
Concerning the nature of the l / f  noise 
A. Ya. Shul'man 
Institute of Radio Engineering and Electronics, USSR Academy of Sciences 
(Submitted 21 January 1981) 
Zh. Eksp. Teor. Fiz. 81,784-797 (August 1981) 

It is shown that the spectra with frequency dependence of the form l/f, which are observed in measurements 
of low-frequency noise, can be the result of action on the analyzer by the spectrum of the stationary infralow- 
frequency noise (ILF noise), whose correlation time is much longer than the analyzer reciprocal bandwidth. 
Expressions are obtained for the instrumental function of the spectrum analyzer used in analog and digital 
methods of measurements, and for the output signal when ILF noise acts on the analyer. The measured signal 
is proportional in this case to the mean square and not to the spectral density of the noise, and does not reflect 
in any way the dependence of the latter on the frequency. The reliability of the available experimental data on 
the l/f noise are discussed. It is concluded that it is impossible at present to draw a definite conclusion that 
fluctuations with a spectrum of the form l/f exist in nature. The experimental results of Voss and Clarke 
[Phys. Rev. B13, 556 (1976)l on l/f noise of metallic films are analyzed and a quantitative and qualitative 
explanation, connected with equilbrium fluctuatins of the temperature, is proposed within the framework of 
the theory of ILF noise. A theoretical expression is also obtained for the Hooge constant and it is shown that 
it depends not only on the parameters of the material and on the temperature, but also on the instrumental 
function of the analyzer. 

PACS numbers: 06.50. - x, 07.65. - b 

The low-frequency flicker noise with spectrum of the 
form l / f n  has to this  day found no generally recognized 
explanation that would be as universal as the very fact 
of the existence of this  noise in a tremendous number of 
physical (and not only physical) systems (see, e.g., the 
reviews by Kogan' and Bell2). The theoretical work in 
this field reduces mainly to searches for physical 
models in which there might be realized formal mathe- 
matical constructions that yield a spectrum of the l / f  
type in a wide but finite frequency band. After the ini- 
t ial  attempts to observe the low-frequency limit of the 
existence of the l / f  which led to observation of 
this  noise in semiconductors down to frequencies 
Hz: the attention in the experimental research  became 
focused on the determination of the factors  that influ- 
ence the appearance, magnitude, and exact form of the 
l / f  noise spectrum. As  a result ,  an empirical formula 
was  proposed for the spectral  density: 

which holds t rue  with order  -of -magnitude accuracy for 
volume noise in metals  in semiconductors,6 and strong 
evidence was  found in favor of the equilibrium tempera-  
ture  fluctuations as the cause of the l / f  noise in metal-  
lic films." These experiments have shown, however, 
that the magnitude of the l /f  noise can be estimated, 
but did not explain i t s  spec t ra l  dependence. 

In the present paper we wish to call attention to the 
fact that under certain conditions, which a r e  quite 
probable in measurements of low -frequency noise, the 
output signal of the spectrum analyzer can vary with 
the tuning frequency in accordance with the l / f  law, 
even if a stationary noise whose spec t ra l  density does 
not have this  form is applied to  the input of the analy - 
zer. 

1. ANALYSIS OF MEASUREMENT METHODS 

with a transfer  characteris t ic  H(wo, t),  a linear broad- 
band amplifier with a gain A (coo), a square-law detec- 
t o r ,  and an integrator with an averaging t ime T, the 
output signal ?(t,  w,) as a function of the input process 
y(t) i s  given by 

i t  - 2(t, O ~ ) = A ~ ( O ~ ) -  J d t ,  j J d t , d t 2 ~ ( t 1 - t , ) ~ ( t , - t 2 ) y  ( t , )  ( t2 ) .  (2) 
T 

t-T -oo 

If y(t) is a stationary random process  with zero mean 
value and spectral  density G,(w), then the mean value 
of the output signal can be represented in the form 

where 

is the frequency characteris t ic  of the filter. The de-  
pendence of the gain A (w,) on the tuning frequency w, i s  
determined by the choice of the analyzer calibration. 
If the calibration i s  against a harmonic signal, when 
y (t) = cos wet, we have 

and in the case of calibration against white noise, 
G y ( ~ )  = const, 

The second identity in (4b) i s  simultaneously the defini- 
tion of the equivalent noise band A of the analyzer. In 
the case (4a) the output signal has  the dimension of 
power in the band A ,  and in the case (4b) (x2(wo)) has  
directly the dimension of spectral  density, s o  that we 
shall denote i t  by Gout(wo). Spectra a r e  always mea- 
sured with a narrow-band f i l ter ,  when the figure of 
mer i t  

Analog measurements. In the case of the simplest 
spectrum analyzer, consisting of a narrow-band filter Q=folABl,  f,=oo/2n 
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The inequality (5) is usually regarded a s  sufficient 
(see,  e.g., Ref. 8, Sec. 5.2-3) to satisfy the criterion 
that the variation of G,(w) be slow over the interval A. 

It is then possible to take G,(+wo) outside the integral in 
(3), and in the case  of the calibration (4b) we have 
simply 

G""' (w,) = G , ( ~ o ) .  (6) 

The condition (5), however, i s  necessary but not suffi- 
cient for the validity of (6). I ts  insufficiency, a s  will 
be shown, can manifest itself in measurements of the 
high-frequency wing of the spectral  density of the low- 
frequency (slow) fluctuations. 

For  the sake of clarity, we consider an analyzer with 
the simplest resonant circuit,  described by the equation 

We obtain accordingly 

Let the input signal y ( t )  have a spectral  density of the 
form 

Substituting (8) and (9) in (3), we obtain 

It is easily seen that the condition (5) that the analyzer 
be narrow-band (in our case i t  takes the form ay/2w, 
<< 1) still  does not determine uniquely the GoUt(w0) de- 
pendence. It i s  also important to know the relation be- 
tween y and v, i.e., between the widths of the input 
spectrum and the resonant filter. Indeed, a t  y/v << 1,  
i.e., in the case of a relatively narrower f i l ter ,  we 
have the usual result  

In the other limiting case,  however, when y/v >: 1, we 
obtain 

From this  i t  follows directly that if the measurements 
a r e  car r ied  out in this  situation a t  a constant Q, i.e., 
under the condition y(wo)/wo = const, then the output 
signal will imitate the presence of noise with a spec- 
trum l/f a t  the input of the analyzer. The general form 
of the frequency dependence of the output signal ( lo) ,  
under conditions of measurements with constant Q, i s  
shown in the figure for the case y/wo = 0.05. It is c lear -  
ly seen that although a t  high frequencies (w > v) the true 
spectral  density of the noise (9) is everywhere propor- 
tional to 1/w2 and the condition (5) is satisfied, al l  this 
i s  s t i l l  not enough to  let the region of the maximum 
IK(wo, w) l 2  to make the main contribution to  the integral 
in (3). Conversely, a s  soon a s  the filter bandwidth y 

becomes la rger  than the width of the input spectrum v, 
a transition from the relation (11) to (12) takes place 
quite rapidly. In other words, the output signal of the 
analyzer ceases  to yield information on the form of the 
spectrum of the input and begins to vary with frequency 
in accordance with the l/f law. 

If the measurements a r e  carried out a t  a constant 
bandwidth, then it follows from (12) that a t  y/v << 1 the 
output signal will imitate the presence of noise with 1/ 
f spectrum a t  the input of the analyzer. Although in 
the particular example considered by us  this  depend- 
ence coincides with the high-frequency asymptotic form 
of (9), i t  follows nevertheless from (12) that the mea- 
surement does not yield the "correct" spectrum in this  
case. 

Let us  verify that the conclusion (based on a concrete 
example) that false observation i s  possible of a l/f 
spectrum in measurements with constant Q, o r  of a 
l/f" spectrum in measurements with a constant band- 
width A ,  i s  not the consequence of the frequency char-  
acterist ic  (8) chosen above for  the analyzer and of the 
chosen spectral  noise density (9), but a manifestation 
of the general laws of spectroscopy. To this  end i t  is 
necessary to turn to the initial equations (2) and (3). 
Unfortunately, although the spectral  analysis of s ta -  
tionary random processes i s  by i t s  very character  a 
spectroscopic measurement method, Eq. (3) does not 
have a form usual for spectroscopy, when the measured 
output spectrum is connected with the input spectrum 
via the instrumental function and a convolution integral 
with respect  to the frequencies (see,  e.g., Ref. 9). It 
is easy,  however, to ca r ry  out the necessary transfor- 
mations that lead to the desired result.  

It is seen from (8) that the transfer  characteristic of 
a resonant filter can be represented a s  a product of two 
factors. The time dependence of one of them is rapid 
and i s  determined by the frequency to which the filter is 
tuned, and the other factor depends slowly on the time 
and describes the buildup of an oscillation in the reso-  
nant circuit,  with a characterist ic  time constant in- 
versely proportional to the bandwidth. This property 

FIG. 1. Dependence, caiculated from formula (10). of the out- 
put signal of the analyzer on the tuning frequency under the 
condition df = const (solid line). The dashed line is  the spec- 
tral density of the noise at the analyzer input. 
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is common to f i l ters  whose frequency characterist ics  
have in the complex plane isolated poles that a r e  close 
t o  the rea l  axis  (see, e.g., Ref. 8, Sec. 2.2-5), s o  that 
for the transfer characterist ics  of narrow-band f i l ters  
we can use the following approximate representation8: 

where the envelope H,(t) is a slowly varying function 
that decreases a t  infinity, and the phase q is frequent- 
ly just a constant. From this  we easily obtain 

1 
+-Re[eZiPKQ(o+oo)K'  ( a - o o )  I ,  

2 (14) 

where 
" 

K, ( o )  =1 dtH, ( t )  e'"'. 
-- 

(15) 

This function has a l l  the properties of the frequency 
characteristic of a physically realizable f i l ter ,  but in 
contrast to I K(w) 1 it ha s  a maximum at  zero. 

Let now H,(t) belong to a single-parameter family of 
functions and let l /A ,  be the characteristic time scale 
that determines both the width and the r a t e  of decrease 
of H,(t) and is such that w,/A, >: 1. Then H,(t) =H,(tA,), 
and 

1 
K o ( o ) a z K 1  (5) . (16) 

Substituting (14)-(16) in (3), using the fact that G,(w) i s  
even, and using the definition (4b), we obtain 

1 " d o  00-0 = 
~ " u ' ( . o ) = ~  1-5-11 (b, ) I 

-- 

where Z,(w) = K,(w)/K,(O). At w f 0 the second t e rm in 
the curly brackets of (17) can always be neglected, af ter  
which we obtain the sought expression 

l " d o  oO-61 
~ ~ ( o ~ ) = - j - I  A 2x K ,  (T ) I G . ( ~ ) .  

in which IK,((w, - w)/A,) l 2  plays the ro le  of the instru- 
mental function refer red  to unity a t  the maximum. It 
remains to show that A and A, a r e  proportional. Sub- 
stituting (14) and (16) in the definition of A (4b), we 
have 

The constant in (19) does not depend on the resonant 
frequency w,, but can vary with the type of filter. 

It is now easy to obtain the conclusions we need, by 
analyzing Eq. (18) and using customary spectroscopy 
concepts. It i s  known that if the instrumental function 
is narrower than the investigated spectrum, then the 
measurement result  is 

G""' (ao)  =G. ( a o ) .  (20) 

On the other hand if the investigated spectrum has  a 
narrower contour than the instrumental function, then 

the result  of the measurements will be the contour of 
the instrumental function 

where w, i s  the frequency a t  which the maximum of 
G,(w) takes place. This result  is a consequence of the 
fact that both the instrumental function and the investi- 
gated spectral  density belong to the family of 6-like 
functions, since they satisfy the conditions of conserva- 
tion of normalization and non-negativity when the pa- 
r ame te r s  that characterize their width a r e  varied. 

It i s  now obvious from (21) that when the spectral 
density of the noise is narrower than lR,(w) 1 2 ,  and the 
noise frequency i s  low enough to  satisfy the condition 
w, << w, [we shall use in such cases  the te rm "infralow- 
frequency9? (ILF) noise], then in constant-Q measure-  
ments the output signal has a dependence of the l/f 
type: 

On the other hand, if for  the same relations between 
the noise spectrum and the instrumental function the 
measurements a r e  carried a t  a constant bandwidth A, 
then the output signal has  the frequency dependence of 
the far  wing of the instrumental function, which like- 
wise has  a s  a rule the form l/f ". 

Thus, we have found that the l/f dependence a t  the 
output of a spectrum analyzer, which is typical of low- 
frequency flicker noise, does not necessarily reflect 
the true behavior of the spectral  density of the noise a t  
the input, but can nevertheless appear regularly in 
measurements of ILF noise. 

Some refinements a r e  necessary if w, = 0. It is then 
necessary to use (17) instead of (18). This, a s  can be 
seen directly, does not change the conclusion that the 
l/f law is strictly followed in measurements of ILF 
noise under conditions of constant Q, but can make 
somewhat l e s s  regular  the behavior of the output signal 
in measurements with constant bandwidth. Fo r  exam- 
ple, the exponent n may begin to vary slowly with f r e -  
quency. In general, a s  can be seen from (3), if A does 
not depend on wo and ILF noise i s  present a t  the input 
of the analyzer, then the output signal i s  proportional 
t o  I K(w,, 0) 1 2 ,  and should always be a decreasing func- 
tion of the frequency a t  A/w0 << 1. The derivation of 
(17) and of i t s  consequences will be needed to prove that 
under conditions of  incorrect'^ measurements i t  is 
possible to observe alternating-sign variation and even 
a str ict  l/f law. 

This r a i s e s  the following question: what in fact will 
be observed if a l/f noise i s  actually applied to the in- 
put of the analyzer? Since for a stationary noise no 
such behavior of G,(w) is possible on the entire f re -  
quency axis ,  we use a model spectrum, which i s  ob- 
tained if the relaxation frequencies v have a continuous 
distribution in a certain interval v, c v c v, in accord- 
ance with the law g(v) a dv/v (see,  e.g., Ref. 10). Inte- 
grating Eq. (10) with the indicated distribution function, 
we find that so  long a s  y/v2 < 1 ,  the quantity GoUt(w0) 
represents  correctly the frequency variation of G,(w). 
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Upon violation of th i s  condition, however, which can 
naturally take place only in the frequency region w 
>> v,, we have again a gradual transition of GoUt(w0) 
from a l/f dependence to a l/f dependence, s imi la r  to 
that shown in the figure, although the considered model 
spectral  density G,(w) i s  known to  be proportional to 1/ 
f in this  region. 

Digital reduction of the measurements. In the case 
of digital method, the initial object i s  a temporal rea l -  
ization of the noise, measured a t  d i scre te  points in 
equal s teps r0 in t ime and of finite duration To. The 
measured se t  of points i s  then used to est imate the co r -  
relation function of the noise, followed by an  est imate 
of the noise spectrum with the aid of the d iscre te  Fou- 
r i e r  transformation (DFT). A s  an alternative, the DFT 
can be directly applied to the measured realizations and 
the spectrum estimated in the form of the square of the 
modulus of the coefficients of the DFT. In some r e -  
spect the analysis of digital methods, from our point 
of view, i s  even simpler ,  since the analog of formula 
(18) i s  already known in the l i terature (see, e.g., Ref. 
11, Sec. 6.3.5). In our notation, the corresponding ex- 
pression i s  of the form 

- do' 
G""'(o)=T, J - W ( o - o T ) G , ( o ' ) ,  

2n 

where W(w) i s  the spectral  window. Broadly extended 
windows can be written in the form (Ref. 11, Chap. 7) 

where n =  1 ,2 ,4  corresponds respectively to  a r e c -  
tangular, Bartlett,  and Parzen  window. Comparing 
(23), (24) with (18), (21) we can easily verify that in the 
case of digital reduction of ILF  noise measurements,  a 
false observation of the spectrum of the l/fn type will 
take place. Such measurements a r e  always car r ied  out 
with a constant bandwidth (-1/~,) ,  a t  least in each of 
several  frequency intervals  into which the en t i re  in- 
vestigated band i s  subdivided. As  a resu l t  of effective 
"averagingw of the resul tant  curve over a l l  the sub- 
bands, a spectrum of the type l/fn can be obtained with 
1 6 n 6 4, depending on the chosen window. Indeed, in 
digital reduction the value of n is most  frequently la rg-  
e r  than unity and i s  not an integer. Fo r  example, n - 1.3 and 1 < n  6 1.4 were  obtained in Refs. 5 and 7, r e -  
spectively. 

In addition t o  the foregoing, there i s  one other effect 
that distorts  the "pure- l/fn dependence in measure-  
ments  of ILF  noise. This  effect is connected with the 
specific features of the DFT and i s  not taken into a c -  
count by expression (24). To explain i t s  character  and 
to obtain a resu l t  that is correc t  over a l l  the frequency 
band, we present  a brief derivation of Eq. (23). 

Assume we have an est imate of the correlation func- 
tion C,(kr0) in 2N discrete points (k = -N, -N+ 1, ..., N 
- 1). By definition (Ref. 11, Chap. 7) 

N- l 

~ . " ~ ( o ) = z ~ z  ~ ( k z ~ ) C ~ ( k s ~ ) e " ~ ' ~ ,  
k=-x 

(25) 

where w ( t )  i s  the correlation window. Representing the 
correlation function in the form 

and substituting in (25), we obtain 

where To= 2Nr0 i s  the total measurement time, and the 
spec t ra l  window i s  defined by the expression 

In the case,  e.g., of a Bartlett window 

and the summation in (28) yields 

A comparison of (30) with (24) shows that the use of 
the DFT led to  replacement of NwrO/2 in the denomina- 
tor  by Nsin(wr0/2). So long as the frequency w is smal l  
compared with the Nyquist frequency, defined by the 
condition W N  = r/rO. the continuous and d iscre te  Fourier  
t ransformations yield practically identical expressions 
for the instrumental function (spectral  window). As a 
rule,  however, the calculations a r e  car r ied  out for 
frequencies in the interval n/Nr0 Q w Q WN. In this  case 
the frequency dependence of  gout(^,) in the presence of 
ILF  noise i s  described in accordance with (27) and (30) 
by the formula 

f rom which it is obvious that a smooth transition takes 
place from a dependence l/f on the low-frequency 
edge of the spectrum to saturation on i t s  high-frequen- 
cy edge. This  behavior of the spec t ra  can actually be 
observed on the f igures in Refs. 5 and 7. When an a t -  
tempt i s  made to approximate formula (31) by an  l/fn 
law, th i s  effect can a l so  lead to non-integer values of 
n, in this  c a se  between 1 and 2. The frequent oscilla- 
tions predicted by formula (1) should be most pro- 
nounced only on the low-frequency end of the band, 
where their period is comparable with the frequency w. 
We note that in Ref. 7 there i s  mention of a "steplike 
character9$ of the obtained spec t ra l  es t imates  precisely 
a t  low frequencies. Generally speaking, the  period of 
these oscillations coincides with the bandwidth of the 
spec t ra l  window (see the analogous analysis  of the in- 
s trumental  function of a diffraction grating in Ref. 12), 
and their  appearance should depend on the choice of the 
s e t  of values {w,}, for  which Gout i s  calculated, on the 
variance of the est imate of Gout, i.e., on the 8'noise" 
along the Y axis, on the random scat ter  of the instants 
of the readings, and on the accuracy with which the cal- 
culations a r e  performed (the "noisew along the X axis). 

It should be noted that in the l i terature on spectral  
analysis  there i s  no unanimity with respect  to the justi- 
fication of the use of formula (25) for the est imate of 
the spectrum, and correspondingly different recommen- 
dations a r e  made concerning the choice of the s e t  of 
discrete frequencies {w,} (cf., e.g., Sec. 7.1.1 in Ref. 11 
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and Sec. 7.3.3 in Ref. 13). It appears that a more con- 
sistent approach should be based here on the idea of in- 
terpolating the functions by trigonometric polynomials, 
which will make i t  possible to indicate exactly the r a -  
tios of the DFT coefficients and the initial function, a s  
well a s  permits  a unique choice of the se t  {w,} and an  
estimate of the e r ro r s .  An investigation of these ques- 
tions, however, is outside the scope of the present pa- 
per. We indicate only that in our opinion i t  i s  more 
correct  to calculate GO'' (W) a t  points wj r 2 6  = 2?rj/~,, 
where j = 0,1 ,  ... , N. The even harmonics occur then a t  
the minima of the function (31), and the odd a t  the max- 
ima. Owing to the finite noise level in the estimate of 
the spectral  density, the zeros will not be emphasized, 
whereas the maxima remain practically unchanged. 
This reasoning enables u s  to replace, in the analysis 
that follows, sin2(Nw?,,/2) by i t s  mean value. 

2. ANALYSIS OF THE KNOWN EXPERIMENTS 

Since the questions concerning interpretation of spec- 
t r a l  measurements of low -fr equency noise, considered 
in the present paper, have up to now apparently at tract-  
ed no attention, the extensive l i terature on measure-  
ments of the l/f noise contains highly skimpy informa- 
tion on the experimental conditions and on the methods 
of the data reduction in that part which is of interest 
heke. The published recommendations on measurement 
 method^^'''^''^ do not make i t  possible to exclude the 
possibility of an erroneous interpretation of the ob- 
served spectra of the l/fn type. At the present time, i t  
s eems  to u s  that two alternatives can be offered: 
1) some part of the available experimental results  does 
indeed offer evidence of the presence of l/f noise, and 
2) there is no such noise in nature a t  all. Until a thor- 
ough analysis of the available results  i s  made (which 
most likely can be made only by the authors of the 
works themselves), or  until new experiments a r e  made 
in which the necessary control measurements that fol- 
low from the present paper a r e  taken, i t  will apparent- 
ly be necessary for the time being to assume that there 
is no convincing proof of the existence of "genuinet9 l/f 
noise. However, even if the second alternative is a s -  
sumed, an explanation must be found for the really ob- 
served dependences of the l/fn type, and, in particular, 
the presently prevailing opinion that the lower limit of 
the l/f spectra has  a t  present not been reached. With- 
out claiming to present a final solution, we advance 
certain leading arguments. 

As follows from (21) and (31), the presence of ILF 
noise a t  the input of the analyzer makes the output s ig-  
nal proportional to the mean square of the fluctuations 
and to the value of the instrumental function, and in- 
versely proportional to the analyzer band width. No in- 
formation on the true ILF noise spectrum can be ob- 
tained under these conditions, since the noise turns out 
to be completely integrated. However, the ILF noise 
should satisfy the condition that i t s  correlation time is 
much longer than the time of establishment of the tran- 
sient processes in the spectrum analyzer in analog 
measurements, o r  the duration of the realization in 
digital measurements. One should therefore consider 
as physical mechanisms those that can have very long 

correlation times. All of them, however, had a s  a rule 
not a l/f spectrum, but one of the relaxation type (9) 
and were  therefore rejected. Our reasoning is not sub- 
ject to th is  restriction. The noise spectrum, provided 
i t  i s  connected with a sufficiently slow process,  can be 
arb i t ra ry  (but, of course, integrable), including a lso  of 
type (9). This allows us, when explaining electrical 
noise, to turn to models in which i t  i s  assumed that the 
presence of the current  noise is connected with fluctua- 
tions produced in the sample conductivity a by equilib- 
r ium fluctuations of the thermodynamic parameters (of 
the temperature T and of the number N of the ca r r i e r s ) ,  
i.e., 

where U is the voltage and I is the current  through the 
sample. 

Temperature fluctuations can appear in temperature- 
sensitive materials ,  e.g., in the case  of volume noise 
in semiconductors o r  in metallic films. In the case of 
contact and surface noise, fluctuations in the number of 
c a r r i e r s  can lead to fluctuations of the charge in the 
capacitance of bar r ie r  s tructures,  and modulate by the 
same token the height of the bar r ie r .  In th is  case 
neither type of fluctuation can in principle be removed, 
and their mean square depends only on the tempera- 
ture,  on the volume of the sample, and on the specific 
characterist ics  e.g., 

where c ,  is the specific heat and V i s  the volume of the 
sample. Fo r  a selected volume we can only vary the 
spectrum of the temperature fluctuations 

by varying the conditions of energy exchange between 
the system and the ambient, and by the same token 
varying 7. The better the sample i s  insulated against 
heat exchange with the ambient, the longer the time of 
establishment of the temperature and the lower the f r e -  
quency of the temperature fluctuations. It should be 
noted that in a l l  attempts to measure l/f noise down to 
very low frequencies the samples a r e  always kept in a 
thermostat, and a s  a rule the time required for the 
temperature to assume the study value apparently ex- 
ceeds the measurement time and exceeds a l l  the more 
the reciprocal  bandwidth of the analyzer, s o  that to de- 
c rease  the variance of the measurement resul t s  one 
always tends to satisfy the condition (T,,A)"~>> 1. This 
may explain why there i s  no lower limit of the l/fn de- 
pendence in such measurements. It can a lso  be a s -  
sumed that in those ca ses  when the l/f dependence gave 
way to a low-frequency plateau, such measurements 
were  simply discarded a s  not relevant to the l/f -noise 
problem. We indicate incidentally that in Ref. 15 a case  
is noted, in which a transition from a l/fn dependence 
that increases towards lower frequencies was  observed 
when the r a t e  of heat exchange of the sample was in- 
creased (7 was decreased). 

It follows from the foregoing, in our opinion, that on 
the bas is  of the formulated notion concerning the ILF 
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noise i t  i s  possible to construct an incontrovertible 
picture wherein the main features of the experimental 
r e su l t s  on l/f noise a r e  attributed to  the presence of 
ILF  noise. The final solution of the question, however, 
must undoubtedly be provided by experiment. We in-  
dicate only that among the candidates for slow process-  
e s  that can appear in strain-sensitive s t ruc tures ,  one 
can possibly include a l so  tidal variat ions of the force of 
gravity. The variation of the force of gravity is of the 
order  of 6g/g- which is readily measurable,  and 
these forces  a r e  likewise impossible to eliminate in 
practice. Their spectrum i s  r ich  in harmonics concen- 
t rated around the semidiurnal, diurnal, monthly, annu- 
a l ,  nine-year and 18-year cycles, and a l so  contain a 
considerable fluctuating component (see, e.g., Refs. 
16 and 17). Finally, inclusion into consideration of 
slow fluctuations near  phase transi t ions and in nonequi- 
librium systems,  as well as of the variat ions of the 
geophysical parameters  extends even more  the group of 
possible slow processes. 

It i s  of interest  to  attempt to analyze quantitatively 
the experimental r e su l t s  of Clarke  and Voss7 from the 
point of view of the possible presence of ILF  noise in 
their measurements. The authors of Ref. 7 have be- 
come convinced that their  measurements point to  equi- 
librium fluctuations of the temperature as the cause of 
the low-frequency noise in thin metallic films. They 
have therefore assumed that the spec t ra l  density of the 
voltage fluctuations on the f i lms i s  proportional to 
( 6 ~ ~ ) ,  and presented a l l  the data that make i t  possible 
to  calculate the contribution of such fluctuations to  the 
current  noise. Voss and Clarke, however, thought i t  
necessary to multiply (6T2) by a certain frequency de-  
pendent factor, which would yield a dependence of the 
l/f form in the measured frequency region. They s e t -  
tled ultimately on a model spectrum chosen after  ana-  
lyzing the process  of heat diffusion in a thin film, with 
allowance for i t s  geometry, and wrote 

where = R - ' ~ R / ~ T ,  R i s  the resis tance of the film, 1 
and w a r e  i t s  length and width [cf. (34)j. 

F rom our point of view, taking into account the data 
given in Ref. 7 on the reduction procedure, we can find 
that in this  case a formula of type (31) should be valid, 
and namely (G' is the spec t ra l  density in the positive 
frequencies) 

where sin2(~wT,/2)  is replaced by 0.5 and M i s  the 
number of counts. (MT,)' is the width A of the spectral  
window [cf. formula (6) in Ref. 121, s o  that we have 
from (36) 

where N,, i s  the number of a toms in the volume of the 
film and i s  obtained f rom the classical  expression for 
the heat capacity 3N,k, [see (33)]. 

Formula (37) can be applied to  a calculation of noise 
in two films, Bi and Au, for which geometrical  dimen- 

s ions a r e  given in Ref. 7 (see Figs. 1 and 2 of Ref. 7), 
and quantitative data a r e  available on the noise mea- 
sured  at 10 Hz. It is necessary only to find A = (M7J-l 
by using the information given in Ref. 7. Assuming the 
total number of points in the realization to  be M = 1024, 
and recognizing that in the case of Bi the high-frequency 
limit of the measured band is lo3  Hz, we obtain 1/ 
27, = lo3 Hz, whence A,, = 2 Hz. Fo r  the Au film we 
est imate A by choosing a value of I/MT, equal to  the 
limiting frequency of the measurement band on Fig. 2 
of Ref. 7, which yields A,,= 1 Hz. Obtaining for  Na 
= VN, the values 1.2 X lo-'" X 2.84 x loz2 and 1.25 x 10-lo 
x 6 X loz2 for  the Bi and Au f i lms,  respectively, and 
substituting in (37) all these numbers together with the 
experimentally measured7 values P,, = -2.9 x K-' 
and a,,= 1.2 x lo-' K-', we obtain 

GF' (10 Hz)/Ue=15.  lo-" Hz-' ,  G::' (10 Hz)/UZ=O 58 . 10-I' Hz-'. 

(38) 
The values measured in Ref. 7 a r e  13  X 10-l6 Hz-' (Bi) 
and 0.6 x 10-l6 Hz-' (Au), while the values calculated 
there,  using the model spectrum (35), a r e  respect ive-  
ly 9.3 X 10-l6 and 0.76 X loq6 Hz'. As  seen f rom a 
comparison of these data with (38), our analysis  makes 
i t  possible to est imate quantitatively'' the measured 
noise in metallic f i lms by means of formula (37), ex- 
pressing this  noise in t e r m s  of the mean squared ther -  
modynamic fluctuations of the temperature and the in-  
strumental function. We have introduced here no addi- 
tional complications whatever, unlike in Ref. 7, where 
a model spectrum was  used to explain the frequency 
dependence of the measured signal. In addition to  this  
quantitative est imate,  formula (37) yields a l so  a f r e -  
quency dependence that is closer  to  experiment (-l/f ') 
than formula (35). The authors of Ref. 7 attempted t o  
attribute the l/f spectrum in their  measurements t o  
the presence of a slow monotonic drift. Actually, this  
mechanism can lead to a discontinuity in the real iza-  
tion a t  the edges of the interval when the realization i s  
periodically continued (this continuation is in fact c a r -  
r ied  out when the DFT i s  used), and consequently a l so  
to  the l/f frequency dependence of the power spec-  
t rum. However, the discontinuities of the f i r s t  kind in 
the realization should lead to  a -l/f dependence on the 
high-frequency and of the measurement range, and not 
on the low-frequency one as in experiment (see Fig. 1 
of Ref. 7). The difference noted by Voss  and Clarke be- 
tween the spec t ra  of the response to  a step perturbation 
and to  a 6 pulse can a l so  be understood by turning to  
formula (27) [or (2)]. In the former  case we have a t  the 
input of the analyzer  a signal whose spectrum is con- 
centrated in the region of very low frequencies, and in 
the  lat ter  a signal with almost  uniform frequency spec-  
t r u m  of the power. Since in the former  case the output 
signal i s  given again by (31), in which only (y2) should 
be replaced by the total power of the action, i t  becomes 
perfectly obvious why the signal measured in this  case 
had the s ame  frequency dependence as the measured 
output spectrum following the action of an  ILF  noise, 
while no such correlation was  observed in the response 
to  a 6 pulse. 

All the foregoing makes i t  quite probable that ILF  
noise due t o  equilibrium fluctuations of the temperature 
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was present in the experiments of Voss and C l a ~ k e . ~  

One more deduction can be drawn from (37), namely 
a symbolic expression for the Hooge constant a! [see 
(I)]. It is obvious, that for the considered case of the 
noise in metallic films in the experiments of Voss and 
Clarke 

An expression of the same type for a (but four times 
larger) will hold i f  the measurements a r e  carried out 
with an analog spectrum analyzer having a Lorentz con- 
tour, a s  follows from (12). Using the values of 0 from 
Ref. 7 and putting T =  300 K and V/A)=  10, we obtain 
from (39) the following values: 

Film Cn A g Au Sn Bi ' 

material : 
or.109: 4.4 3.7 0.44 3.9 2.55 

It is seen that the calculated values of a! correlate 
satisfactorily with the "mean-statisticalv value 2 X 10" 
obtained empirically by Hooge.' It must be emphasized, 
however, that according to (39) a depends not only on 
the sample parameters and on the temperature, but al- 
so  on the chosen method of the spectral analysis and 
resolution. It is also obvious that from the point of 
view of the ILF-noise premises, the dilemma posed by 
Voas and Clarke, whether N,  is the number of atoms or 
the number of free carriers,  can be differently r e -  
solved, depending on the nature of the source of the 
fluctuations. 

3. CONCLUSIONS 

It appears that one of the consequences of the present 
paper may be a complication of the measurement pro- 
cedure on account of the need for monitoring the "phys- 
ical content" of the measured signal. To avoid a s  much 
a s  possible an investigation of the f a r  wing of the fre- 
quency characteristic of the analyzer, we can propose, 
a s  a test, to place a t  i t s  input a low-pass filter whose 
cutoff frequency lies in the investigated region. Then 
the input to the analyzer will be a random process with 
a spectral density not Gy(w), but Gy(w) Iz(w) 1 2 .  If these 
operations alter the frequency dependence of the output 
signal in the region of the frequency cutoff, this means 
that in the absence of the low-pass filter the analyzer 
yields the spectral density of the input process. In the 

case of ILF noise, on the other hand, the insertion of 
a low-pass filter should not lead to a change in the fre- 
quency dependence of the output signal. 

I am grateful to Sh.M. Kogan and T.M. Lifshitz for 
numerous and stimulating discussions, and also to 
V.D. Dementienko and A.V. Petrov for a helpful dis- 
cussion. 

 he cause  of the  discrepancy with the  experiment may b e  the 
fact  that  the cal ibrat ion chosen by us (4b) does not correspond 
to the one actually employed (on which t h e r e  i s  no informa- 
tion in Ref. 7). o r  e l s e  the  possible presence  in such  samples  
of additional noise of uncertain origin ( s e e  Ref. 18). 
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