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A theory is derebped of the sorttering of two-leuel atamp by a otanding light wave of frequency close to that 
of an atomic transition. It is shown that for a natural transition width greater than the recoil energy of the 
atom and for interaction times exceeding the spontanmus decay time the microscopic equations for the 
atomic density matrix reduce to a single kinetic equation for the atomic distribution function. This is a 
Fokker-Planck type equation and it includes the optical pressure force and the momentum diffusion tensor, It 
is shown that in a strong field the maximum force is restricted, whereas the diffusion tensor increases 
proportionally to the wave intensity. It is concluded that at high standing wave intensities the main cause of 
the scattering is the diffusion of atomic momenta. 

PACS numbers: 32.80. - t, 05.60. + w 

1. INTRODUCTION. FORMULATION OF THE function w(r, p, t ). This distribution function satisfies 
PROBLEM a kinetic equation of the Fokker-Planck type.4*5*7e8 The 

exact coefficients in this kinetic equation have been 
It is well known that a self-consistent approach to  

found recent ly . '~~ The solutions of the equation have 
the description of the motion of atoms in a resonant 
optical field requires the use of the equation for the been analyzed already.'.g.'O 

atomic density matrix which includes internal and 
translational states of the atom (see, for example, the 
review in Ref. 1). This rigorous approach has made it 
possible to complete recently in the main theory of the 
motion of atoms in the simplest case of a monochroma- 
tic traveling light wave.'-lo It has been found that the 
only parameter of the theory governing the qualitative 
nature of the evolution of the atomic ensemble is the 
ratio of the recoil energy r =tk2/2M (k = w/c is the wave 
vector of a light wave those frequency w is close to  an 
atomic transition frequency w,) to the natural width 2y 
of an atomic transition line.5s7 The appearance of this 
ratio & = T / ~  = ~ , / ( 2 ~ / k )  (v, = E k / M  is the recoil velocity) 
is associated with the circumstance that in the differ- 
ence integrodifferential equations for the elements of 
the Wigner density matrix p,,(r ,g, t )  the change in these 
elements a s  a result of absorption (emission) of a pho- 
ton is governed by the shift in the atomic velocity by 
an amount equal to the recoil velocity v,, and the char- 
acteristic velocity scale of the change in the density 
matrix Av is governed by the natural width of the atomic 
transition line: Av-2y/k. 

Depending on the value of the parameter &, we can 
distinguish two main situations differing in respect of 
the qualitative nature of the evolution of the density ma- 
trix. If &Z 1, the considerable magnitude of the recoil 
momentum causes the density matrix to change ab- 
ruptly due to discrete changes in the atomic momentum 
and this is t rue  for any times of the atom-field interac- 
tion. In the opposite case of &<< 1 (typical of optical 
transitions in atoms) the nature of the evolution of the 
density matrix undergoes a qualitative change at times 
t - y -I. If t 5 y -I, the density matrix oscillates strongly 
with time, whereas for t>> y-', spontaneous decay 
smooths out the density matrix variations. Consequently, 
in describing the atomic motion in the t>>y-x case it is 
sufficient to use not al l  the density matrix, but only the 
sum of its diagonal components, i.e., the distribution 

In the theory of motion of atoms in resonant light 
fields we need to consider not only the case of a travel- 
ing wave but also the motion of atoms in a resonant 
standing wave, which is of fundamental importance. The 
motion of atoms in such a standing field configuration 
has been analyzed earlier  for the & = .o (y = 0) case."-'s 
In the case &<< 1, which is of practical importance, the 
motion of atoms has been considered only in the case of 
low field intensities (assuming that the satrprathn 
parameter is G I), since attention has been concentra- 
ted on the possibility of radiative coolipg of a t ~ r n s ~ ~ " ~  
first  suggested by ~ a n s c h  and S c h a w l ~ w ' ~  for an isotrop- 
ic light field. 

A recent experimentlg has drawn attention to another 
problem in the theory of atomic motion, which is the 
scattering of atoms by a strong standing wave. This 
problem has been considered before,80e4 but without 
allowance for the finite width of an atomic transition 
line the results  of Refs. 20-24 cannot be compared with 
real  experiments carried out under the conditions when 
E<< 1. Moreover, the duration of the interaction of 
atoms with a standing wave field in the experiments 
of Ref. 19 was never less  than y'', whereas the ap- 
proach of Refs. 20-24 is limited1) to the times t<< y-'. 

Our aim will be to develop a theory of the scattering 
of atoms by a resonant standing light wave under condi- 
tions typical of experiments on atoms. We mean 
specifically that the probability of spontaneous decay y 
should be greater than the recoil energy r (r/y << 1) and 
the scattering time should be longer than the spontan- 
eous decay time: t >y". Since these a r e  the conditions 
for the kinetic stage of the evolution of the density 
matrix, we shall be formulating a kinetic theory of the 
atomic scattering. This includes the derivation of the 
kinetic equation for the atomic distribution function and 
an  analysis of the scattering on the basis of the kinetic 
equation. 
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2. MICROSCOPIC EQUATIONS 

We shall consider the simplest model of a two-level 
atom and assume that an atomic transition occurs be- 
tween two nondegenerate levels fg) and 1 e), of which 
the lower level Ig) is the ground state and the upper 
level (e) decays to the ground state with the spontaneous 
decay probability 2y. We shall assume that a standing 
light wave is plane 

E ( I ,  t )  =2eEo cos ot cos kz (1 

and, to be specific, we shall postulate that it is polar- 
ized linearly along the x axis : e =ex. 

We shall begin with the equations for the atomic den- 
sity matrix and we shall define the latter a s  the density 
matrix averaged over the vacuum states.' Consequent- 
ly, in the Hamiltonian of the "atom +field (1)" system 

we shall include the energy of the internal state of the 
atom, the kinetic energy of i ts  translational motion, 
and the energy of the dipole interaction of the atom with 
the field 

Next, we shall introduce the density matrix in the Wigner 
representation 

and we shall write down the equations for its elements 

+ Vge (k', t)p.,(r, p-'l2fik', t )  etk"dk'+2iy J dn Q, (n)p..(r, ptnfik, 

In the system (5) the symbol d / d t  denotes the hydrody- 
namic derivative 

where v=p/M. The matrix elements v,,(kl,t) a re  the 
Fourier transfor-ms of the nondiagonal matrix elements 
of the operator V. The function @(n) determines the 
relative probability of spontaneous emission of a pho- 
ton in the direction of a unit vector n (Refs. 3-5 and 7): 

@ ( n )  = ( 3 1 8 ~ )  [ 1- (ne.) q]. (7) 

The matrix elements of the interaction operator 
~,,(k', t) for the field (1) have the following form in the 
standard approximation of a rotating wave: 

V.,(k', t )  =-V,e-"'[6 (k-k') +6(k+k1) 1, (8) 

where = w - w,, k =  kez, V, =d~,/2A, and d is the ma- 
t r ix  element of the projection of the dipole moment onto 
the x axis. We shall substitute Eq. (8) into Eq. (5) and 
alter  the definition of the nondiagonal elements p,: 

Then, the final system of microscopic equations for the 
atomic motion is 

i - -=  dpe." vo (p.+pl -pL1 ) eihz+vO (p;B( -p:.' ) e-'"-2iyp.2, 
dt 

(10) 
where, for simplicity, we have introduced t%e notation 

The microscopic difference integrodifferential equa- 
tions in the system (10) describe the motion of an atom 
at  any time t and for any ratio of the parameters r and 
y. In going over to the analysis of the principal case 

we shall  allow for the fact that if the condition of Eq. 
(12) is satisfied, the photon momentum fik is small  com- 
pared with the characteristic scale Ap - My/k of the 
change in the density matrix, and we shall expand the 
elements of the density matrix in powers of y =tik/hp 
- 2 ~ .  As pointed out earlier,7 this procedure corres- 
ponds to consideration of the kinetic state of the evolu- 
tion of the system (lo), i.e., to the case when the time 
is t>> y' l .  Moreover, we shall introduce the following 
Bloch variables in these equations: 

We then obtain the following microscopic equations for 
the new variables and these equations correspond di- 
rectly to the kinetic stage of the evolution: 

dw ac I a z ( w - U )  
-= 2hkV,-sinkz+-Pk? aii- + . . . , (13a) 
dt dP. 

i..,,%,8 
apiZ 

du 
-= 2.1 (w-U) -4V0s cos kz + . . . , 
dt 

(13b) 

dw 
yc-Qs+2AkV,- sin kz+ . . . , 

ap. 
( 1 3 ~ )  

=- as 
ys+Pc+4Vou cos k z f  . . . , 

at 
(13d) 

where a,, a re  given 

The system (13) is written down using only the first 
t e rms  of the expansions required in the subsequent dis- 
cussion. 

3. KINETIC EQUATION IN  THE FIRST ORDER 
WITH RESPECT TO THE RECOIL MOMENTUM 

One closed kinetic equation for the atomic distribution 
function w(r,  p, t) will be obtained from the microscopic 
equation system (13) by applying familiar Bogolyubov 
analysis2' to the system (13) (see also Refs. 27 and 28). 
This approach simplifies greatly the description of the 
motion of an atomic ensemble during the kinetic stage 
of the evolution. This simplification of the system (13) 
is physically obvious in the &<< 1 case. Since the recoil 
momentum Ak is small, the change in the translational 
state of an atom is a slower process than the change in 
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the internal state and the latter state becomes adjusted 
(2y+inkv,) u?' = 2 T 6 , 0 - 2 ~ o ( ~ ~ ~ 1 + ~ ~ ~ l ) ,  

to the still varying translational state. Formally, the 
fast  relaxation of the internal state means that in the (r+inkv.) c.'" =-QS? , 
kinetic stage of the evolution the functions h =u, c, s, be- (r+inku,)~,'o' =QC,!" + ~ V ~ ( U , ' O " + U ~ : , ) ,  
come functionals of the distribution function: 

h(r ,  P, t ) = h ( r ,  P; w ( r ,  P, t ) ) .  (14) whose solution has already been found.29 

The explicit form of the functional dependence (14) can 
be deduced directly from Eqs. (13b)-(13d). Since these 
equations contain only the function w and its derivatives 
with respect to the momentum pi, the most general 
form of the function h represents ser ies  in powers of 
the gradients aw 

Bearing in mind the possibility of using the results  of 
Ref. 29, i.e., assuming that the solution of the system 
(20) is known, we shall derive from Eq. (13a) the final 
equation for w in the first order in p: 

where 

F=-2fikV0C'O' sin kz=Fo + F a k e s  2nkz+F."in 2nkz, (22) 2 n-I 
where H(') a r e  the functions only of z and p, since the 
whole time dependence is contained in the function w .  
The factor - 7 ~ / 4 ~ ,  is introduced in Eq. (15) with the aim 
of obtaining a more compact form of further expres- 
sions. 

We can now use Eq. (15) to derive successively the 
equation for w in different orders with respect to the 
parameter p = 2 c < . l .  We shall first consider the 
zeroth and first  orders. In the zeroth order  with respect 
to  p the equation fo r  the atomic distribution function 
follows from Eq. (13a): 

Thus, in the first  order with respect of the recoil mo- 
mentum the kinetic equation (21) for the distribution 
function w ( r ,  p, t )  describes the motion of an atomic 
ensemble acted upon by the optical pressure force F. 
It should be pointed out that since the exact form of 
the force (22) has been found earlier;@ the Liouville 
equation (21) can be written down directly omitting the 
above derivative. However, since we shall continue the 
derivation of the equations to the next order in p ,  we 
shall definitely require Eqs. (17)-(20). 

This equation describes the free motion of atoms be- 
cause the recoil effect is ignored in the zeroth approxi- 
mat ion. 

Equation (21) describes the motion of an arbitrary 
atomic ensemble. In the important case of a spatially 
wide atomic distribution of width AZ >> A =2n/k the func- 
tion w should be averaged over the wavelength of light A: 

The equation in the first  order with respect to the re- 
coil momentum is obtained by deriving from Eqs. 
(13b)-(13d) the function c in the zeroth order with re- 
spect to  p and then substituting it on the right-hand 
side of Eq. (13a), which already contains the first  power 
of tik. Before doing this, we shall calculate thederiva- 
tives on the left-hand side of Eqs. (13b)-(13d) in the 
zeroth order in p: 

i L  ==--I w d z .  
A. r, 

Averaging of Eq. (21) produces a much simpler equa- 
t ion 

aw aa a 
-+v -+ - (F4 iZ)=0 ,  
at ar a p ,  

(27) 

from which, solving the system (2) and using Eq. (23), 
we obtainz9 

where (&/at is calculated using Eq. (16). Applying 
Eq. (IT), we find that the system (13) for k =u, c, and s 
yields directly the system of equations for the functions 
H(O) = U ( ~ )  ~ ( 0 1 ,  and d o ) :  

where Q is an infinite converging fraction dU'O) 
vz-- 27 (1-U'") -4VJt0' cos kz, 

a z  
ac[O) 

,,*- .=-.,C'#'-QS'O' 
a z  

as(D) 
V .  - ==-~S'0'+W'0'+4VOU"~ cos kz. 

az  in which 

The solution of the system (18) can be obtained by ex- 
panding the functions = flO), do), and s(O) as  the 
Fourier ser ies  and the integers n, and n, a r e  defined by 

n,=n+l,  n,=n, if n is even; 

n,=n, nt-n+l,  if n is odd. 

After expansion of Eq. (19), the system (18) reduces to 
the following infinite system of equations 

The parameter G =2~1, /?  in Eq. (30) represents satura- 
tion. 
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In averaging Eq. (21) we have assumed that the maxi- 
mum values of the harmonics of the force F, a r e  of the 
same order of magnitude as  the average force F. A 
rigorous justification of this assumption will be given in 
Sec. 5. 

4. KINETIC EQUATION IN  THE SECOND ORDER 
WITH RESPECT OF THE RECOIL MOMENTUM 

It follows from Eq. (13a) that the equation for w can 
be obtained in the second order with respect to C( by 
finding first  the function u in the zeroth order and the 
function c in the first  order. The first  problem is solved 
by Eqs. (18)-(20). The second problem requires the 
use of Eqs. (13b)-(13d) in the first  order in Rk. Since in 
the first  order, we have 

the derivatives on the left-hand sides of Eqs. (13b)- 
(13d) considered in the first  order a r e  

dh ' I >  dw O H [ O '  fiky a ~ " '  aw 
( )  = H w '  (df) + u.w- ---.us-- 

az 4v, az ap, 
a ~ H ' o ~  trky aH") aw - - - H'''-(Fw)+ u,w---u,-- 

3 ~ .  az 4v0 82 ap, . (32) 

Using Eqs, (31) and (32), we can reduce the system 
(13b)-(13d) in the first  order in p to the following 
equations for H(') =u('), c('), and s('): 

The system (33) can be solved by analogy with Eq. (19), 
i.e., expanding the functions H(') =u('), c('), and sf') in 
a Fourier series.  In this case, the system (33) yields 
an infinite system of equations for H?) whose solution 
may be represented in the form of infinite converging 
fractions. We shall not give these very cumbersome 
results but write down directly the general form of the 
equation for w in the second order in c(: 

where the force F is defined by the relationships (22)- 
(25), and the components D, ,  define the diffusion tensor 
in the momentum space: - 

Di,=Di,O +x D,;" cos 2nkz+Dci'"sin2nkz, (35) 
"-1 

(1) 
D,,' = 1 / , ~ 2 k z Y ~ ~ , c ( ~ - ~ d 0 ' ) +   IS^.( I ~ C ,  I ,  (36) 

We can thus see  that in the second order in respect 
of the recoil momentum the motion of atoms is des- 
cribed by a kinetic equation of the Fokker-Planck type. 

In the case of a spatially wide distribution (Az>> A), 
which is important in practice, Eq. (34) reduces to a 

a Fokker-Planck equation for the function w: 
aiii aiii a a* 

-+r-+-(F"iii)= at ar ap, z 7 ( D i c o ~ ) ,  
I - 1 , Z . J  api 

where the average force FO is defined by Eqs. (28)-(30) 
and the components of the momentum diffusion tensor 
D:, a re  given in Eq. (36). It should be noted that Eq. 
(34) is averaged on the assumption that not only the 
maximum values of the harmonics F,  do not exceed F O ,  
but also the maximum values of D;, do not exceed D:,. 
We shall justify these assumptions later. 

We shall conclude a discussion of the structure of the 
kinetic equation by pointing out that, although strictly 
speaking it is valid only for times t>> y-I, we can in 
fact use it for times t 2 3y-' because it has been shown 
by   and el' that three spontaneous decays a r e  sufficient 
for a considerable smoothing out of the density matr ix  

5. DISCUSSION OF EQUATIONS 

The Liouville equations (2 1) and (27) and the Fokker- 
Planck equations (34) and (39) a r e  determined entirely 
by the optical pressure forces and diffusion tensors 
which occur in them. We shall now consider this force 
and diffusion drawing attention to their dependences on 
the parameter G (i.e., on the light wave intensity). 

We shall first consider the average force p. The de- 
pendence of this force on the velocity of an atom along 
the z axis is governed mainly by the sign of the detuning 
52. If S'2< 0, the force is directed mainly against the 
atomic velocity (Fig.1). If 52 > 0, the force FO is direc- 
ted along the atomic velocity. For S'2 = O  the force van- 
ishes. All the small-scale changes in the force (Fig. 1) 
due to multiresonance processes specific to a standing 
wave have been discussed in detail earl ier  (see the 
review in Ref. 1 and the experimental investigations re-  
ported in Refs. 30 and 31). From the point of view of 
the scattering of atoms the main interest lies in the 
contribution of these processes to the optical pressure 
force at high intensities of the standing wave. A direct 

FIG. 1. Dependence of the average optical pressure force on 
the atomic velocity v = v ,  for Q /Y = -3, G = 10 (a), and G 
= 1000 (b). 
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calculation of the force F shows that these processes 
increase very slightly the force even when the satura- 
tion parameter G increases considerably. For example, 
for S Z / ~  =-3 an increase in the saturation parameter by 
a factor of 100 [ ~ i g s .  l(a) and l(b)] increases the force 
only twofold. A rigorous analysis shows that an increase 
in the force F" occurs only up to a certain value because 
the maximum force is restricted. 

We shall prove this conclusion by establishing the or-  
der of the maximum value of the force p. Since F0 is 
governed by the value of c?) and the order of the latter 
is identical with the order of the function c(O), we shall 
turn back to the system (18). Neglecting the derivatives 
a~(O)/az,  which do not alter the order of the equations, 
and assuming that cos kz = 1, we obtain directly from the 
system (18) an estimate of c(O), which gives the follow- 
ing estimate for the force: 

An analysis of Eq. (40) shows that the maximum force 
FO at high values of G, 

is limited to 

Repeating the above discussions, we can easily es- 
tablish that both the maximum values of and F,S and 
the maximum value of the total optical pressure force F 
a r e  restricted by Eq. (42). In connection with the esti- 
mate (42) it should be noted that among the components 
of the force there is none which could be called the in- 
duced force in the sense used in Refs. 20-23 and 25, 
since the maximum values of a l l  the components of the 
force a re  limited by the scattering of photons at the 
ra te  SZ and not at the rate Vo =dE0/2ti. 

We shall now consider the average diffusion tensor. 
This is represented in Eq. (36) by two terms: 

D;?=Di?(l) +8sPs,0(2). (43) 

The first of these terms describes the "continuous" 
d i f f u s i ~ n ~ - ~  07 due to fluctuations of the direction of the 
spontaneous emission of photons. The second term 
describes discrete d i f f ~ i o n ~ . ~  whose existence is due 
t o  fluctuations of the number of the scattered photons 
for a fixed scattering direction (z axis). This type of 
diffusion is related directly to  the finite width of an 
absorption line. The dependences of both terms on the 
velocity of an atom along the z axis a r e  symmetric 
curves whose widths a r e  of the same order a s  the 
width of the velocity distribution of the force F. At 
high wave intensities these curves exhibit small-scale 
oscillations which a re  due to, as  in the case of the 
force F, multiresonance processes.' 

The order of ~ y , ( l )  can be determined by repeating 
an analysis of the system (18) and estimating the order 
of 1 - U(O); this shows that the  order of the components 
of the continuous diffusion tensor is given by the ex- 
pression 

It follows from this expression that in the case of high 
values of C >> Go corresponding to the condition (41) the 
maximum values of D!,(l) a r e  limited t o  

The order of the z-th component of the discrete dif- 
fusion tensor can be found from Eq. (33). We shall 
find this order by substituting in Eq. (33) the estimates 
of $O) from the system (18) and by substituting s in  kz 
= 1 in Eq. (33); this gives 

The expression (46) shows that in the G>> Go case the 
discrete diffusion tensor increases proportionally to 
the light wave intensity. It should be noted that the 
selection of the numerical values of the trigonometric 
functions in estimates of the solutions of the systems 
(18) and (33) is not accidental. For example, if in the 
analysis of the system (33) we follow the procedure in 
the case of the system (18) and assume that cos kz = 1, 
we find that the role of the saturation parameter G in 
the discrete diffusion tensor is distorted. 

The above considerations can be applied also to the 
tensors Di; and DE. The first  parts of these tensors 
can be described by the estimates (44) and (45), where- 
as  the second parts a re  described by the estimate (46). 

6. GENERAL ANALYSIS OF THE SCATTERING AND 
COMPARISON WITH EXPERIMENTAL RESULTS" 

We shall now use the above kinetic equation to dis- 
cuss the features of the scattering of atoms by a 
resonant standing wave characteristic of the times 
t >y- l .  Bearing in mind the conditions in real  experi- 
ments, we shall consider an atomic ensemble to be a 
beam of atoms whose spatial width Az is considerably 
greater than the wavelength of light X. When this con- 
dition is satisfied, the problem of the scattering of 
atoms reduces to an analysis of Eq. (39). Moreover, 
since the main interest l ies in the variation of the dis- 
tribution function along the z axis (along the direction 
of propagation of a light wave), It is permissible-in 
principle-to consider only the one-dimensional equa- 
tion and to ignore the trivial diffusive broadening of the 
distribution along the x and y axes. In this case the 
equation of interest to  us becomes 

In Eq. (47) we have omitted the index z and we have 
used v and p to denote the velocity and momentum of an 
atom along the z axis. 

According to  Eq. (47) and the analysis in Sec. 5, the 
scattering of atoms at high wave intensities is governed 
by the average force F0 and by the discrete diffusion co- 
efficient2) Do= ~ ' ( 2 ) .  We can distinguish here two qual- 
itatively different scattering patterns. In one of them, 
the scattering of atoms is governed by the force F, and 
in the other it is governed by theadiffwive broadening 
of the velocity distribution. In the former case we ob- 
serve  a complex deformation of the velocity distribution 
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associated with the steep dependence of the force F on 
the velocity (Fig. 1). In the latter case, the diffusion 
broadens symmetrically the velocity distribution. 

We shall estimate the intensity of a wave at which the 
first type of scattering changes to  the second. We shall 
assume that the scattering time t is fixed. Then, equat- 
ing the change in the velocity under the action of the 
force (42) to the diffusion-induced change in the velocity 
in the case when the diffusion coefficient is given by 
Eq. (46), we find that the critical saturation parameter 
G,, is 

We can thus see  that the role of the force F is greatest 
for Go<< G<<Gc,. If G a G,,, the result of the scattering 
can only be the diffusive broadening of an atomic beam. 
The change in the transverse velocity of the atomic 
beam under the action of this force can be estimated 
from Eq. (42): 

We shall now consider the experiments reported in 
Ref. 19. In these experiments the frequency of a light 
wave was identical with the frequency of one of the 
transitions between the components of the hyperfine 
structure of the states 3S1, and 3P3n of the sodium 
atom. The saturation parameter was G - lo4. The in- 
teraction time of atoms with the field exceeded y-'. 

For O = O  the force is F - 0  and the z-th component 
of the diffusion tensor Do obtained from Eqs. (33) and 
(36) a re  

where Q(0) =Q(O =O). Since G>> Go = 1, it follows from 
Eqs. (47) and (50) that the experimental results of Ref. 
19 can be described by the simple diffusion equation 

where 

[ ~ n  Eq. (51) we have omitted the t e rm v8$/8z which 
plays no significant role in the case of short scattering.] 

The expressions (51) and (52) a r e  in full agreement 
with the symmetric equation for the velocity distribution 
given in Ref. 19 and with the square-root dependence 
of the broadening on the wave intensity, because Eqs. 
(51) and (52) give the diffusive broadening: 

Av- (Dt) "aG'". (53) 

Therefore, our analysis shows that in the case of 
moderately weak atomic transitions (y >> r )  and for 
times t >  y ' l ,  the scattering of atoms by a standing 
light wave is governed by the evolution of the atomic 
distribution under the action of a velocity-dependent 
force which is constant in space and by the diffusion 
of the atomic velocities. In the case of a strong light 
wave (G>>Gc,) the scattering is entirely due to the 
diffusion of atoms in the velocity space. 

The author is grateful to V. S. Letokhov for his 

help in all  the stages of this work and stimulating dis- 
cussions. Thanks a r e  also due to 0. T. Serimaa for 
kindly supplying his program for the calculation of in- 
finite converging fractions. 

') In this connection we should mention an attempg5 to explain 
the results of Ref. 19 using the representations in Refs. 20- 
23 known to be invalid under the experimental conditions in 
Ref. 19. 
I t  should be pointed out that the scattering under the influ- 
ence of continuous diffusion typical of G 51 has recently been 
discussed in Ref. 32. 
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