken account here of the fact that the integral 
that contains the factor (5 - A 5) yields, according to Eq. 
(3) a zero contribution a t  r >  R. The remaining two 
t e rms  a r e  written using the matrix A(R), defined bv the 
relations 

Ao,=~R2+2nRK, (R)IKo (R) ,  

A,k=n[4sk/(s+k)+R2/(s+k+l) +2RK,(R)IKo(R) 1. 
where the coefficient A-QE is determined by the solu- 
tion of the problem at  r <R.  

For the second term in (2), using (5) and (6), we ob- 
tain 

An analytic solution of Eqs. (3) and (4) cannot be ob- 
tained inside the circle. We have therefore carried out 
the variational calculation of 5 (r)  and n(r) using the fol- 
lowing trial functions: 

Excluding now Ns and using (lo), we obtain for the 
variational functional 

The expansion (6) was used because the electric po- 
tential for a charge density of the form n s ( ~ ,  R) takes at 
r < R the form of a polynomial of Y'/R~ of degree s, so  
that Eq. (4) for any finite m can be  solved exactly by 
expressing N, in terms of E,. This connection between 
the charge density and the potential is given by the rela- 
tion 

It remains to write down the conditions that connect 
5(r) a t  r < R [expression (511 with [(r) a t  r > R. For this 
purpose i t  must be recognized that the function n(r)  in 
the right-hand side of (3) vanishes in proportion to i ts  
square root a s  Y -- R, s o  that the coefficient No in the 
expansion (6) is equal to zero a t  the value of R that 
minimizes the energy (this statement will be  proved be- 
low). As a consequence, 'the solution of Eq. (3) for 
5 (R) must be continuous a t  the point r = R together with 
i t s  f i rs t  two derivatives. 

The continuity of the function and of the f i rs t  deriva- 
tive were already used in the derivation of (11) and (12). 
The conditions for  matching the f i rs t  and second de- 
rivatives 

where F is a hypergeometric function and I' is a gamma 
function. To derive (8) we must change over to a Four- 
i e r  representation with allowance for the fact that 

can be  taken into account by multiplying the scalar pro- 
ducts in (13) by the Lagrange multipliers Xi and Xz re- 
spectively and adding to g@). As a result we obtain 
the functional 

where Js+i,2(r) is a Bessel function, and use-next the 
equation (6.5'74) of the handbook by Gradshtein and 
~ y z h i k . ~  After substituting (5) and (6), using (8), and 
separating the powers of r2, Eq. (4) takes the form &(a, a,,  a,) = ~ / l ~ 2 ~ - a ~ ~ ~ o ) - a , ~ ~ ) - a 2 ~ ~ ( z ) ,  (1 4) 

which must be  minimized with respect to E ,  while the 
Lagrange multipliers X, Xi, and X2 a r e  determined by 
the conditions (13) and by the condition Inversion of the matrix e allows us now to express Ns 

in  terms of Z,, and obtain after substituting (6) in (3) 
an expression that contains only [(r) and Z,. I t  is more 
convenient, however to return to the initial functional 
(2) and rewrite i t  in terms of the variables z,. Inte- 

J n ( r ) # r = C  N.=Q, (1 5) 
8-0 

which specifies the charge of the dimple. 
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The minimization of (14) with respect to E and the 
determination of the Lagrange multipliers reduces to 
elementary algebraic operations, the result of which 
is conveniently written using the third-rank matrix 
D, defined by the relation 

By using the matrix 6'' which is the inverse of (16) 
we obtain for the vector 2, which minimizes the func- 
tional (14) and satisfies the conditions (13) and (1 5) 

The foregoing operations reduce the calculation of % 
a t  a given radius R to matrix-vector algebra. The next 
step is to find the minimum of $(R) with respect to R. 
This condition, as will be presently shown, coincides 
with the condition No(R) =O,  where No is a coefficient 
in the expansion (6). 

Limitation of the region in which the dimple charge 
can become redistributed corresponds to introduction 
of an infinitely high potential well a t  r = R. By analogy 
with the problem of the charge distribution on a metal- 
lic disk,' we can conclude that in the general case n(r) 
has a t  r= R a singularity of the type (1 - T ~ / R ~ ) - ' / ~ .  
This circumstance is explicity taken into account by in- 
cluding the functions n , (~ ,  R) in the expansion (6). The 
charge distribution n(r) obtained when solving Eq. (4) 
ensures constancy of the potential at r < R. At r > R 
the potential depends on r, and the character of this de- 
pendence determines the change of the energy upon re- 
distribution of the dimple charge over a circle with a 
radius exceeding R. A charge distribution of the form 
no(r, R) produces a t  r > R a potential 

Thus, if No > 0, then at r >  R the potential has a 
square-root decrease from i ts  constant value inside the 
region r < R. This means that i t  is energywise profi- 
table to transfer into the region r > R a certain part of 
the charge from the region r < R, thereby increasing 
the radius R of the dimple. I t  is clear that R should in- 
crease until No vanishes. With further increase of the 
radius, No becomes negative and a s  a result of which 
n(r) reverses sign at r < R. Since n(r) is positive, it is 
permissible to consider only No such that n(r) 30, there- 
fore  the condition N,(R) = O  determines the minimum of 
the energy g (R). As follows from the statements made 
above, this minimum is reached at the boundary of the 
permissible region of variation of the parameters. It 
can be shown nevertheless that a t  this point we have not 
only d $ / d ~  =0, but also d2g?/d~2=0, s o  that the $(R) 
curve has an inflexion with a horizontal tangent (with 
further increase of the radius, the energy would con- 
tinue to decrease, but the condition n(r) 2 0 would be 
violated). 

The condition No (R) = 0, expressed in terms of the vec- 
tor E,, takes the form 

Summarizing the content of this section, we indicate 
that the solution of the variational problem was reduced 
by us to a determination of the vector Z from relation 
(17) followed by a solution of Eq. (18) that defines the 
radius R of the charged region. 

The actual calculations were performed using s ix  
terms (m = 5) in the expansions (5) and (6), so  that all 
the calculated quantities a r e  accurate to better than 1% 
The values of the energy and of the field ED below which 
the dimple does not exist a r e  accurate to four signifi- 
cant figures already a t  m =3. We note that Eq. (4) is a 
Fredholm integral equation of the f i rs t  kind for n(r), 
whose solution is unstable to small changes of f (r). As 
a consequence, the matrix e is not quite exact, s o  that 
i t s  inversion leads to a rapid loss of accuracy with in- 
creasing m. The choice of m = 4- 5 is a compromise 
between the tendency to increase the accuracy by in- 
creasing m and the need to limit m s o  a s  not to lose 
calculation accuracy because of the poor accuracy of 
the matrices that ar ise  in the problem. 

3. PRINCIPAL CHARACTERISTICS OF THE DIMPLE 

The approach described above makes it possible to 
calculate numerically all the dimple characteristics of 
interest to us, namely, the energy $ of the dimple, the 
radius R of the charged region, the charge distribution 
n(r), the effective mass M, and the mobility p. The 
quantities $, M and a r e  quadratic in the dimple 
charge Q, and n ( r ) a  Q. Accordingly, the plots show 
the relative quantities 

which depend only on the field E. 

Figure 1 shows the dependence of the relative energy 
@ on the field E. Calculation shows that the dimple 
exists only a t  fields E > ED=3.697, with $(ED) 
= Q ~ -  0.1185. We indicate by way of comparison that the 
instability of a uniformly charged surface sets in a field 
E,= (4~)'/~-3.545. With increasing field, the dimple 
energy goes through zero a t  Eo e4.062, and at E >> 1 it  
increases like 

The same figure shows the dependence of the radius R 
of the charged region on E. For a dimple with a small 
charge Q, the radius depends only on the field and has 

FIG. 1. Dependence of the relative dimple energy 3 and of the 
charged-region radius R on the field E. 
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at  a field E = ED a maximum value RD = 2.83. In  strong 
fields we have 

We discuss now the charge distribution i?(r). In  a 
field ED, the coefficient Ni in the expansion (6) is 
small, and accordingly n( r )  decreases  rapidly a s  r - R, s o  that on the whole n( r )  turns out to be  very simi- 
l a r  to the function exp(-ar2).  h he use of a Gaussian 
tr ial  function for  n(r)  was proposed ear l ie r  by Leiderer  
and  hik kin.^ We have used this approximation to calcu- 
late the field E D  and obtained E D  ~3.711.  This  differs  
by only 0.3% from our exact value 3.697 .] At E > E D  the 
function n(r) has  a square-root singularity as r -- R and 
i s  qualitatively similar  to the G(r) curve presented 
earl ier3 fo r  E -- m. 

We consider now the effective mass  of the dimple M 
and i t s  mobility p. Both quantities a r e  of hydrodynamic 
origin: the mass  of the dimple is determined by the 
kinetic energy of the liquid that flows around a dimple 
that moves with constant velocity Vo, and the mobility 
of the dimple is determined by the energy dissipation of 
the liquid on account of the viscosity. To  calculate the 
indicated quantities it suffices to obtain the energy of 
the liquid and the dissipation in  an approximation quad- 
rat ic  in the velocity Vo. This  means that in the calcula- 
tion of the velocity field one can neglect the change of 
the shape of the dimple, i.e., assume that the deforma- 
tion of the surface a s  the dimple moves takes the form 
{(r - VOt), where { (r) is the shape of the dimple a t  rest.  

A surface deformation in the form of a traveling plane 
wave { = 5, exp[ik. (r - vat)] of small  amplitude (tOk 
<< I ) ,  the velocity component along the z axis perpen- 
dicular to the surface is 

and for  the component parallel to the surface we have 

When account is taken of these expressions, we can 
express  the kinetic energy of the liquid in t e r m s  of the 
Fourier transform of the function {@I: 

Similarly, for  the energy dissipation we obtain in 
f i r s t  order in the viscosity q: 

The quantity 2% /v$ can b e  naturally called the effec- 
tive mass  M of the dimple, while V: / W can be  called 
the effective mobility p. We shall measure  M in units 
of ~ u ~ / ~ ~ - ~ / ~ ~ ' ~ / ~ =  1.8 x g,  and p in units of 
a-i/2@g)f/%-'=6.7 s e d g ,  if i t  is recognized that q 
=30 pP. We then obtain1' 

1 " 
p- '=-Sy (k )kbdk .  (20) 

2no 

For  the function {(k), using (3) and (9), we obtain 

Substitution of (21) in (19) and (20) gives r i s e  to the in- 
tegrals  

where t = m + n + i + j - 2p + 1, and [t/2] is the integer 
par t  of t/2. As a result  we get for  the m a s s  and fo r  
the mobility of the dimple 

For a field ED we have ~ = 0 . 0 6 5 4 ~ '  and p - ' = 0 . 1 9 0 ~ ~ .  
The  field dependence of the relative quantities ifk and 
fi-' is shown in Fig. 2. In the limit E >> 1 we have2' 

The  characterist ic  dimple deceleration time r = M p  
on account of viscosity does not depend on the dimple 
charge Q and is measured in units of a (gq)-' = 12 sec. 
At E = ED we have T P 4.2 sec ,  and a t  E >> 1 the time is 
T = 15 E m 2  sec. The  dimple velocity a t  which its shape 
begins to be distorted is ( c ~ ~ / p ) ' / ~ = 7  cm/sec. T o  reach 
this velocity a t  E = ED i t  suffices to apply to the dimple 
a drawing field of the order  of 0.1Q ~ / c m .  A study of 
the oscillations of the dimple a t  a drawing-field fre-  
quency w 2 T would make i t  possible to determine the 
mass  M and the mobility p ,  and also to investigate the 
dynamics of the dimple in the nonlinear regime. 

4. LIGHT REFRACTION BY A MULTIELECTRON 
DIMPLE 

Multielectron dimples were detected in experiment by 
the reflection of obliquely incident light from the de- 
formed surface of helium. More information can be ob- 

FIG. 2. Dependence of the relative dimple mass k and of the 
relative mobility on the field E .  
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tained by investigating the pattern of the refraction of 
light incident perpendicular to this surface. In particu- 
l a r ,  it is possible in this way to estimate the order of 
magnitude of the charge of the dimple, and in the case 
of a dimple with small charge Q << 1 it  is possible even 
to obtain i t s  numerical value. 

Let a parallel light beam be incident perpendicular to 
the unperturbed position of the surface and let i t  enter 
from a medium with refractive index n, into a medium 
with refractive index n,. We investigate the distribution 
of the intensity of the transmitted light on a screen lo- 
cated at a distance d from the surface. The deformation 
of the surface is given by the function [(r) (the deforma- 
tion is defined a s  positive in the direction of propagation 
of the light), therefore the angle of reflection of the ray 
a t  the point r on the surface is 

a=l (n2/n,-I)V6(r) I .  

We note that the condition Q << 1 implies also the in- 
equalities lv [ / << 1 and a << 1. From the point r on the 
surface the ray is incident on the screen a t  the point 

rr(r) =r-d(n2/n,-I) VE (r), 

which we shall call the image of the point r. It was 
shown above that for a single dimple 

~ ( r )  = ~ i ( r ) .  

where the positive decreasing function t(r) depends only 
on the value of r and on the field E a s  a parameter. The 
distribution of the light intensity on the screen is ac- 
cordingly determined by the quantity 

D-(nJn,-I)Qd, 

which is the effective distance from to the screen, and 
connects all the parameters of the problem except the 
field E. The sign of D can be  either positive o r  nega- 
tive. For example, D > 0 in the case of electrons 
clamped to the surface of helium, and D < 0 in the case 
of ions drawn from the helium. For a vacuum-helium 
interface (n, = I ,  n - 1.051) the value D= 1 corresponds 
to a depth d a0.881; em. 

We have thus found that the image of the dimple sur- 
face on a screen located at a distance D away f rom it  
is given by the function 

The distribution of the light intensity on the screen I ( r f )  
can be obtained from the condition that the light flux 
through an a rea  on the surface and through the image 
of this a rea  on the screen be equal. In the case of cir- 
cular symmetry this leads to the expression 

where r (7') is a function inverse r' (r) (the point r is 
the original of the point r'). The light intensity far  from 
the dimple (as -- 0) is taken to be  unity. 

Expressions (22) and (23) a r e  sufficient for the cal- 
culation of the intensity of the refracted light. We pre- 
sent f i rs t  a qualitative analysis of the produced picture, 
using a particular example in which the field E has the 
value E,  ~ 4 . 0 6  (in this field the dimple energy is $ =0), 
after which we describe the method of determining the 
charge of the dimple from a light-refraction experiment. 

In accordance with the already-indicated properties of 
the function E(r), i t s  derivative ['(r) is always negative, 
vanishes a t  r = 0 and r = m, and reaches an extremum at  
a certain r - 1. Since [' c 0 ,  we have r f ( r )  , r at D> 0 
and r f ( r )  < r  at D <O. This means that the dimple de- 
focuses the light in the case D> 0 and focuses i t  a t  D 
<O. The paths of the refracted rays at a field E =4.06 
is shown in Fig. 3. It follows from this figure that a t  
sufficiently small D the rays do not intersect, i.e., there 
is a one- to-one correspondence between r and r'. After 
a certain value of r is reached, the rays cross, i.e., 
the function r f ( r )  becomes nonmonotonic, and phenomena 
similar to focusing take place. 

The monotonicity of r f ( r )  is violated a t  those points 
where drf /dr  =0, i.e., DEW(?-) = 1. The function EW(r) 
is shown in Fig. 4. I t  is seen that 1" reaches a mini- 

FIG. 3. Refraction of light by the dimple surface in a field E== 4.06. a) In the c a s e  D > O  (defocusing), b) in the c a s e  D < O  (focus- 
ing). The top solid line represents the helium surface, the double line shows the region occupied by the electrons,  the dashed 
l ines correspond to  d =  F/4, F, and 427. a) F = P ,  b) F =  F-. 
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FIG. 4 .  Radial dependence of the re la t ive  curva ture  of the  
dimple sur face  for  a field E =  4 . 0 6 .  

mum at  r = O .  We denote $"(o) by I/F-, where F- <O 
is the focal length for  rays traveling along the dimple 
axis. With increasing r, the function gw(r) f i rs t  in- 
creases and reaches a maximum at r = R, after which 
i t  decreases monotonically to zero. (Ln fields, close to 
ED, there i s  one more maximum of i"(r) at r <  R, but i ts  
region of existence is quite narrow.) We designate l w ( R )  
by l/Ff, where F C  > 0 corresponds to the focal lengthof the 
circular section of the dimple near r = R. At a field E 
=4.06 we have F*=1.97 and F-=- 1.42. 

I t  is clear now that the function r l ( r )  is monotonic so  
long a s  F- < D < F '. When D goes outside this interval, 
r l ( r )  becomes nonmonotonic, and the inverse function 
r ( r l )  becomes multiply valued, namely, to each r' 
there correspond three values of r(rl) .  Figure 5 shows 
the plots of r l ( r )  for the depth D indicated in Fig. 3. It 
follows from Fig. 5 that at D> 0 the nonmonotonicity of 
Y'(Y) is reached first  at D= F' and corresponds to the 
point r =R. With further increase of D, r l ( r )  has a 
maximum and a minimum which a r e  located respective- 
ly above and below rl(R). At D <O, nonmonotonicity 
arises f irst  at D= F -  at the point r =0, and at D < F- 
the function ~ ' ( r )  has a maximum at the point r = 0  and 
a minimum at a certain r > 0. 

Near the extrema, the function r l ( r )  varies slowly 
with changing r. This means that in the sections of the 
screen there will be gathered near the extrema rays 
from a wide region of values of r, which leads to the 
onset of points or of rings with infinite brightness. In 
accordance with the number and positions of the ex- 

FIG. 5. Image rl(r) of t h e  dimple s u r f a c e  r on a s c r e e n  r' at  
a field E =  4 . 0 6  and a t  various d i s tances  to  the  s c r e e n  D. 

FIG. 6 .  Distribution of the  light intensity a t  a field E =  4 .06  
and a t  various d i s tances  t o  the  sc reen :  a )  D > O .  b) D <O. 

t rema of Y' (r), at D = F + the intensity I(rl)  has a singu- 
larity a t  the point r '=r l (R) ,  which is transformed with 
increasing D into two singluarities a t  r; <rl(R) and at 
r $ >  R1(R). If D =  F-, a singularity of I(rl)  takes place 
at r' = 0. At D < F - this point singularity is preserved, 
but an additional ring singularity appears, whose radius 
increases with increasing I D I  . The foregoing proper- 
t ies of I(Y') a r e  illustrated in Fig. 6. I t  is seen that in 
addition to the infinite singularities I(rl)  has also a kink 
singularity at r1=r'(R), and this singularity is pre- 
served a t  al l  D. 

We now find the behavior of I(rl)  near all  the indicated 
singularities. At r - R ,  with allowance for Eq. (3) and 
for the previously discussed behavior of the charge den- 
sity n(r) a s  r -R, we have 

where the coefficients 0 ,  13 > 0. Substitution of (24) in 
(23) followed by a transition to the variable r' in ac- 
cordance with (22) yields 

l a  ( r f ( R )  - f ) - " ,  r'<f ( R ) ,  Iocl (r l -r l (R))-",  f > f  ( R ) ,  D-F+. 
I U ( ~ ~ - I - , ~ ) - ~ ~ ,  r>rfl ,  I ~ ( r / - r ~ ) - ~ ~ , ,  rr<r;, D>F+, (25). 

where ri and r; a r e  the positions of the right-hand and 
left-hand singularities of I(?-'). I t  follows therefore that 
at D > F' the intensity I(?-') has one- sided square- root 
singularities on the internal edges of the region of the 
nonmonotonicity of r l(r) ,  when three points r ( r l )  con- 
tribute to I(rl). On the outer edges of this region, how- 
ever, when only the light refracted by the nonsingular 
point r ( r l )  contributes to I(?-'), the value of I(rl) falls 
practically to zero on the left of r; and to unity on the 
right of r',, as seen from Fig. 6a. 

In the case D= F -  both factors of the (23) vanish at 
the point r' = 0, while a t  D < F' only one of them 
vanishes. Accordingly, 

The ring singularity a t  D < F- is similar to the indi- 
cated singularity of I(rr)  at r', [see (25) and Fig. 6b]. 

The foregoing results  shows that the distribution of 
the intensity of light refracted by a dimple has a strong- 
ly pronounced structure, the study of which makes i t  
possible to determine certain parameters of the dimple. 
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FIG. 7. Dependences of the dimensionless focal lengths F' 
and F- on the field E .  Curve 1 corresponds to ~ O ~ ~ E ~ P ( E ) ] - ' ,  
and curve 2 corresponds to lo3@) - IF-(E) I - ' .  

We point out, e.g., that measurement of the radius 
r'(R) [at which the kink of I(?-') is located] for two 
values of helium depth is sufficient to find the radius of 
the charged region from pure geometrical considera- 
tions. As shown above, in the limit of a small dimple 
charge the radius R depends only on the field (see Fig. 
1). A comparison of the experimental results for R 
with Fig. 1 makes it possible to estimate qualitatively 
the value of Q, while a comparison of the radii of the 
different dimples may perhaps lead to certain conclu- 
sions concerning the dependence of the dimple charge 
on the conditions under which i t  was produced, 

At the same time there exists also a direct method of 
determining the absolute charge of the dimple. This 
method is suitable in the limit of a small charge Q, i.e., 
for dimples with less  than 10' electrons. The point is 
that at Q << 1 the dimensionless focal lengths F' and 
F-, which depend only on the field E, constitute a pa- 
rameter combination of the form (n,/n, - l)Qd *, where 
d* a r e  the real  focal distances expressed in capillary 
radii. If i t  is assumed that the refractive indices and 
the capillary radius a r e  known, then the experimental 
measurement of one of the focal distances at a certain 
field E is sufficient to determine the dimensionless 
charge Q of the dimple from the known values of F' (E) 
o r  F'(E). Plots of these quantities a r e  given in Fig. 7. 
The numerical asymptotic values were obtained for 
F* a r e  

The number N of the electrons in the dimple is given 
by the expression 

N=a'l'(pg)-% F*(E) /e (n,-n,) d*, (26) 

where all the quantities except, of course, F* (E) should 
be  expressed in dimensional units. It is assumed here 
that In,,,- 1 I<< 1, a s  in the case of helium. We empha- 
size that for practical utilization of (26) in conjunction 
with Fig. 7 i t  is necessary to be able to measure only 

le field E and the focal distances d*, since a,  p ,  g, 
n,, and n, a r e  well known. 

Our results take practically complete ca re  of the 
problem of a single dimple with a small  charge. In 
concluding the article, we point out phenomena, quite 
difficult for numerical calculation but may be acces- 
sible to experimental observation. 

We have found the field ED that determines the lower 
limit of the existence of a dimple, assuming the latter 
to have circular symmetry. I t  is natural to assume, 
however, that if the field is somewhat stronger than 
ED, the dimple becomes unstable to elliptic deforma- 
tion. An indirect indication of such an instability may 
be  the disintegration of the dimples when a low-ampli- 
tucle capillary wave is excited. 

With increasing field E, the nonlinear interactions be- 
come substantial even in  the case of a dimple with a 
small charge Q << 1. As follows from the qualitative 
discussion given a t  the beginning of the article, at a 
certain field E - &-'I3 the helium surface closes up 
over the dimple, which becomes thereby a multielec- 
tron bubble with radius - ~ ~ 1 ~ .  Generalizing this r e -  
sult, we can state that in those cases when disruption 
of the periodic structure of the surface with departure 
of multielectron dimples towards the lower electrode 
takes place at large values of the field, the radius of 
the bubbles should depend on the field like E-2. 

We a r e  grateful to L. P. Gor'kov and d. I. Rashba for 
a number of helpful discussions. 

"ln our preceding paperZ the value of p-' differed from (20) by 
an extra factor 4 ,  and a corrected plot of p-' is  shown in 
Fig. 2. 

2 '~n  the limit E >> 1 ,  our results for g, R ,  M, and p differ from 
those previously obtained6 by numerical factors. 
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