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A quasiclassical method is developed for calculating the corrections to the complex permittivity of 
semiconductors with degenerate valence bands in an electric field. Expressions are obtained for the 
permittivity and for the light-absorption coefficient, both above and below the absorption edge. It is shown 
that exciton effects, by changing the absolute value of the effect, do not change the relative amplitude of the 
oscillations beyond the absorption edge. The oscillation period is found to change simultaneously. The results 
below the absorption edge coincide with those previously obtained by Merkulov. The influence of a 
nonspherical valence band on the anisotropy of the exciton electroabsorption is discussed. It is shown how the 
scattering of electrons and holes leads to damping of the oscillations. 

PACS numbers: 77.20. + y, 78.20.Jq, 78.40. - q, 71.35. + z 

5 1. INTRODUCTlOlJ AND BASIC RESULTS 

We develop in this paper a quasiclassical method of 
obtaining the complex permittivity tensor (CPT) [both 
below and above the fundamental absorption edge (FAE)] 
in an electric field; this theory i s  valid for semicon- 
ductors with the band structure of germanium. 

The imaginary part of the CPT (the light-absorption 
coefficient) in an electric field, for simple nondegen- 
erate bands, was first calculated by ~ e l d ~ s h '  below the 
FAE without allowance for exciton effects. Exciton ef- 
fects were taken into account in electro-optics by 
Merkulov and perelY2 (below the FAE, far from the 
exciton levels), by ~ e r k u l o v ~  (near the ground- state 
energy of the exciton), and by the authors4 (above the 
FAE near degenerate excitonic states). 

The light absorption coefficient in an electric field in 
semiconductors with degenerate valence bands was ob- 
tained by Keldysh, Konstantinov, and perelg5 (below the 
FAE, without allowance for the exciton effects). Ex- 
citon effects in this region were investigated by Merku- 
10v.~ 

The condition for the applicability of the quasiclassi- 
cal method developed in the present article i s  that the 
motion of the electrons and holes in an electric field 
be quasiclassical [condition (27)]. The met hod makes 
it possible to take into account exciton effects. Al- 
though the CPT cannot be calculated analytically with 
allowance for the Coulomb interaction of the electron 
and hole even in the absence of an electric field, in 
some cases (above the FAE, in the spherical approxi- 
mation) the relative magnitude of the correction to the 
CPT in an electric field can be found. 

The physical mechanism that necessitates the correc- 
tion to the CPT in an electric field in semiconductors 
with degenerate valence bands and in the case of simple 
bands i s  one and the same. It i s  known that the CPT i s  
determined by the value of the wave function of the elec- 
tron and hole when the coordinates coincide. Above the 
FAE the electric field deflects the diverging electrons 
and holes, and if their relative momentum was directed 
along the field, then they meet again after moving a 

considerable distance apart (see Fig. 1). We shall call 
these trajectories "returning." This results in inter- 
ference that manifests itself in oscillations of the C m  
a s  a function of the frequency of the light and of the 
electric field. The relative smallness of the oscillation 
amplitude i s  due to the smallness of the solid angle in 
which the electron-hole pairs that contribute to the in- 
terference diverge. In a semiconductor with a degen-' 
erate valence band, oscillations of two types a re  pro- 
duced, corresponding to the two types of holes. These 
two types of oscillations have different periods, ampli- 
tudes, and polarization dependences. A study of the 
polarization dependence makes it possible to determine 
the signs of the band-structure parameters, something 
impossible by studying only the absorption spectrum. 
(This fact, a s  applied to absorption below the FAE, was 
first noted in Ref. 5). 

Above the FAE (Ew - E, = A > 0) we have 
4e ' s2(2A)  '113 eEh 

E ~ = ~ ( O ) =  1 
R 3 0 z  

11 (e) i ( 2 A ) " r n v " ' ( e )  XC ~ : v ( e ) - - e x ~  
, - , , h  

.M ( 3eEh (1 

where &re(w) i s  the resonant part of the CPT [see form- 
ulas (19) and (lga)], w i s  the frequency of the incident 
light, E i s  the electric field intensity, E, i s  the band 
gap, s is a quantity characterizing the interband ma- 
trix element of the velocity7 

FIG. 1. Trajectories of relative motion of electron and hole 
in an electric field. The points r(t,) and r(tZ) l ie on a returning 
trajectory in the f ree  region. 
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p is a cubic tensor of fourth rank; p i i i i  = 1, the re- 
maining components a re  ,zero, e is a unit vector in the 
direction of the electric field 

y,, yz, and y3 a r e  the Luttinger constants7 

-1 
ml.* (n)=  m-l[yt1*2g(n) I ,  (5) 

Y{=Y, +m/m,, and m, is the electron effective mass 
in the conduction band. The quantity p,(e) has the di- 
mension of mass, i ts  calculation and final expression 
a r e  given in the Appendix [expression (A.2)]. 

In the spherical approximation (yz=Y3) the masses 
m, and p ,  do not depend on the angles, and m,(e) = p,(e) 
= m, 

The principal axis of the tensor e,O8(e) (and of the CPT) 
a r e  directed along and across e 

In the spherical approximation, when the light i s  polar- 
ized along the field direction, oscillations of only one 
type a r e  therefore produced: if y,> 0, they a r e  con- 
nected with the light holes, and if yz <O with the heavy 
holes. In the case of polarization across e, the ratio 
of the amplitude of the oscillations cL i s  m, /3m, at y, 
< 0 and 3m, /3m, a t  yz < 0. Below the FAE, the wave 
functions of the electron and hole overlap only on ac- 
count of tunneling in the electric field, therefore the 
absorption coefficient is exponentially small. It i s  of 
interest to note that the asymptotic expressions for the 
CPT above and below the FAE cannot be obtained from 
each other by analytic continuation in the light frequen- 
cy. Below the FAE 

Since m, < w,, only the term with v = l  i s  left in fact in 
(8). Expression (8) was obtained in Ref. 5 accurate to a 
pre-exponential factor, which was not calculated in Ref. 
5. In the same paper, a detailed analysis was made of 
the polarization dependence of the absorption below the 
FAE. The Coulomb interaction is quite simply taken 
into account in the spherical approximation: 

m. 
e,"'(o)-el(@, E-0)-i Im e , ( o ,  E-0) eEh z e V a ' ( e ) - p x p ( i u ' , )  

2 (2A)YzM'~  - , - "  (91 

c,, is the static permittivity, ci(w, E=O) i s  the value of 
c i  in the absence of an electric field. It follows from 
(9) that allowance for  the Coulomb interaction leads to 
a change in the total value of the CPT, and the relative 
amplitude of the oscillations and their polarization de- 
pendence remain the same as without allowance for the 

Coulomb effects. The phase of the oscillations acquires 
a Coulomb increment similar to the increment in the 
case of simple bandsO4 

To estimate the unknown quantities c,(w, E=O) and 
6; we can use the expressions for the case of nonde- 
generate spherical bands8: 

8e'sZ bP 
R e ~ , ( w , E = o ) = - - -  ( R e $ ( l - i s ) - l n z ) ,  

o? soh' 

where $(x)=dlnr(x)/dx, x =  (R/A)' /~,  ~ = ~ e ~ / 2 & i c , 2  i s  
the exciton Rydberg. At 1 y,(<< yi these estimates be- 
come exact. At A = 50 R the Coulomb interaction in- 
creases Im&,(w, E) = 0 by a factor 1.5. Therefore the 
Coulomb effects a r e  substantial f a r  beyond the FAE. 
Allowance for the short- range non- Coulomb part of the 
electron- hole interaction influences only the form of 
ci(w, E =0) and 6,. In particular, it i s  necessary to add 
to 6; the phase 6, of the scattered partial wave with 
angular momentum L = 0 by the short- range potential. 

Let us explain the physical meaning of expression (9). 
The imaginary part Imc ,(w) i s  proportional to the prob- 
ability that a particle and hole produced at one point 
will move an infinite distance apart. In the absence of 
a field, obviously this divergence is isotropic in the 
comes. At short distances of the order of the wave- 
length, however, where E,(w) i s  primarily formed, the 
returning trajectory does not differ in any way from the 
others (Fig. 1). This means that in the zeroth approxi- 
mation in the field the probability of diverging along this 
trajectory is the same as along any other. Therefore 
allowance for the Coulomb interaction leads to the ap- 
pearance of the same factor in froat of the oscillating 
increment to the absorption coefficient a s  in front of 
i t s  monotonic part. In first-order approximation in the 
field it must be taken into account that a small fraction 
of the paris that move apart, grouped together near a 
"returningM trajectory, will again be gathered in a 
single point, and their wave function will differ by a 
phase a,, which constitutes the classical action calcu- 
lated on the returning trajectory. It is the interference 
with this increment which gives r ise  to the oscillations. 

Below the EFA the value of the absorption changes 
strongly, but this change can be calculated only par- 
tially, namely, account can be taken of the factor that 
depends simultaneously on A and E (the Coulomb loga- 
rithm6). At sufficiently large parameters of the quasi- 
classical behavior this is the principal part of the 
change. At A < 0 

c,(~A 1 )  and E,(w, E =0) a r e  unknown functions. It can 
beshownthat~,((A()~land~,(~h()=lat I A ~ > > R .  In 
addition, c , ( (A  I) should have singularities in the bound 
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states of the exciton. In the case  of a nondegenerate 
band8 

where x =  (R/IA I)'/'. The  logarithmic correction (12) 
was f i r s t  obtained by ~e rku lov . '  

When account i s  taken of the nonsphericity, the ex- 
citon effects influence the polarization dependence of the 
CPT and i t s  dependence on the direction of the electric 
field. We consider a family of classical  t rajectories of 
particles with total energy A > 0 and with a dispersion 
law 

[m,,,(n) i s  given by expression (5)], which emerge f rom 
the Coulomb center (Fig. 2). 

In the nonspherical case,  the trajectories will not be 
straight lines, with the exception of those that a r e  di- 
rected along the symmetry axes  [OOl], [Oll], and [ I l l ] .  
Assume that on one of these axes m,, > rn, (m, is the 
mass  in the direction perpendicular to the axis). Then 
the trajectories close to this axis  will bend in such a 
way that the angle between the direction of motion and 
the axis  will decrease with increasing distance f rom the 
center. Indeed, the Coulomb force  i s  always directed 
along a l ine passing through the center, while the ac- 
celeration will be deflected towards the axis  at  m,, > m, 
(Fig. 2). On the other hand if m,, < rn,, the trajectories, 
on the contrary, will be deflected more  and more  away 
f rom the axis. 

It i s  c lear  that the trajectories begin to bend effec- 
tively when they leave a quantum region with dimension 
of the order  of the Bohr radius a ,  of the exciton, and 
cease to bend when the Coulomb energy becomes much 
l e s s  than the kinetic energy, i.e., r>> Y,  = e2/cOA. The 
described mechanism i s  particularly effective if a, 
<<r, o r  A <<R. In the limiting case  A - 0, all  the tra-  
jectories a t  infinity a r e  directed along symmetry axes 
t o r  which m,, > m,. Using expression (A.1) i t  is easy 
to show that these a r e  the [loo] axes  fo r  the light holes 
and [ I l l ]  for  the heavy ones. One should expect here  a 
strong anisotropy of the oscillating increments to the 
CPT: the effects should increase in an electric field 
directed along [loo] o r  [ I l l ] ,  with the oscillations de- 
termined by the light holes in the fo rmer  ca se  and by 

FIG. 2. Trajectories of relative motion of an electron and a 
light hole that interact in accordance with the Coulomb law. 
The directions of the Coulomb force F, and the acceleration w 
a r e  shown. aB is the .Bohr radius of the excition and delimits 
the quantum region at  A < R .  

the heavy ones in the latter. At all other field orienta- 
tions the effect should become weaker. 

Electron and hole scattering leads to an exponential 
damping of the oscillations above the FAE. Let r,(n, E) 
be  the electron damping, which depends on i t s  kinetic 
energy E and on the direction of ,motion n, while 
r l r (n ,  E )  and let rh,(n, E) be  the damping of the light and 
heavy holes respectively, so  that the corresponding 
s ta tes  decay exponentially. The  factor  that takes into 
account the damping in motion along the returning tra-  
jectory should take into account the change of the kinetic 
energy with t ime 

The integration here  i s  over the entire t ime of motion, 
cUh(r )  and &,(I) a r e  the kinetic energy of the hole of 
sor t  v and of the electron a t  the instant r ,  respectively. 
If r i s  reckoned f rom the turning point (Fig. I) ,  then 

where r, = [2m,(e)A] ' / 2 / e ~ .  Changing to a new variable 
E ,  where E i s  the summary kinetic energy at  the instant 
7,  we find ultimately that the amplitude of the oscilla- 
tions must be  multiplied by the quantity 

he re  rn,,(e) d i f fers  f rom m,(e) [expression (5)] in that 
yi i s  replaced by yl. If I' i s  independent of energy, then 
(13) coincides with the expression obtained by A ~ p n e s . ~  

$2. CONNECTION BETWEEN THE PERMITTIVITY 
AND THE GREEN'S FUNCTION 

We derive a relation that connects the CPT and the 
Green's function (GF) of the relative motion of the elec- 
t ron and hole; this relation does not depend on the char- 
ac ter  of the band structure and is valid in the presence 
of an  electr ic  field and of Coulomb interaction. We use 
for  this purpose the general expression given fo r  the 
CPT, e.g., in Ref. 7. 

If the valence band is filled and the conduction band 
empty, then the expression for  E., in the electron-hole 
pair  representation (whether bound o r  not bound into an 
exciton) i s  of the form 

Here N i s  the s e t  of quantum numbers describing the 
state of the electron-hole pair, EN i s  the energy of this 
state, V i s  the volume of the crystal, v& i s  the inter- 
band matrix element of the ct component of the velocity, 
calculated between the vacuum s ta te  (absence of pair) 
and the state with number N. 

We consider frequencies w lying near the FAE, SO 

that we can use the effective- mass  method, and the 
velocity operator  takes the form 
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ductor of the (32 type. The Hamiltonian of the holes is7 

where the operator 9, acts on the Bloch functions, and 
6(re - rJ acts on the envelope functions. Then 

Here $, is the envelope wave function, and re and r, 
a r e  the coordinates of the electron and of the hole. 
Generally speaking, $, has many components, and va 
has just a s  many. 

In the case of interest to us, the relative motion of 
the electron and hole deviates from the motion of their 
mass center, the latter being free: 

' vs (re, h) L (r) elkR, 

$,, is the wave function of the relative motion, r = re 
- r,, and R is the mass-center coordinate. Expression 
(16) takes the form 

Substituting (17) in (15) and using the definition of the 
Green's function, we obtain 

4nez d" (23-1) 66Z (k) ( u ~ V ~ '  (0) ) (91 ( 0 ) ~ " )  
nwiE.+E.+i6 J v 

where 

is a quadratic matrix whose number of rows and col- 
umns is equal to the number of the +function compo- 
nents. 

Obviously, the entire dependence on the external 
fields and on the frequency of the light near the FAE 
is contained in the term c-,, +,,w. However, each term 
in (17) is separately diverging, so that G(0, r )  cc r-' a s  
Y -- 0. It i s  therefore convenient to represent caB in the 
form of a sum of two terms: c(w)=c0(w) +cl(w), 

z0(0, 0) is the GF at zero energy and without allowance 
for the external fields and the Coulomb effects. The 
main contribution to the absorption near the FAE is de- 
scribed by cfB(w), while c,(w) yields only the back- 
ground part. Expressions (19), a s  well a s  their deriva- 
tion, a r e  perfectly analogous to the corresponding 
formulas for the simple bands.' 

$3. PERMITTIVITY OF A SEMICONDUCTOR SUCH 
AS Ge NEAR THE FUNDAMENTAL ABSORPTION EDGE 
I N  THE PRESENCE OF AN ELECTRIC FIELD (WITHOUT 
ALLOWANCE FOR EXCITON EFFECTS) 

We consider the band structure of a cubic semicon- 

where m is the mass of the f ree  electron, k i s  the wave 
vector of the hole, {fi,fj} =fi 3, + j j  j i ;  fi a r e  the op- 
erators of the projections of the angular momentum 
3/2, and their explicit form can be found in the book,7 
while 1 is a 4 x  4 unit matrix. 

The Hamiltonian of the electron does not depend on i ts  
spin o: 

R.=h'kz/2m,. 

The Hamiltonian of the relative motion i s  likewise in- 
dependent of a, and at zero total momentum it differs 
from (20) only in that y i  i s  replaced by y', = y ,  + m/m,. 
In this case k in (20) i s  the momentum of the relative 
motion k = -  ia/ar. The matrix 2 depends on o'in trivial 
fashion (in proportion to 6,,.). We shall therefore take 
6 to mean a 4 x  4 matrix, and expression (18) becomes 

The explicit form of v$ (a! i s  the velocity direction, o 
is the projection of the electron spin on the z axis, and 
j i s  the projection of the spin 3/2 of the hole on the z 
axis) is given in Ref. 7: 

Here o and j number respectively the-rows and the col- 
umns, and s i s  a certain ~ o n s t a n t . ~  H(k) has two two- 
fold degenerate eigenvalues c ,,h(k) defined by expres- 
sion (13). 

We calculate with the aid of (19) and (21) the known 
expression for the CPT in the absence of an electric 
field. In this case e,(r, r l )  i s  the GF of a ~ c h r z d i n ~ e r  
equation with Hamiltonian (20). In the k-representa- 
tion, &,@) takes the usual form 

&(k)=[H(k)-I  (E+i6)]-I,  

d k  6,= j- ([H(k)-i(A-ti6) 1-I-H-'(k)). 
( 2 ~ ) "  

(23) 

Since has cubic symmetry, 6' should have the same 
symmetry. However, since the problem has no pre- 
ferred vector for the construction of cubic invariants, 
C'=G'?. 

Calculating the traces of both sides of (23), with the 
aid of expression (13) for the eigenvalues, we obtain 

Integration with respect to the absolute value of k i s  
elementary: 
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where M is defined by (4). 

Using (21) we obtain 

where we have used the fact  that ~ , v , o * v ~  = 2 ~ ~ 6 , ~ ,  a s  
follows from (22). 

Expression (25) i s  exact, so that i t s  two forms (at 
A > 0 and A < 0) a r e  obtained f r o m  each other by ana- 
lytic continuation through the upper A half-plane. 

We consider now 6' in an electric field. We choose 
the gauge cp = 0, A = - ctE, Then the Hamiltonian of the 
relative motion takes the fo rm 

e i s  the absolute value of the electron charge, In the 
equation for  the GF  we change to the k-t representa- 
tion . 

€ ( k .  t )=-(2nR)-I  d E h ( k ) e x p ( - i E t l R ) ,  
- - 

{ih a /d t -R(k -eE t l f i ) )  B (l i ,  t )  =I6 ( t ) .  (26) 

It i s  natural to expect tFat if the eiectric field i s  weak 
enough, then 6' = 6; + Gk, where G! i s  given by (24) 
and e"s the small  increment due to the_ electric field. 
It i s  impossible, however, to calculate GE by perturba- 
tion theory, since the matrix elements diverge because 
of the unbounded growth of the potential. The mathe- 
matical reason i s  that G E  i s  not an analytic function of 
the electric field a s  E - 0. The physical reason i s  that 
the important role for  G ~ S  played by motion at  la rge  
distances (or times), where the perturbation is not 
small. For  the s ame  reason,. however, it turns out 
to be possible to obtain G~ by a q u a ~ i c l a ~ s i c a l  method. 

The picture of the motion does not differ strongly 
f rom the case  of simple bands. Above the FAE, G E  i s  
the result of interference between the incident wave and 
the one reflected by the electric field (Fig. 1). The tra-  
jectories on which this intereference is maximal a r e  
straight lines that a r e  generally speaking different for  
different holes and a r e  not necessarily parallel to the 
electric field. It is important to have k llE, and to have 
v =  ;''k not parallel to E because of the tensor form of 
the effective mass  (and furthermore different for  the 
light and heavy holes). It i s  precisely the trajectories 
with k l!E which a r e ,  a s  seen from the equation of mo- 
tion d ( m v ) / d t = e ~ ,  the returning ones. To  obtain the 
final answer for  e' i t  i s  necessary to take into account 
also the trajectories that differ little from the returning 
ones (so that the total phase adverse for  them differs 
by l e s s  than 277). If the returning trajectory is long 
enough (i.e., the field i s  weak), then these close tra-  
jectories l ie  within a small  solid angle near the-re- 
turning trajectory. This  ensures smallness of GE. 

Below the FAE i t  i s  necessary to consider below-the- 
bar r ie r  motion and tunneling under a triangular barri-  
er. In both cases, if the trajectory i s  long enough, the 
motion is quasiclassical. The quasiclassical param- 

e ter  is the action divided by Planck's constant, the 
order  of magnitude of which i s  I A  1 3 / 2 m : / 2 / e ~ ~ ,  where 
nz, is the reduced mass  of the electron and light hole. 
We assume hereafter  that the following condition holds 

We shall thus solve Eq. (26) in a quasiclassical approxi- 
mation. If the motion i s  classical, then there should be 
no transitions between different branches of the spec- 
trum. This simplifies grefltly Eq. (26) and reduces it to 
diagonal form. On the returning trajectory, however, 
there  is a turning point in the vicinity of which the 
quasiclassical character  of the motion i s  violated, and 
one can expect transitions between the bands of the light 
and heavy holes. It turns out, however, that the prob- 
ability of the transitions i s  low a lso  in this region. In 
fact, the choice of the bas is  on which the Hamiltonian 
(20) i s  diagonalized depends only on the direction of the 
kinematic- momentum vector. On a returning trajec- 
tory, however, the kinematic momentum k- e ~ t / ~  al- 
ways remains parallel to itself and at  k ll  E Eq. (26) i s  
diagonalized exactly, there a r e  no transitions in the 
quantum region, and a t  small  deviations from paral- 
lel ism the probability of these transitions is low. 

We iritroduce the time-dependent unitary matrix 
which diagonalizes the Hamiltonian 

&(n) i s  a matrix whose diagonal elements a r e  deter- 
mined by the expr$s%ion (9, and the remaining ele- 
ments a r e  zero, SGS-'= G,. 

We rewrite Eq. (26) in t e rms  of .& and k,: 

The single-band approximation corresponds to neglec- 
ting the increment to the right-hand side of (28). We 
shall est imate this increment la te r ,  and fo r  the time 
being assume i t  to be small. Then 

Generally speaking, one should take the Fourier  trans- 
f o r m  not of the f u ~ c t i o n  e,, but of (, which differs from 
6,  by the factors S (k- e ~ t / A )  and S- '  that depend on t 
and k 

We, however, have taken these factors outside the 
integral sign and have put in them kllE, since they vary 
much more  slowly than 6,  a s  functions of t and k To 
integrate with respect to k it i s  convenient to cha:ge 
over to a new variable q= k-  e ~ t / 2 t i  and expand H, 
up to second order  in q: 
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Integrating this expression with respect to t' from 0 to 
t ,  we get 

as, (0,  o) 

d3q (eE):tJ t  a2A.(k) =- JG ( i ~ ) - '  esp 

Recognizing that 

we obtain 

I;(e) 6" ( e )  " h  
a,, (0 .0 )  = - 

ifis 

J (=) z ' : e x p { + [ b t - x  ( e E ) z t 3  11 dt3  

O (31) 

where 
d2,g (,.) -'" 

G(e) = k ' : ( e )  h3 det -- ( dk,  $k ,  1 k=e) 
The calculation of k(e) i s  quite cumbersome and is 
relegated to the Appendix, where the final expression 
(A.2) is also given. 

It is seen that the integral (31) diverges a s  t-  0. 
However, this contribution, which diverges at short 
times, corresponds to GO, and'does not depend on the 
electric field, while the divergence can be removed by 
subtracting e0 [see (19)]. We are  interested in another 
contribution that arises at large t and can be calculated 
by the saddle-point method. The approximations al- 
ready made a r e  valid only when this contribution is cal- 
culated. Were we wish to calculate C?! with the aid of 
(31) (after f irst  eliminating the divergence by subtrac- 
ting unity from the exponential), then we would obtain 
an incorrect answer, a s  can_ be easily verified by com- 
parison with (24). Indeed, G! receives contributions 
from trajectories with arbitrary directions, so that in- 
tegration over the angles is carried out in (24). In ex- 
pression (311, however, the direction along the field i s  
singled out. 

We consider now the case A > 0. The saddle poir: is 
then to = 2[2&(e)~]  1 / 2 / e ~ ,  and the integration ccitour is 
shown in Fig. 3a. Calculation yields 

At A < 0, the saddle point is to = - 2i[23e) I A  1 ) 1 / 2 / e ~ ,  
and the contour is shown in Fig. 3b: 

(2lAl)"M" eEh c ( e )  
&,E= i-- 

2 ( 2 1 A l ) ' ~ : ~ " ( e )  - exp {- 
2nh' 4 (2 I A I) . a -11 3eEh } (32a) 

Expression (32a) is not an analytic continuation of (32) 
through the upper A half-plane. The reason is the fol- 
lowing. In the analytic continuation we cross the Stokes 
line, which is defined in the present case by the equation 
argA = 2~/3.  Whereas prior to passing through this line 
the saddle point was the root to of the equation A = (eEt)Y 
8&(e), which is positive on the positive A axis, after 
crossing the Stokes line the saddle point turns out to be 
the other root, - to (see Figs. 3a, b). A similar phe- 
nomenon takes place when the quasiclassical wave func- 
tions a re  joined together near a turning point. When in- 

FIG. 3. Integration contours in formula (31) : a) at A >  0 ,  b) 
at A < O ,  t o  i s  the saddle point, the Stokes line is shown dashed, 
the arrows show the directions of motion of the extremum 
points of the integrand when the phase A  changes from 0 to n .  

tegrating along the contour C2 we pass only on one de- 
cline of the saddle, whereas when integrating along Cl 
we pass over both. Therefore the pre-exponential fac- 
tors differ by a factor of two. We note also that we did 
not calculate the integral along the segment of the 
imaginary axis in C,, since it contributes only to the 
real part of the CPT; the contribution i s  proportional 
to the square of the field and can be calculated by per- 
turbation theory. 

We now assess the approximations made, We first  
check on the validity of the expansion in q. In the esti- 
mate we shall not distinguish between m,, m,, and M ,  
The characteristic q i s  determined from the relation 

The condition that q, be small, q0 <<k-  (AM)'/'/E, i s  
equivalent to ( A ~ / ? M ' / ~ / ~ E ~ ) ~ / ~ > >  1, i.e., it coincides 
with the condition for the quasiclassical approach. 

We turn now to Eq. (28). Far  from the turning point, 
the discarded terms can be neglected, since the quasi- 
classical matrix elements of a slowly varying perturba- 
tion a r e  exponentially small. The principal correction 
is given by the quantum region-the vicinity of the 
turning point. I ts  characteristic scale 7, (7 is the time 
reckoned from the turning point) is determined from the 
condition H , ( T ~ ) T ~  /E- 1, o r  T~ - ( E M ) I / ~ ( ~ E ) - ~ / ~ .  During 
the time T, the function G undergoes one oscillation, and 
we shall assume for the estimate that G is constant in 
the quantum region, i.e., we teglect the Hamiltonian 
2 in Eq. (26). The ctange of G, is then described by the 
"sudden" change of S: the Green's function does not 
manage to change, and only the basis in which we ex- 
pand it changes : 

G ~ ( T " )  ~ ~ , o S - , ~ - ' ~ ~ ( - ~ o )  S-,oS,e-'.  

 e ere 3, = 3 ( e ~ ~ / ~ + q ) . ]  ~ x p a i d i n ~  S up to second 
order in q, we obtain for the correction 

(The terms linear in q vanish upon integration.) 

We emphasize once more that the change of 9 can be 
regarded a s  sudden only qualitatively, a s  an estimate, 
and in this case we obtain the order of magnitude of AG 
accurate to a numerical coefficient. 

Thus, the correction turns out to be small in terms 
of the quasiclassical parameter raised to the 1/3 power. 
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We note, however, that the correction te rm,  generally 
speaking, i s  no longer diagonal in the S(e)  representa- 
tion, and can therefore describe transitions between the 
bands of the light and heavy holes. The corresponding 
oscillations will have a different phase and a different 
frequency. We shall not consider the conditions for  the 
onset of these "combined" oscillations, and note only 
that they do not appear in the spherical approximation. 

TO find the CPT we must substitute expressions (32) 
and (32a) in (301, and then in (21). In this case  we ob- 
tain, e.g., for  A > 0 

Since the eigenvalues fi a r e  degenerate (namely mn, i / 2  

=mn= Pn= i / 2 =  11,. - i / 2 ,  'nn= 3 / ~ = ~ n =  -3/2 ,  C"n=3/2  

= p,. we can sum over pa i rs  of values of. n per- 
taining to one eigenvalue. 

We introduce the notation 
1 

QvaYe) = ,- t.,."~.,,~,, ( e ) S  ,,,,,. (e)  v,!., 
-s- 

v runs through the values 1 and h. A ra ther  cumber- 
some calculation yields for  e;'(e) (see Refs. 5 and 7) 
the expression (2), while fo r  the CPT i t  yields the ex- 
pression (1) at  A > 0 and the expression (8) at  A < 0. 

$4. COULOMB EFFECTS IN ELECTRO-OPTICS 

The Hamiltonian of the relative motion of the electron 
and hole, with account taken of their Coulomb interac- 
tion in the gauge cp = E *  r and A =0,  is of the form 

where fi0 i s  defined by (20). 

We use the well known identity for  Green's functionsi0: 

G(r?, r,, t )  = j d'r' € ( r 2 .  r f .  t - r )  G(r ' ,  r , .  r) (O<&t). (3 5) 

Using (35) twice, we obtain . . 

In our case  G(ri,  0, ti) describes the initial section of 
a returning trajectory [0-• r( t i )] ,  e(r , ,  ri, t -  t i -  t,) de- 
scr ibes  the middle section [r(ti) -- turning point - r(t2)], 
and &(0,r,,f2) the final section [r(t,)-0] (Fig, 1). The 
gist of this method of taking the Coulomb interaction in- 
to account i s  that when a suitable choice of ti and t, i s  
made on the initial and final sections of the trajectory, 
the electric potential can be regarded a s  smal l  and the 
Coulomb potential taken into account exactly. In the 
middle section, on the contrary, the electr ic  potential 
is exactly taken into account and the Coulomb potential 
i s  regarded a s  a small  increment. Obviously, this i s  
possible only if the trajectory has a "free" region in 
which both the Coulomb and the electric potentials a r e  
small  compared with the kinetic energy. As shown in 
Ref. 4, for  the case  of simple bands this condition re-  
quires that ( A / R ) ~ / ~ ( A ~ / ~ M ~ / ~ / ~ E E )  >> 1" (In this case  
the condition for  the quasiclassical approach (27) should 
also be satisfied.)  hen, choosing r( t i )  and r( t2)  in the 

''free" region (where the motion i s  already quasiclassi- 
cal), we join al l  three  sections. 

Unfortunately, however, we do not know the repre- 
sentation in which the Coulomb Green's function 6 (0, r )  
is diagonalized, and generally speaking it coincides 
neither with g ( r )  nor with i (k)  [where k i s  a momentum 
direction such that the velocity vt;=kja2~,(k)/ak,akj i s  
parallel to r ]  even a s  r- m. An exception is the spheri- 
cal  approximation (SA), which i s  characterized by the 
fact that the matrices of al l  the physical quantities that 
depend on only one vector have a diagonal form in one 
and the s ame  representation in which the quantization 
axis  of the spin 3/2 coincides with the direction of this 
vector. In the SA the velocity i s  always parallel to the 
momentum, and the trajectories passing through the 
Coulomb center a r e  straight lines. We shall c a r ry  out 
henceforth the calculation in the SA. 

We transform expression (36): 

i ( A - e , ) t , + i ( A - e : ) t 2  d e ,  d e z  
xexP{ R -1 d3r1 d3r2.  (37) 

Since the motion is classical  in the joining region, all 
three  Green's functions under the integral sign in (37) 
a r e  rapidly oscillating functions of ci,  E,, ri, and r,, 
and the important ro le  is assumed in the integration Ijy 
a narrow energy region near A : 

and by a narrow coordinate region near the points r i  
= r ( t i )  and r ,=r ( t , )  that l ie  on the f r e e  section of the 
returning trajectory (Fig. 1). For  the longitudinal co- 
ordinate we have 1 z i  - r( t i )  I -r ( t i )2 /3f i i /S~- i /6~- i /6 ,  and 
for  the transverse,  pi -r(fi)i/2~if2~-if4~-i14a (The 
est imates for  z ,  and p, a r e  analogous.) The  motion in 
the f r ee  region i s  quasiclassical, meaning that 
(~MA)~/%-(~)K- '>> 1. From this inequality and f rom the 
presented est imates i t  follows that [A: c I <<A and 
Ir - r( t)  1 <<r(t). We shall s e e  that allowance for  the 
Coulomb interaction leads to the appearance, in al l  
three  Green's functions, of additional Coulomb factors 
that vary little over the characteristic scale of variation 
of E i, E ,, ri, and rz. In their calculation we can there- 
fo re  put E ~ = C , = A  and r i= r ( f i ) ,  r,=r(t,).  

Thus, in the calculation of e, (r ,  0) we neglect the elec- 
t r i c  field. As shown in Ref. 11, the Hamiltonian (34) 
commutes a t  E=O with the operator of the total angular 
momentum k = j +  (t i s  the orbital-momentum opera- 
tor). The wave functions can be characterized by the 
presence of the angular momentum F and of i t s  pro- 
jection Fc on an arb i t ra ry  z axis: 

From the addition rules for  angular momenta it i s  
c lear  that F takes on half-integer values, starting with 
F= 1/2, while L ,  takes on values f rom F -  3/2 to F  
+ 3/2, for  a given F a  3/2, and only two values, L = 1 
and L = 2 ,  at  F=1/2.  But at  L #  0 the function $L(0)=O, 
therefore the only nonzero t e rms  in the sum a r e  those 
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with ~ = 3 / 2 .  The basis g/,,#(r), which depends on 
?ne vector r, is diagonal in the indices j and F, in the 
S(Y) representation, while #,2rrz(0) is diagonal in any 
representation and should therefore-have the structure 
of a unit matrix: #/,,(o) = q3/2(o)Ij,Fza 

Taking all the foregoing into account, we have 

C n  is the eigenvalue of d in the i ( r )  representation. If 
A > 0, then q(r) can differ as Y - - from the wave func- 
tion @(r) of the f ree  motion only in phase. This follows 
from the condition of normalization of the continuous- 
spectrum functions. The Coulomb phase is of the form 

Here 6g(c) is a certain unknown function of energy, 
chosen such that $(0) and $(O'(O) a r e  real. To find 
~,C(E) it is necessary to have an exact solution of the 
Schr;dinger equation at short distances. The second 
term in (40) is the quasi-classical phase, which can be 
easily obtained from the following considerations: it i s  
known that in the quasiclassical region $a exp is/fi.1° If 
we consider the Coulomb potenti$ a s  a small increment 
to the free-motion Hamiltonian H,, then we can use the 
known expression for the correction to the action in 
terms of the correction to the potential: 

where r(t) i s  the unperturbed classical trajectory. Sub- 
stituting 6u(r) = - e2/cor, where r(t) = const + (2~ / rn , ) '~ t  
is the trajectory of the f ree  motion, we obtain the loga- 
rithmic term in (40). 

Substituting (41) in (39) and taking the slowly varying 
Coulomb factors outside the integral sign, we obtain 

In the derivation of (43) we used a basis of wave-func- 
tions that constitute a diverging wave at large dis- 
tances. This is convenient in the calculation of the 
Green's function 6 ,,(r,, 0), which describes the de- 
parture of the particle from the point 0, but in the cal- 
culation of the Green's function dE2(0,  ri), which de- 
scribes arrival  at the point 0, we must use a basis of 
converging waves. This changes the sign of the addi- 
tional phase cp,(r,c) of the wave functions and, a s  a re- 
sult 

To find the Coulomb factor in e,(r,, r,) we also use the 
relation (42)' For the quasiclassical Green's function, 
a s  well a s  for the wave function, we have G a exp{i~/fi}. 
Thus 

Gan (r2, r,) =erp {icpnE(A, rz, ri))GaEn (r2, 1%). (45) 

Here cp, = ~ s , / A  and G: i s  the field increment to the 
Green's function without allowance for the Coulomb 
field. [we disregard the field- independent contribution 
made to G by the direct transition ( r l  -- r2)  in (31)]. 
When calculating the correction to the action we used 
the trajectory of motion in an electric field: r( t)  
= (2A/mn)1/2t- e ~ t ~ / 2 m ,  between the instants of time 
t ,  and t2  [r(t,) = rl, r(t2) = r2] with the points r1 and r2  
assumed to be located on a returning trajectory. 

Taking the Coulomb factor outside the integral sign 
in (371, we obtain 

X [ G::'" (0, r2) GAEn (rl. r , )  ~ 2 : ' ~  (r,. 0) 

The difference between GiO'(O, r )  and G: (0, r )  can be 
neglected, since the electric potential is small on the 
sections (0 -- r l )  and (r2 - 0). The remaining integral 
is then equal to G:(O,O) [formula (32), in which we must 
put y2=y3]. In addition, it follows from (38) that 

where GC,(O, 0) i s  the Coulomb Green's function, whose 
analytic expression is unknown. Using the expression 
for the phases (40) and (46), we get 

1111 GP (u, 0) 
G," (0,O) = GIC(U, 0) + 

l m  G',"' (0,O) 

and for the CPT at A > 0 we get expression (9). By ana- 
lytically continuing GE (Y, 0) into the region c < 0 we no 
longer obtain such a simple connection between the pre- 
exponential factor with Im G: (0,O) a s  in (43) and (44), 
since the phase 6g(c) becomes imaginary at c < 0. On 
the other hand the logarithmic part of the phase (10) re- 
tains it's form. As a result we obtain expression (11) 
for the CPT at A < 0, 

APPENDIX 

We shall calculate y, (e); kh(e) i s  obtained from y, (e) 
by reversing the sign of g(e). 

Differentiating (15), we obtain 

02e ,  (k) 
-1  = h-? , o k .  U k ,  

T o  facilitate the calculation of the determinant D(e) 
=det m;,' of the matrix (A.l), we note that D(e) must 
have cubic symmetry, i.e., it depends on e only via the 
cubic invariant A = eie: + e:ef + ezef. We can therefore 
set  in (A.l) one of the components of e, for example e,, 
equal to zero. The answer must be expressed in terms 
of A = eze:. At arbitrary orientation of e, we must re- 
place eze; in the obtained expression by e:e: + e;ei 
+ efe:. Thus, putting ec = O  we get 
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3.+ L-y 

m z z - ~ = n t - l  'LL] , m,,-l=nz,,-'=u, 
I: 

g:-yz' 
m * I  -'=m-'(3y3'+r2').1 '-, g=[y2'+3(yJZ-yZ2).1] :, 

g 
y??(3y3=+y12) , exT-ey2 

mi;"u,="~-l [I,' + I- "g' + 3 Y + ]  (e) 
g3 

D(c) = mrz-' (mxr-' rnVu-' - (mzv-')') 

3rJ'-yz1 y2'(3yJZ+yz1) 
= m-' [r: + --] [T,,'+5yi~+3:.' + <, (y,,+3g)] . 

We used the fact that e:- e i=  1 - 4A, and expressed 
A in terms of g. The final answer i s  

F ; , ~  (e) = [m,,, (e)D,,* (e) ] ] - "  = m I "  
(A.2) 
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